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Abstract

Both the dynamics of belief change and the process of rea-
soning by default can be based on theconditional belief set
of an agent, represented as a set of “if-then” rules. In this
paper we address the open problem of formalizing the dy-
namics of revising this conditional belief set bynewif-then
rules, be they interpreted as new default rules or new revi-
sion policies. We start by providing a purely semantic char-
acterization, based on the semantics of conditional rules,
which induces logical constraints on any such revision pro-
cess. We then introduce logical (syntax-independent) and
syntax-dependent techniques, and provide a precise charac-
terization of the set of conditionals that hold after the revi-
sion. In addition to formalizing the dynamics of revising a
default knowledge base, this work also provides some of the
necessary formal tools for establishing the truth of nested
conditionals, and attacking the problem of learning new de-
faults.

Introduction

Consider a child using a single default “typically birds fly”,
to predict the behavior of birds. Upon learning of the class of
penguins and their exceptional nature she considersrevising
her current information about birds to include the informa-
tion that penguins are birds yet “typically penguins do not
fly”. This process is different from that usually modeled in
approaches to nonmonotonic reasoning and belief revision,
where upon discovering that Tweety is a (nonflying) penguin
she simply retracts her previous belief that Tweety does fly.
Instead, the example above addresses the issue of revising
the set ofconditional beliefs, namely, the default rules that
guide the revision of ourfactual beliefs. In this paper we
are concerned with the dynamics of such conditional beliefs.
Our objective is to characterize how the conditional informa-
tion in a knowledge base evolves due to the incorporation of
the new conditionals, which rules should be given up in case

of inconsistency, and what principles guide this process.1

One well-known theory addressing the dynamics of fac-
tual beliefs is that proposed by Alchourron, Gärdenfors and
Makinson (1985; 1988). TheAGM theorytakes epistemic
states to be deductively closed sets of (believed) sentences
and characterizes how a rational agent should change its set
K of beliefs. This is achieved with postulates constraining
revision functions∗, whereK∗

A
represents the belief set that

results whenK is revised byA. Unfortunately, the AGM
theory does not provide a calculus with which one can re-
alize the revision process or even specify the content of an
epistemic state (Boutilier 1992a; Doyle 1991; Nebel 1991).
Recent work (Boutilier 1992a; Goldszmidt 1992) shows that
AGM revision can be captured by assuming that an agent has
a knowledge base (KB) containingsubjunctive conditionals
of the formA → B (whereA andB are objective formulae).
These conditionals define the agent’s belief set and guide
the revision process via theRamsey test(Stalnaker 1968):
A → B is accepted iff revision byA results in a belief inB.
Such conditionals may be given a probabilistic interpretation
(Goldszmidt 1992): eachA → B is associated with a con-
ditional probability statement arbitrarily close to one. They
may also be interpreted a statements in a suitable modal
logic (Boutilier 1992a). The corresponding logics (and in-
deed semantics) are identical (Boutilier 1992a), and further-
more there is a strong relation between these conditionals
and conditional default rules (Boutilier 1992c; Goldszmidt
and Pearl 1992a).

The AGM theory has two crucial limitations. First, the
conditionals (or revision policies) associated withK, that
determine the form ofK∗

A
, provide no guidance for deter-

mining the conditionals accepted inK∗

A
itself. The theory

only determines the newfactualbeliefs held after revision.
Even if conditionals are contained inK, the AGM theory
cannot suggest which conditionals should be retained or re-
tracted in the construction ofK∗

A
. Subsequentrevisions of

K∗

A
can thus be almost arbitrary. Second, the theory pro-

1We will not address the important question of why and when
an agent decides to revise its conditional beliefs or defaults.



vides no mechanism for revising a belief set with newcon-
ditionals. Thus, the revision policies of an agent cannot, in
general, be changed.2 This paper provides a solution to this
second problem, and extends our recent work on a solution
to the first problem (Boutilier 1993; Goldszmidt and Pearl
1992b).

In this paper we focus on a particular model ofcondi-
tional revisionthat extends propositional natural revision in-
troduced by Boutilier (1993). Thenatural revisionmodel
addresses the problem of determining new conditional be-
liefs after revision by factual beliefs, and extends the notion
of minimal change (characteristic of the AGM theory) to the
conditional component of aKB. Thus, when a factual revi-
sion is applied toKB, the revisedKB′ contains as much of
theconditional informationfrom KB as possible. The exten-
sion to conditional revision presented here preserves these
properties and possesses the crucial property that the beliefs
resulting from any sequence of (conditional or factual) up-
dates can be determined using only properties of the original
ranking, and tests involving simple (unnested) conditionals.3

A model for revisingKB with new conditional belief (e.g.,
a ruleC → D) is crucial for a number of reasons. The prob-
lem of truth conditions for nested conditionals is subsumed
by this more general problem. The semantics of conditionals
with arbitrary nesting requires an account of revision bynew
conditional information. To test the truth of(A → B) → C,
we must first reviseKB by A → B and then test the status
of C (Goldszmidt and Pearl 1992b). Also, it is clear that
our beliefs do not merely change when we learn new fac-
tual information. We need a model that accounts for updat-
ing our belief set with new conditional probabilities and new
subjunctive conditionals to guide the subsequent revisionof
beliefs. Given the strong equivalence between condition-
als of the type described here and conditional default rules
(Boutilier 1992c; Goldszmidt and Pearl 1992a), a model of
conditional revision provides an account of updating aKB
with new default rules. Any specification of how an agent
is to learn new defaults must describe how an agent is to in-
corporate a new rule into its corpus of existing knowledge.
Hence, the process we study in this paper is crucial for pro-

2Surprisingly, these two issues have remained largely unex-
plored, due largely to the Gärdenfors (1988) triviality result, which
points to difficulties with the interpretation of conditional belief
sets. But these can be easily circumvented (Boutilier 1992c).

3A second method of revision is the model ofJ-conditioning
(Goldszmidt and Pearl 1992b): whenKB is updated with a new
factA, the revisedKB′ is determined by Bayesian conditionaliza-
tion, giving rise to a qualitative abstraction of probability theory
(Adams 1975; Goldszmidt 1992). This mechanism preserves the
(qualitative) conditional probabilities inKB as much as possible
and thus guarantees that the relative strength of the conditionals
also remains constant. The extension of J-conditionalization to the
conditional revision case is explored in the full version ofthe paper
(Boutilier and Goldszmidt 1993).

viding a semantic core for learning new default information.
We first review the basic concepts underlying belief revi-

sion. We then describe the basics of conditional belief revi-
sion by presenting a set of operations on ranked-models, and
an important representation theorem. Finally, we explore a
syntax-independent and a syntax-dependent approach to the
conditional revision of aKB.

Propositional Natural Revision
In this section we briefly review a semantic account of be-
lief revision (we refer the reader to (Gärdenfors 1988; Gold-
szmidt and Pearl 1992b; Boutilier 1992b) for details). We
assume the existence of a deductively closed belief setK

over a classical propositional languageLCPL. Revising this
belief set with a new propositionA is problematic when
K |= ¬A, for simply adding the beliefA will cause incon-
sistency. To accommodateA, certain beliefs must be given
up beforeA is added. The AGM theory of revision pro-
vides a set of constraints onrevision functions∗ that map
belief setsK into revised belief setsK∗

A
. Any theory of

revision also provides a theory of conditionals if we adopt
theRamsey test. This test states that one should accept the
conditional “IfA thenB” just whenB ∈ K∗

A
.

A key representation result for this theory shows that
changes can be modeled by assuming an agent has an order-
ing of epistemic entrenchmentover beliefs: revision always
retains more entrenched propositions in preference to less
entrenched ones. Grove (1988) shows that entrenchment can
be modeled semantically by an ordering of worlds. This is
pursued by Boutilier (1992b) who presents a modal logic
and semantics for revision. Arevision modelM = 〈W,≤
, ϕ〉 consists of a set of worldsW (assigned valuations byϕ)
and anplausibility ordering≤ overW . If v ≤ w thenv is
at least as plausible asw. We insist that≤ be transitive and
connected (sow ≤ v or v ≤ w for all v, w). We denote by
‖A‖ the set of worlds inM satisfyingA (thosew such that
M |=w A). We define the set of most plausibleA-worlds to
be those worlds inA minimal in≤; somin(M,A) is just

{w ∈ W : M |=w A, andM |=v A impliesw ≤ v}

We assume that all models aresmoothin the sense that
min(M,A) 6= ∅ for all (satisfiable)A ∈ LCPL.4 Theobjec-
tive belief setK of a modelM is the set ofα ∈ LCPL such
thatmin(M,⊤) ⊆ ‖α‖ (thoseα true at eachmostplausible
world). Suchα are believed by the agent. These objective
or factualbeliefs capture the agent’s judgements of true facts
in the world. They should be contrasted with the conditional
beliefs of an agent, described below.

To capture the revision of a belief setK, we define
a K-revision model to be any revision model such that

4Hence, there existmostplausibleA-worlds. This is not re-
quired, but the assumption does not affect the equivalence below.



min(M,⊤) = ‖K‖. That is, all and only those worlds sat-
isfying the belief set are most plausible. When we reviseK

byA, we must end up with a new belief set that includesA.
Given our ordering, we simply require that the new belief
set correspond to the set of most plausibleA-worlds. We
can define the truth conditions for a conditional connective
as

M |=w A → B iff min(M,A) ⊆ ‖B‖ (1)

Suchconditional beliefscharacterize the revision policies,
hypothetical beliefs or defaults of an agent. EquatingA →
B with B ∈ K∗

A
, this definition of revision characterizes

the same space of revision functions as the AGM theory
(Boutilier 1992b).

The AGM theory and the semantics above show how
one might determine a new objective belief setK∗

A
from a

givenK-revision model; but it provides no hint as to what
new conditionalsshould be held. To do so requires that a
new revision model, suitable forK∗

A
, be specified.Natu-

ral revision, proposed by Boutilier (1993), does just this.
Given aK-revision modelM , natural revision specifies a
new modelM∗

A
suitable for the revision ofK∗

A
(i.e., aK∗

A
-

revision model). Roughly, this model can be constructed
by “shifting” the setmin(M,A) to the bottom of the order-
ing, leaving all other worlds in the same relative relation.
This extends the notion of minimal change to the relative
plausibility of worlds. To believeA, certainlyK∗

A
-worlds

must become most plausible, but nothing else need change
(Boutilier 1993). Hence, natural revision constructs a new
ranking to reflect new objective beliefs. With such a ranking
one can then determine the behavior of subsequent objective
revisions. But no existing model of revision accounts for re-
vision of a ranking to include new conditionals. In the next
section we extend natural revision so that new conditional
information can be incorporated explicitly in a model.

Conditional Belief Revision: Revising a Model
Given a revision modelM , we want to define a new model
M∗

A→B
that satisfiesA → B but changes the plausibility

ordering inM as little as possible. We do this in two stages:
first, we define thecontractionof M so that the “negation”
A → ¬B is not satisfied; then we define theexpansionof
this new model to accommodate the conditionalA → B.
LetM = 〈W,≤, ϕ〉.

Definition 1 The natural contraction operator− mapsM
into M−

A→B
, for any simple conditionalA → B, where

M−

A→B
= 〈W,≤′, ϕ〉, and:

1. if v, w 6∈ min(M,A ∧ ¬B) thenv ≤′ w iff v ≤ w

2. if w ∈ min(M,A ∧ ¬B) then: (a)w ≤′ v iff u ≤ v

for someu ∈ min(M,A); and (b)v ≤′ w iff v ≤ u for
someu ∈ min(M,A)

Figure 1 illustrates this process in the principle case, show-
ing how the modelM−

A→B
is constructed whenM |= A →

B. Clearly, to “forget”A → B we must construct a model
where certain minimalA-worlds do not satisfyB. If M sat-
isfiesA → B, we must ensure that certainA ∧ ¬B-worlds
become at least as plausible as the minimalA-worlds, thus
ensuring thatA → B is no longer satisfied. Natural contrac-
tion does this by making the most plausibleA ∧ ¬B-worlds
just as plausible as the most plausibleA-worlds. Simply put,
the minimalA ∧ ¬B-worlds (the light-shaded region) are
shifted to the cluster containing the minimalA-worlds (the
dark-shaded region). We have the following properties:5

Proposition 1 LetM be a revision model.
(1)M−

A→B
6|= A → B;

(2) If M 6|= A → B thenM−

A→B
= M ; and

(3) If M 6|= A → ¬B thenM−

A→B
|= A 6→ B ∧ A 6→ ¬B.

Theorem 2 LetM−

A
denote the natural propositional con-

traction ofM by (objective belief)A (as defined in (Boutilier
1993)). ThenM−

A
= M−

⊤→A
.

Thus, propositional contraction is a special case of condi-
tional contraction.

We define theexpansionof M byA → B to be the model
M+

A→B
constructed by making the minimal changes toM

required to acceptA → B. While we do not require that
M 6|= A → ¬B in the following definition, we will only use
this definition of expansion for such models.

Definition 2 The natural expansion operator+ mapsM
into M+

A→B
, for any simple conditionalA → B, where

M+

A→B
= 〈W,≤′, ϕ〉, and:

1. if v 6∈ min(M,A ∧ ¬B) thenw ≤′ v iff w ≤ v

2. if v ∈ min(M,A ∧ ¬B) then:
(a) if w ∈ min(M,A ∧ ¬B) thenw ≤′ v; and
(b) if w 6∈ min(M,A∧¬B) thenw ≤′ v iff w ≤ v and
there is nou ∈ min(M,A ∧B) such thatu ≤ w

Figure 1 illustrates this process in the principle case, show-
ing how the modelM+

A→B
is constructed whenM 6|= A →

B. Clearly, to believeA → B we must construct a model
where all minimalA-worlds satisfyB. If M fails to satisfy
A → B, we must ensure that the minimalA∧¬B-worlds be-
come less plausible than the minimalA-worlds, thus ensur-
ing thatA → B is satisfied. Natural expansion does this by
making the most plausibleA∧¬B-worlds (the dark-shaded
region) less plausible than the most plausibleA-worlds (the
light-shaded region). This leaves us withA → B, but pre-
serves the relative plausibility ranking of all other worlds. In
particular, while the set of minimalA∧¬B-worlds becomes
less plausible than those worlds with which it shared equal
plausibility in M , its relationship to more or less plausible

5We letα 6→ β stand for¬(α → β).
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worlds is unchanged. Once again, the idea is that the condi-
tional belief set induced byA should contain onlyB-worlds,
but that all other conditionals should remain unchanged to
the greatest extent possible.

Proposition 3 LetM be a revision model such that
M 6|= A → ¬B. (1)M+

A→B
|= A → B; and

(2) If M |= A → B thenM+

A→B
= M .

We can now define revision by a conditionalA → B.
Briefly, to accept such a conditional we first “forget”A →
¬B and then “add”A → B.

Definition 3 Thenatural revision operator∗ mapsM into
M∗

A→B
, for any simple conditionalA → B, where

M∗

A→B
= (M−

A→¬B
)+
A→B

.

This definition of revision reflects the Levi identity (Levi
1980). Figure 1 illustrates this process in the principle case,
showing how the modelM∗

A→B
is constructed whenM |=

A → ¬B. Natural revision behaves as expected:

Proposition 4 Let M be a revision model. (1)M∗

A→B
|=

A → B; and (2) IfM |= A → B thenM∗

A→B
= M .

Theorem 5 Let M∗

A
denote the natural propositional revi-

sion ofM by (objective belief)A (as defined in (Boutilier
1993)). ThenM∗

A
= M∗

⊤→A
.

Thus, we can view propositional revision as a special case
of conditional revision. We will henceforth takeM∗

A
as an

abbreviation forM∗

⊤→A
.

These results show that natural conditional revision can
reasonably be called a revision operator. To show that this
revision operator is indeed “natural,” we must determine its
precise effect on belief in previously accepted conditionals.
In particular, we would like a precise characterization the
simple conditionalsα → β satisfied by the revised model
M∗

A→B
. The following result (Thm. 6) shows that the truth

of such conditionals inM∗

A→B
is completely determined by

the set of simple conditionals satisfied byM . Thus, the truth
of an arbitrarily nested conditional under natural revision
can be determined by the truth of simple conditionals in our
original model. We note that revision models arecomplete
in that they satisfy every simple conditional or its negation.
We do not require that a conditionalKB be complete in this
sense. We describe how this semantic model can be applied
to an incompleteKB in the next section.

We now show which conditionals are satisfied by a model
M∗

A→B
. In (Boutilier and Goldszmidt 1993) we also

describe similar characterizations of modelsM−

A→B
and

M+

A→B
. We begin by noting that ifM 6|= A → ¬B, then

M∗

A→B
= M+

A→B
. In particular, ifM |= A → B, then

M∗

A→B
= M and no conditional beliefs are changed. We

assume then thatM |= A → ¬B, the principle case of revi-
sion. We also introduce the notion ofplausibility: a sentence

P is at least as plausible asQ (relative toM ) iff the mini-
malP -worlds are at least as plausible (in the ordering≤) as
the minimalQ-worlds. This will be the case exactly when
M |= (P ∨ Q) 6→ ¬P . We writeP <P Q if formula P is
more plausible thatQ, andP =P Q if P andQ are equally
plausible.6 To determine whetherα → β holds inM∗

A→B
,

we simply need to know how the relative position of worlds
in ‖α‖ is affected by the revision. The relative plausibility
of A andα in M is crucial in determining this. Ifα is more
plausible thanA, then shiftingA ∧ B-worlds down cannot
affect the most plausibleα-worlds. Ifα is less plausible, the
most plausibleα-worldsmightchange, but only if there are
α-worlds among the most plausibleA ∧ B-worlds. Finally,
there are several different types of changes that can occur if
α andA are equally plausible.

Theorem 6 LetM |= A → ¬B and let≤P be the plausi-
bility ordering determined byM . Letα, β ∈ LCPL.

1. If α <P A thenM∗

A→B
|= α → β iff M |= α → β.

2. If α >P A then
(a) If M |= A ∧B → ¬α then

M∗

A→B
|= α → β iff M |= α → β.

(b) If M |= A ∧B 6→ ¬α then
M∗

A→B
|= α → β iff M |= A ∧B ∧ α → β.

3. If α =P A then
(a) If M |= A ∧B 6→ ¬α andM |= α → A then

M∗

A→B
|= α → β iff M |= A ∧B ∧ α → β.

(b) If M |= A ∧B 6→ ¬α andM |= α 6→ A then
M∗

A→B
|= α → β iff

M |= A ∧B ∧ α → β andM |= α ∧ ¬A → β.
(c) If M|= A ∧B → ¬α andM|= A ∧ ¬B → ¬α then

M∗

A→B
|= α → β iff M |= α → β.

(d) If M |= A ∧B → ¬α, M |= A ∧ ¬B 6→ ¬α and
M|= α → A thenM∗

A→B
|= α → β iff M|= α → β.

(e) If M|= A ∧B → ¬α, M|= A ∧ ¬B 6→ ¬α andM|=
α 6→ A thenM∗

A→B
|=α → β iff M|= α ∧ ¬A → β.

While this characterization results appears complex, it is
rather intuitive, for it captures the interactions caused by the
relative plausibility ofA and other propositionsα. As an
example, suppose we believe that a power surge will nor-
mally cause a breaker to trip (S → B) and this will prevent
equipment damage (S → ¬D); but if the breaker doesn’t
trip there will be damage (S ∧ ¬B → D). Our charac-
terization shows that, should we learn the breaker is faulty
(S → ¬B), we should also change our mind about poten-
tial damage, and thus acceptS → D. However, information
such as⊤ → ¬S will continue to be held (the likelihood
of a power surge does not change). Hence, our factual be-
liefs (e.g.,¬S) do not change, merely our conditional belief
about the breaker: what will happenif S.

6Plausibility is also induced by theκ-ranking of formulae
(Goldszmidt and Pearl 1992b):P ≤P Q iff κ(P ) ≤ κ(Q).



Theorem 6 also shows that the conditionals that hold
in the revised modelM∗

A→B
can be completely character-

ized in terms of the conditionals inM . This allows us
to use the mechanisms and algorithms of Goldszmidt and
Pearl (1992b) for computing the new model (Boutilier and
Goldszmidt 1993). This also demonstrates that an arbitrary
nested conditional sentence (under natural revision) is logi-
cally equivalent to a sentence without nesting (involving dis-
junctions of conditionals). Thus, purely propositional rea-
soning mechanisms (Pearl 1990) can be used to determine
the truth of nested conditionals in a conditionalKB. Indeed,
in many circumstances, a complete semantic model can be
represented compactly and reasoned about tractably (Gold-
szmidt and Pearl 1992b). We explore this in the full paper.

When we revise byA → B we are indicating a willing-
ness to acceptB should we come to acceptA. Thus, we
might expect that revising byA → B should somehow re-
flect propositional revision byB were we to restrict our at-
tention toA-worlds. This is indeed the case. LetM\α de-
note the model obtained by eliminating allα-worlds from
M .

Theorem 7 (M∗

A→B
)\¬A = (M\¬A)∗

B

This shows that acceptingA → B is equivalent to accepting
B “given” A. Thus, natural revision by conditionals is in
fact a conditional form of the propositional natural revision
of Boutilier (1993). The only reason the characterization
theorem for conditional revision is more complex is the fact
that we can “coalesce” partial clusters of worlds, something
that can’t be done in the propositional case. We also note
that (M∗

A→B
)\A = M\A; that is, the relative plausibility

of ¬A-worlds is unaffected by this revision.

Revising a Conditional Knowledge Base

If a conditionalKB contains a complete set of simple condi-
tionals (i.e., defines a unique revision model) we can use the
definitions above to compute the revisedKB. Often we may
use techniques to complete aKB as well (Pearl 1990). In
practice, however,KB will usually be an incomplete set of
premises or constraints. We propose the following method
of logical revision. SinceKB is not complete, it is satisfied
by each of a set‖KB‖ of revision models, each of these a
“possible” ranking for the agent. When a new conditional
A → B is learned, revision proceeds in the following way.
If there are elements of‖KB‖ that satisfyA → B, these be-
come the new possible rankings for the agent.7 In this case
we haveKB∗

A→B ≡ KB∪ {A → B}. If this is not the case,
each possibility in‖KB‖ must be rejected. To do this, we
revise each ranking in‖KB‖ and consider the result of this

7This is is equivalent to asking ifKB∪ {A → B} is consistent
(see Def. 4 and Thm. 8).

revision to be the set of new possibilities.KB∗

A→B is then

{C → D : M∗

A→B |= C → D for all M ∈ ‖KB‖}

The breaker example above exemplifies this approach.
Clearly, we do not want to resort to generating all models of
KB. Fortunately, our representation theorem allows us to use
any logical calculus for simple conditionals alone to deter-
mine the set of all such consequences. A simple conditional
α → β will be in the logical revision ofKB iff the appropri-
ate set of simple conditionals (from Theorem 6) is derivable
from KB (e.g., one may use the calculus of (Boutilier 1992b;
Goldszmidt and Pearl 1991)).

The main problem with an approach based on logical re-
vision is that it is extremely cautious. A direct consequence
of this cautious behavior is that the syntactic structure of
KB is lost: it plays no role in the revision process.8 For
instance, the revisions of either of{A → B,A → C} or
{A → B ∧ C} by A → ¬B are identical. Yet, in some
cases, conditional revision of the first set should yield aKB
equivalent to{A → ¬B,A → C} simply becauseA → ¬B
conflicts only withA → B. Yet logical revision forces into
consideration models in whichA → C is given up as well.
This is not unreasonable, in general,9 but the syntactic struc-
ture may also be used in revision.

The strategy we propose isolates the portion ofKB incon-
sistent with the new ruleA → B, which will be denoted by
KBI , and then applies logical revision toKBI alone. Letting
KBJ = KB − KBI , the revised setKB∗

A→B is the union of
KBJ and the logically revisedKBI (with A → B). We first
introduce the notion of consistency:

Definition 4 A set KB is consistentiff there exists at least
one modelM such that, for eachA → B ∈ KB,
min(M,A) ⊆ ‖B‖ andmin(M,A) 6= ∅.

A conditionalA → B is toleratedby the set{Ci → Di},
1 ≤ i ≤ n iff the propositional formulaA ∧ B

∧i=n

i=1
{Ci ⊃

Di} is satisfiable. The notion of toleration constitutes the
basis for isolating the inconsistent set ofKB. A set contain-
ing a rule tolerated by that set will be called aconfirmable
set. The following theorem presents necessary and sufficient
conditions for consistency (Goldszmidt and Pearl 1991):

Theorem 8 KB is consistent iff every nonempty subset
KB′ ⊆ KB is confirmable.

Given KB, a subsetKBm is minimally unconfirmableiff
KBm is unconfirmable, but every nonempty subsetKB′

m ⊆

8E.g., Nebel (1991) has advocated syntax-dependent revision.
9Indeed, this is exactly analogous to the generality of the AGM

theory. GivenK = Cn{A,B}, it is not known whetherB ∈ K∗

¬A

or not. Logically, the possibility of a connection betweenA andB
exists, and should be denied or stated (or assumed) explicitly.



KBm is confirmable.10 Finally, a setKBI is aminimal com-
plete inconsistent set(MCI) with respect toKB iff it is the
union of all minimally unconfirmable subsets forKB. Thus,
KBI contains only the conditionals inKB that are responsi-
ble for the inconsistencies inKB. In a syntax-directed re-
vision of KB we are primarily interested in uncovering the
conditionals in the originalKB that are still valid after the
revision process. TheS operator below serves this pur-
pose (note thatS is built on top of a logical revision pro-
cess). Given a setKB, and a simple conditionalA → B, let
S(KB, A → B) denote the set of conditionalsC → D such
that: (1)C → D ∈ KB and (2)KBL

A→B |= C → D, where
KBL

A→B denotes the logical revision ofKB by A → B. We
define the syntactic revision ofKB byA → B as follows:

Definition 5 Let KB be consistent, and letA → B be a
simple conditional. LetKB′

I denote the MCI ofKB ∪
{A → B}, KBI = KB′

I − {A → B}, andKBJ = KB−
KBI . The syntactic revision ofKB by A → B, written
KB∗

A→B, will be KB∗

A→B = S(KBI , A → B) ∪ KBJ ∪
{A → B}.

Note that in the case whereA → B is consistent with respect
to KB, KB∗

A→B will be simply the union of the originalKB
and the new conditionalA → B. Also, the syntactic re-
vision of {A → B,A → C} by A → ¬B will be the set
{A → ¬B,A → C} sinceKBI = {A → B}. In the breaker
example above, the revision of{S → B,S∧¬B → D,S →
¬D} by S → ¬B will yield {S → ¬B,S ∧ ¬B → D}
which entails the conditionalS → D (as in the case of log-
ical revision). Given that the revision ofKB∗ is based on
Theorem 6 and notions of propositional satisfiability (i.e.,
toleration), the resulting set of conditionals can be computed
effectively. The major problem in terms of complexity is the
uncovering of the MCI setKBI which seems to require an
exponential number of satisfiability tests.

Concluding Remarks
We have provided a semantics for revising a conditional
KB with new conditional beliefs in a manner that extends
both the AGM theory and the propositional natural revision
model. Our results include a characterization theorem, pro-
viding computationally effective means of deciding whether
a given conditional holds in the revised model. We have
also provided a syntactic characterization for the revision of
a KB. We remark that, as in the case of proposals for objec-
tive belief revision (including the AGM theory), we make no
claims or assumptions about the complex process by which
an agent decides to incorporate a new conditional belief (or
default rule) into its corpus of knowledge. We merely pro-
vide the formal means to do so.

10If KB is consistent, thenKBm is the empty set.

Conditional belief revision defines a semantics for arbi-
trary nested conditionals as proposed in (Goldszmidt and
Pearl 1992b), extending the semantics for right-nested con-
ditionals studied in (Boutilier 1993). By describing the pro-
cess by which an agent can assimilate new information in the
form of conditionals, conditional belief revision is proposed
as a basis for the learning of new default rules.

We note that the same techniques can be used to model
revision by conditionals in a way that respects the proba-
bilistic intuitions of J-conditioning. Analogues of each of
the main results for natural revision are shown in the full pa-
per (Boutilier and Goldszmidt 1993). We also explore other
mechanisms for revising aKB and the relationship of our
models to probabilistic conditionalization and imaging. We
discuss further constraints on the revision process to reflect
a causal interpretation of the conditional sentences.
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