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Abstract of inconsistency, and what principles guide this process.

One well-known theory addressing the dynamics of fac-

Both the dynamics of belief change and the process of rea- tual beliefs is that proposed by Alchourron, Gardenfors an
soning by default can be based on tlumditional belief set ~ Makinson (1985; 1988). ThAGM theorytakes epistemic

of an agent, represented as a set of “if-then” rules. In this States to be deductively closed sets of (believed) serdence
paper we address the open problem of formalizing the dy- and characterizes how a rational agent should change its set
namics of revising this conditional belief set bgwif-then K of beliefs. This is achieved with postulates constraining
rules, be they interpreted as new default rules or new revi- revision functions:, whereK’; represents the belief set that
sion policies. We start by providing a purely semantic char- results whenk is revised byA. Unfortunately, the AGM
acterization, based on the semantics of conditional rules, theory does not provide a calculus with which one can re-
which induces logical constraints on any such revision pro- alize the revision process or even specify the content of an
cess. We then introduce logical (syntax-independent) and epistemic state (Boutilier 1992a; Doyle 1991; Nebel 1991).
syntax_dependent techniques, and provide a precise charac Recent work (Boutilier 1992a; Goldszmidt 1992) shows that
terization of the set of conditionals that hold after theitev ~ AGM revision can be captured by assuming that an agent has
sion. In addition to formalizing the dynamics of revising a & knowledge basekB) containingsubjunctive conditionals
default knowledge base, this work also provides some of the ofthe formA — B (whereA andB are objective formulae).
necessary formal tools for establishing the truth of nested These conditionals define the agent's belief set and guide

conditionals, and attacking the problem of learning new de- the revision process via thiRamsey tes{Stalnaker 1968):
faults. A — B is accepted iff revision by results in a belief inB.

Such conditionals may be given a probabilistic interpretat

(Goldszmidt 1992): eacd — B is associated with a con-
Introduction ditional probability statement arbitrarily close to onehely
may also be interpreted a statements in a suitable modal
logic (Boutilier 1992a). The corresponding logics (and in-
deed semantics) are identical (Boutilier 1992a), and &rrth
more there is a strong relation between these conditionals
and conditional default rules (Boutilier 1992c; Goldszmid

Consider a child using a single default “typically birds fly”
to predict the behavior of birds. Upon learning of the cldss o
penguins and their exceptional nature she consigersing
her current information about birds to include the informa-
tion that penguins are birds yet “typically penguins do not and Pearl 1992a). o .

fly”. This process is different from that usually modeled in The AGM theory has two crucial limitations. First, the
approaches to nonmonotonic reasoning and belief revision, conditionals (or revision policies) associated with that
where upon discovering that Tweety is a (nonflying) penguin determine the form of’;, provide no guidance for deter-
she simply retracts her previous belief that Tweety does fly. Mining the conditionals accepted i itself. The theory
Instead, the example above addresses the issue of revising®Nly determines the neactual beliefs held after revision.
the set ofconditional beliefsnamely, the default rules that ~ =ven if conditionals are contained i, the AGM theory
guide the revision of oufactual beliefs. In this paper we cannot _suggest which c_ond|t|0nals should be rgtz_;uned or re-
are concerned with the dynamics of such conditional beliefs tracted in the construction dt’;. Subsequentevisions of

Our objective is to characterize how the conditionalinferm 4 can thus be almost arbitrary. Second, the theory pro-
tion in a knowledge base evolves due to the incorporation of  \we will not address the important question of why and when
the new conditionals, which rules should be given up in case an agent decides to revise its conditional beliefs or defaul



vides no mechanism for revising a belief set with neam-
ditionals Thus, the revision policies of an agent cannot, in
general, be chang€dThis paper provides a solution to this
second problem, and extends our recent work on a solution
to the first problem (Boutilier 1993; Goldszmidt and Pearl
1992b).

In this paper we focus on a particular modelafndi-
tional revisionthat extends propositional natural revision in-
troduced by Boutilier (1993). Theatural revisionmodel
addresses the problem of determining new conditional be-
liefs after revision by factual beliefs, and extends thearot
of minimal change (characteristic of the AGM theory) to the
conditional component of KB. Thus, when a factual revi-
sion is applied t&KB, the revisedB' contains as much of
theconditional informatiorfrom KB as possible. The exten-
sion to conditional revision presented here preservegthes
properties and possesses the crucial property that thefbeli
resulting from any sequence of (conditional or factual) up-
dates can be determined using only properties of the otigina
ranking, and tests involving simple (unnested) conditi®Aa

A model for revisingKB with new conditional belief (e.g.,
aruleC — D) is crucial for a number of reasons. The prob-
lem of truth conditions for nested conditionals is subsumed
by this more general problem. The semantics of conditionals
with arbitrary nesting requires an account of revisiombw
conditional information To test the truth ofA — B) — C,
we must first revis&kB by A — B and then test the status
of C' (Goldszmidt and Pearl 1992b). Also, it is clear that
our beliefs do not merely change when we learn new fac-
tual information. We need a model that accounts for updat-
ing our belief set with new conditional probabilities andne
subjunctive conditionals to guide the subsequent revigfon
beliefs. Given the strong equivalence between condition-
als of the type described here and conditional default rules
(Boutilier 1992c; Goldszmidt and Pearl 1992a), a model of
conditional revision provides an account of updatinigi&
with new default rules. Any specification of how an agent
is to learn new defaults must describe how an agentis to in-
corporate a new rule into its corpus of existing knowledge.
Hence, the process we study in this paper is crucial for pro-

2Surprisingly, these two issues have remained largely unex-
plored, due largely to the Gardenfors (1988) trivialitgukt, which
points to difficulties with the interpretation of condit@nbelief
sets. But these can be easily circumvented (Boutilier 1p92c

3A second method of revision is the model bEonditioning
(Goldszmidt and Pearl 1992b): wh&B is updated with a new
fact A, the revisedKB' is determined by Bayesian conditionaliza-
tion, giving rise to a qualitative abstraction of probatgiltheory
(Adams 1975; Goldszmidt 1992). This mechanism presenes th
(qualitative) conditional probabilities iKB as much as possible
and thus guarantees that the relative strength of the ¢onalis
also remains constant. The extension of J-conditionadizab the
conditional revision case is explored in the full versioritad paper
(Boutilier and Goldszmidt 1993).

viding a semantic core for learning new default information

We first review the basic concepts underlying belief revi-
sion. We then describe the basics of conditional beliefrevi
sion by presenting a set of operations on ranked-models, and
an important representation theorem. Finally, we explore a
syntax-independent and a syntax-dependent approach to the
conditional revision of &B.

Propositional Natural Revision

In this section we briefly review a semantic account of be-
lief revision (we refer the reader to (Gardenfors 1988;ds0l
szmidt and Pearl 1992b; Boutilier 1992b) for details). We
assume the existence of a deductively closed beliefset
over a classical propositional languabgp,. Revising this
belief set with a new propositiord is problematic when
K = —A, for simply adding the beliefl will cause incon-
sistency. To accommodatg certain beliefs must be given
up beforeA is added. The AGM theory of revision pro-
vides a set of constraints arvision functionst that map
belief setsK into revised belief setd(’;. Any theory of
revision also provides a theory of conditionals if we adopt
the Ramsey testThis test states that one should accept the
conditional “If A thenB” just whenB € K73.

A key representation result for this theory shows that
changes can be modeled by assuming an agent has an order-
ing of epistemic entrenchmeater beliefs: revision always
retains more entrenched propositions in preference to less
entrenched ones. Grove (1988) shows that entrenchment can
be modeled semantically by an ordering of worlds. This is
pursued by Boutilier (1992b) who presents a modal logic
and semantics for revision. fevision modelM = (W, <
, ©) consists of a set of world§” (assigned valuations hy)
and anplausibility ordering< overW. If v < w thenwv is
at least as plausible as We insist that< be transitive and
connected (saw < v orv < w for all v, w). We denote by
||A]| the set of worlds inV/ satisfyingA (thosew such that
M =, A). We define the set of most plausibdeworlds to
be those worlds it minimal in <; somin(M, A) is just

{fweW: M, A, andM =, Aimpliesw < v}

We assume that all models aseoothin the sense that
min(M, A) # ( for all (satisfiable)4 € LcpL.* Theobjec-
tive belief setk” of a modelM is the set ofx € Lcp, such
thatmin(M, T) C ||«|| (those« true at eacimostplausible
world). Sucha are believed by the agent. These objective
orfactualbeliefs capture the agent’s judgements of true facts
in the world. They should be contrasted with the conditional
beliefs of an agent, described below.

To capture the revision of a belief séf, we define
a K-revision model to be any revision model such that

“Hence, there exisnostplausible A-worlds. This is not re-
quired, but the assumption does not affect the equivaleelmb



min(M, T) = || K||. That is, all and only those worlds sat-
isfying the belief set are most plausible. When we revise
by A, we must end up with a new belief set that includes
Given our ordering, we simply require that the new belief
set correspond to the set of most plausidlevorlds. We
can define the truth conditions for a conditional connective
as

M=y A— B iff min(M,A) C |B] (1)

Suchconditional beliefscharacterize the revision policies,
hypothetical beliefs or defaults of an agent. Equating>

B with B € K}, this definition of revision characterizes
the same space of revision functions as the AGM theory
(Boutilier 1992b).

The AGM theory and the semantics above show how
one might determine a new objective belief & from a
given K -revision model; but it provides no hint as to what
new conditionalsshould be held. To do so requires that a
new revision model, suitable fak;, be specified.Natu-
ral revision, proposed by Boutilier (1993), does just this.
Given a K-revision modelM, natural revision specifies a
new model)M suitable for the revision oK (i.e., aK’-
revision model). Roughly, this model can be constructed
by “shifting” the setmin(}, A) to the bottom of the order-
ing, leaving all other worlds in the same relative relation.
This extends the notion of minimal change to the relative
plausibility of worlds. To believed, certainly K -worlds
must become most plausible, but nothing else need change
(Boutilier 1993). Hence, natural revision constructs a new
ranking to reflect new objective beliefs. With such a ranking
one can then determine the behavior of subsequent objective
revisions. But no existing model of revision accounts for re
vision of a ranking to include new conditionals. In the next
section we extend natural revision so that new conditional
information can be incorporated explicitly in a model.

Conditional Belief Revision: Revising a Model

Given a revision model/, we want to define a new model
M _, g that satisfiesd — B but changes the plausibility
ordering inM as little as possible. We do this in two stages:
first, we define theontractionof M so that the “negation”
A — —B is not satisfied; then we define tkegpansiorof
this new model to accommodate the conditiodal—~ B.
Let M = (W, <, ).

Definition 1 The natural contraction operator- mapsi
into M, 5, for any simple conditional — B, where
My, = (W, <), and:

1. ifv,w g min(M, AA-B)thenv <" wiff v <w

2. ifw e min(M,AA-B) then: (@w <" viff u <w
for someu € min(M, A); and (b)v <" w iff v < u for
someu € min(M, A)

Figure 1 illustrates this process in the principle casewsho
ing how the modelM  _, ; is constructed whef/ |= A —
B. Clearly, to “forget”A — B we must construct a model
where certain minima#i-worlds do not satisfyB. If M sat-
isfiesA — B, we must ensure that certaihA —B-worlds
become at least as plausible as the minisatorlds, thus
ensuring thad — B is no longer satisfied. Natural contrac-
tion does this by making the most plausiblen —B-worlds
just as plausible as the most plausidlevorlds. Simply put,
the minimalA A —B-worlds (the light-shaded region) are
shifted to the cluster containing the minimaworlds (the
dark-shaded region). We have the following properties:

Proposition 1 Let M be a revision model.

LM, .z ¥~ A— B;

(2)If M = A— BthenM,_, , = M;and
@IfMpKEA—--BthenM, ., =A/4A BANAA -B.

Theorem 2 Let M, denote the natural propositional con-
traction of M by (objective beliefj (as defined in (Boutilier
1993)). ThenM; = M+ _, ,.

Thus, propositional contraction is a special case of condi-
tional contraction.

We define thexpansiorof M by A — B to be the model
M7, 5 constructed by making the minimal changes\to
required to accepd — B. While we do not require that
M = A — —B in the following definition, we will only use
this definition of expansion for such models.

Definition 2 The natural expansion operato# maps M
into M , 5, for any simple conditionalt — B, where

T p= W, <), and:

1. ifv g min(M,AA-B) thenw <" viff w <w

2. ifv € min(M, A A =B) then:
(@) if w € min(M, A A =B) thenw <’ v; and
(b) if w & min(M, AA-B) thenw <’ viff w <vand
there is now € min(M, A A B) such thaty < w

Figure 1 illustrates this process in the principle casewsho
ing how the modelM /. , is constructed when/ (= A —

B. Clearly, to believedA — B we must construct a model
where all minimalA-worlds satisfyB. If M fails to satisfy

A — B, we must ensure that the miniméh—-B-worlds be-
come less plausible than the minim&worlds, thus ensur-
ing thatA — B is satisfied. Natural expansion does this by
making the most plausiblé A —B-worlds (the dark-shaded
region) less plausible than the most plausifdtevorlds (the
light-shaded region). This leaves us with— B, but pre-
serves the relative plausibility ranking of all other waldin
particular, while the set of minimal A —B-worlds becomes
less plausible than those worlds with which it shared equal
plausibility in M, its relationship to more or less plausible

SWe leta 4 g stand for-(a. — f).
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worlds is unchanged. Once again, the idea is that the condi-

tional belief set induced byt should contain only3-worlds,
but that all other conditionals should remain unchanged to
the greatest extent possible.

Proposition 3 Let M be a revision model such that
MPEA—-B. ()M, 5, EA— B;and
(2 If M = A— BthenM} 5= M.

We can now define revision by a conditional — B.
Briefly, to accept such a conditional we first “forget” —
=B and then “add’A — B.

Definition 3 The natural revision operatox mapsM into
M3 _, g, for any simple conditionad — B, where

My . p= (M;—WB)Z—)B'

This definition of revision reflects the Levi identity (Levi
1980). Figure 1 illustrates this process in the principkeca
showing how the model/ . 5 is constructed whei/ |=

A — —B. Natural revision behaves as expected:

Proposition 4 Let M be a revision model. ()} 5 =
A— B;and (2)If M = A — BthenM}_, 5, =M.

Theorem 5 Let M, denote the natural propositional revi-
sion of M by (objective beliefd (as defined in (Boutilier
1993)). Thenm\[; = M5, ,.

Thus, we can view propositional revision as a special case
of conditional revision. We will henceforth take’; as an
abbreviation fod/5 _, ,.

These results show that natural conditional revision can
reasonably be called a revision operator. To show that this
revision operator is indeed “natural,” we must determise it
precise effect on belief in previously accepted conditisna
In particular, we would like a precise characterization the
simple conditionalsx — [ satisfied by the revised model
M3 _, g. The following result (Thm. 6) shows that the truth
of such conditionals i/ _, 5 is completely determined by
the set of simple conditionals satisfied b§. Thus, the truth
of an arbitrarily nested conditional under natural rewisio
can be determined by the truth of simple conditionals in our
original model. We note that revision models ammplete
in that they satisfy every simple conditional or its negatio
We do not require that a conditiondB be complete in this

sense. We describe how this semantic model can be applied

to an incomplet&B in the next section.

We now show which conditionals are satisfied by a model
M} _,g. In (Boutilier and Goldszmidt 1993) we also
describe similar characterizations of modéls, , ; and
M7}, 5. We begin by noting that it/ £ A — —B, then
M g = M1, . Inparticular, ifM = A — B, then
M} _, 5 = M and no conditional beliefs are changed. We
assume then that/ = A — —B, the principle case of revi-
sion. We also introduce the notiongifausibility. a sentence

P is at least as plausible &3 (relative to M) iff the mini-
mal P-worlds are at least as plausible (in the orderitjgas
the minimal@-worlds. This will be the case exactly when
ME (PVQ) A -P. WewriteP <p Q if formula P is
more plausible thaf), andP =p @ if P andQ are equally
plausible® To determine whethex — 8 holds inM3 . 5,
we simply need to know how the relative position of worlds
in ||«|| is affected by the revision. The relative plausibility
of A anda in M is crucial in determining this. If is more
plausible tham4, then shiftingA A B-worlds down cannot
affect the most plausible-worlds. If « is less plausible, the
most plausiblex-worlds mightchange, but only if there are
a-worlds among the most plausibleA B-worlds. Finally,
there are several different types of changes that can otccur i
« and A are equally plausible.

Theorem 6 Let M = A — —B and let<p be the plausi-
bility ordering determined by/. Leta, 5 € LepL.

lLIfa<p AthenM}_ = a— fiff M =a— 5.
2. Ifa >p Athen

(@ If M = AN B — -« then
Mi pEa—Biff M =a— B

(b) If M = AA B -4 —athen
Mi gEa—-Biff M=AANBAa— B.

3. Ifa=p Athen

@IfMEAAB A -aandM = « — Athen
Mi pEa—-Bif M=AANBAa— B.

(b)f M = AAB 4 -aandM = « 4 Athen
M g Ea— giff
MEAABAa— fandM Ean-A—B.

() f M= AAB — —aand M= AA—-B — —athen
Mi pEa—Biff M =a— B

@fMEAAB — —-a, M EAAN-B 4 —aand
ME a— AthenM?_ zF o — Siff M= a — 8.

(e)fM=AAB— —a, M= AN—-B 4 —~aand M=
aA AthenM) z Ea— Biff MEaA-A— B.

While this characterization results appears complex, it is
rather intuitive, for it captures the interactions causgthe
relative plausibility ofA and other propositions. As an
example, suppose we believe that a power surge will nor-
mally cause a breaker to trig (— B) and this will prevent
equipment damageS(— —D); but if the breaker doesn't
trip there will be damageq A =B — D). Our charac-
terization shows that, should we learn the breaker is faulty
(S — —B), we should also change our mind about poten-
tial damage, and thus accept— D. However, information
such asT — =S will continue to be held (the likelihood

of a power surge does not change). Hence, our factual be-
liefs (e.g.,—.S) do not change, merely our conditional belief
about the breaker: what will happénS.

SPlausibility is also induced by tha-ranking of formulae
(Goldszmidt and Pearl 1992bp <p Q iff xK(P) < x(Q).



Theorem 6 also shows that the conditionals that hold
in the revised modelM } _, ; can be completely character-
ized in terms of the conditionals in/. This allows us
to use the mechanisms and algorithms of Goldszmidt and
Pearl (1992b) for computing the new model (Boutilier and
Goldszmidt 1993). This also demonstrates that an arbitrary
nested conditional sentence (under natural revision)gs lo
cally equivalent to a sentence without nesting (involviigy d
junctions of conditionals). Thus, purely propositionare

revision to be the set of new possibilitidéB’ _, 5 is then
{C—-D: M)  5EC— Dforall M € |KB|}

The breaker example above exemplifies this approach.
Clearly, we do not want to resort to generating all models of
KB. Fortunately, our representation theorem allows us to use
any logical calculus for simple conditionals alone to deter
mine the set of all such consequences. A simple conditional

soning mechanisms (Pearl 1990) can be used to determinea — 3 will be in the logical revision oKB iff the appropri-

the truth of nested conditionals in a conditiok&. Indeed,

ate set of simple conditionals (from Theorem 6) is derivable

in many circumstances, a complete semantic model can be fromKB (e.g., one may use the calculus of (Boutilier 1992b;

represented compactly and reasoned about tractably (Gold-

szmidt and Pearl 1992b). We explore this in the full paper.

When we revise byl — B we are indicating a willing-
ness to accepB should we come to accept. Thus, we
might expect that revising byl — B should somehow re-
flect propositional revision by3 were we to restrict our at-
tention toA-worlds. This is indeed the case. Lef\« de-
note the model obtained by eliminating allworlds from
M.

Theorem 7 (M _, 5)\~A = (M\-A)%

This shows that accepting — B is equivalent to accepting

B “given” A. Thus, natural revision by conditionals is in
fact a conditional form of the propositional natural reeisi

of Boutilier (1993). The only reason the characterization
theorem for conditional revision is more complex is the fact
that we can “coalesce” partial clusters of worlds, somethin
that can’t be done in the propositional case. We also note
that (M7 _, 5)\A = M\A; that is, the relative plausibility

of = A-worlds is unaffected by this revision.

Revising a Conditional Knowledge Base

If a conditionalKB contains a complete set of simple condi-
tionals (i.e., defines a unique revision model) we can use the
definitions above to compute the revigeH. Often we may
use techniques to completek8 as well (Pearl 1990). In
practice, howevetKB will usually be an incomplete set of
premises or constraints. We propose the following method
of logical revision SinceKB is not complete, it is satisfied
by each of a sef{KB|| of revision models, each of these a
“possible” ranking for the agent. When a new conditional
A — B is learned, revision proceeds in the following way.
If there are elements ¢jiKB|| that satisfyA — B, these be-
come the new possible rankings for the age.this case

we haveKB?, . = KBU {4 — B}. If this is not the case,
each possibility in|KBJ|| must be rejected. To do this, we
revise each ranking ifiKB|| and consider the result of this

"This is is equivalent to asking KBU {A — B} is consistent
(see Def. 4 and Thm. 8).

Goldszmidt and Pearl 1991)).

The main problem with an approach based on logical re-
vision is that it is extremely cautious. A direct consequenc
of this cautious behavior is that the syntactic structure of
KB is lost: it plays no role in the revision proce€ssFor
instance, the revisions of either ¢ — B, A — C} or
{A - BAC} by A — —-B are identical. Yet, in some
cases, conditional revision of the first set should yiekBa
equivalentto{ A — —-B, A — C'} simply becausel — —-B
conflicts only withA — B. Yet logical revision forces into
consideration models in whicA — C'is given up as well.
This is not unreasonable, in genetddut the syntactic struc-
ture may also be used in revision.

The strategy we propose isolates the portioKBfincon-
sistent with the new rulel — B, which will be denoted by
KBy, and then applies logical revision kB; alone. Letting
KB, = KB — KBy, the revised sekB’, _, 5 is the union of
KB, and the logically revise&B; (with A — B). We first
introduce the notion of consistency:

Definition 4 A setKB is consisteniff there exists at least
one modelM such that, for eacld — B € KB,
min(M, A) C || B|| andmin(M, A) # (.

A conditional A — B is toleratedby the set{C; — D,},

1 <4 < niff the propositional formulad A B \;Z7{C; D

D;} is satisfiable. The notion of toleration constitutes the
basis for isolating the inconsistent setkB. A set contain-

ing a rule tolerated by that set will be calleccanfirmable
set. The following theorem presents necessary and sufficien
conditions for consistency (Goldszmidt and Pearl 1991):

Theorem 8 KB is consistent iff every nonempty subset
KB’ C KB is confirmable.

Given KB, a subseB,, is minimally unconfirmableff
KB,, is unconfirmable, but every nonempty sublsg, C

8E.g., Nebel (1991) has advocated syntax-dependent ravisio
%Indeed, this is exactly analogous to the generality of th&/AG
theory. GivenK = Cn{ A, B}, itis not known whetheB € K~ ,
or not. Logically, the possibility of a connection betweérand B
exists, and should be denied or stated (or assumed) eiplicit



KB,, is confirmable'® Finally, a setKB; is aminimal com-
plete inconsistent séMCI) with respect tokB iff it is the
union of all minimally unconfirmable subsets #dB. Thus,
KB; contains only the conditionals KB that are responsi-
ble for the inconsistencies IKB. In a syntax-directed re-
vision of KB we are primarily interested in uncovering the
conditionals in the originakB that are still valid after the
revision process. Thé& operator below serves this pur-
pose (note that' is built on top of a logical revision pro-
cess). Given a s&&B, and a simple conditionad — B, let
S(KB, A — B) denote the set of conditionals — D such
that: (1)C — D € KBand (2)KB_, ; = C — D, where
KB%_, 5 denotes the logical revision &B by A — B. We
define the syntactic revision 8B by A — B as follows:

Definition 5 Let KB be consistent, and lel — B be a
simple conditional. LeKB/; denote the MCI ofKB U
{A — B},KB; = KB, — {A — B}, andkB; = KB —
KB;. The syntactic revision okB by A — B, written
KB’ _, 5, Will be KB _, 5 = S(KB;,A — B) UKB; U
{A — B}.

Note that in the case where— B is consistent with respect
to KB, KB _, 5 will be simply the union of the originakB
and the new conditional — B. Also, the syntactic re-
vision of {A — B, A — C} by A — —B will be the set
{A — =B, A — C} sinceKB; = {4 — B}. Inthe breaker
example above, the revisionf§ — B, SA—-B — D, S —
-D} by S — —B will yield {S - -B,S A -B — D}
which entails the conditional — D (as in the case of log-
ical revision). Given that the revision &B* is based on
Theorem 6 and notions of propositional satisfiability (i.e.
toleration), the resulting set of conditionals can be cotagu
effectively. The major problem in terms of complexity is the
uncovering of the MCI sekKB; which seems to require an
exponential number of satisfiability tests.

Concluding Remarks

We have provided a semantics for revising a conditional
KB with new conditional beliefs in a manner that extends
both the AGM theory and the propositional natural revision
model. Our results include a characterization theorem, pro
viding computationally effective means of deciding whethe
a given conditional holds in the revised model. We have
also provided a syntactic characterization for the revisib

aKB. We remark that, as in the case of proposals for objec-

tive belief revision (including the AGM theory), we make no

claims or assumptions about the complex process by which
an agent decides to incorporate a new conditional belief (or

default rule) into its corpus of knowledge. We merely pro-
vide the formal means to do so.

10If KB is consistent, theKB,,, is the empty set.

Conditional belief revision defines a semantics for arbi-
trary nested conditionals as proposed in (Goldszmidt and
Pearl 1992b), extending the semantics for right-nested con
ditionals studied in (Boutilier 1993). By describing thepr
cess by which an agent can assimilate new information in the
form of conditionals, conditional belief revision is proyeml
as a basis for the learning of new default rules.

We note that the same techniques can be used to model
revision by conditionals in a way that respects the proba-
bilistic intuitions of J-conditioning. Analogues of each o
the main results for natural revision are shown in the full pa
per (Boutilier and Goldszmidt 1993). We also explore other
mechanisms for revising KB and the relationship of our
models to probabilistic conditionalization and imaginge W
discuss further constraints on the revision process toctefle
a causal interpretation of the conditional sentences.
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