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2534 Lecture 8: Intro to Game Theory

Game Theory today
• will focus on Shoham and Leyton-Brown for next two classes
• today: main parts of Ch.3 and Ch.5

Announcements
• Problem Set 1 handed back (see web page for sample solutions)
• Project pre-proposals back today

 If sufficiently detailed and clear, my comments will indicate 
no need to submit a “final proposal” next week

• Problem Set 2 will be posted on web site tonight or tomorrow AM 
(due in two weeks on Nov.11)
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Multiagent Systems

2CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Multiagent Decision Making

So far we’ve considered single-agent decision making
• focus on one-shot problems
• will return to sequential problems (MDPs, POMDPs) later

Multiagent decision making presents some unique 
challenges and complications
Let’s consider an example to illustrate: Battlebots!

3CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Game 1: Battlebots

What should the robots do?
• both go for coffee?
• red coffee, blue tea? blue coffee, red tea?
• what about each choosing coffee of tea randomly?

 e.g., choose coffee with p=5/9, tea with p=4/9
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Strategic Considerations

Normally, we’d propose using MEU; but…
Missing ingredient: what will the other guy do?

• my own action not enough to determine outcome/utility
• if I had a distribution (beliefs) over other’s actions, I could adjust 

my strategy appropriately… 
• …but then, why couldn’t he do the same thing?

 dependence of decisions is, in some sense, circular!
Game theory provides models and solution concepts for 

general multiagent interactions
• generally, a solution is a strategy profile that is in some form of 

equilibrium
• e.g., <Red gets coffee; Blue gets tea>
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Normal Form Games

A normal (or strategic) form game
• set of agents (or players)   i = {1, … N}
• action sets Ai for each agent

 joint action set   A  =  X Ai
• utility functions   ui : A →R 

 ui(a) is utility of joint action a to agent i
 Assumptions (more to come, plus we’ll relax these ones later)

• players choose their actions simultaneously and independently
• they all know the structure of the game:

moves available to all players
 all player’s utilities

• … and the structure of the game is common knowledge
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Normal Form Games

Matrix notation (2Player, 2Action example):

Notes:
• actions often called pure strategies
• joint actions called pure strategy profiles
• utilities usually called payoffs
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Example: Matching Pennies

What should the players do?
• if blue plays heads, red wants to play heads
• if red plays heads, blue wants to play tails
• if blue plays tails, read wants to play tails
• if read plays tails, blue wants to play heads…

What about random choice?  50-50?
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Example: Rock-Paper-Scissors

Just matching pennies 
with more moves
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or… Rock Paper Scissors Lizard Spock
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Example: Prisoner’s Dilemma

What should the players do?
• only “rational” thing to do is for both to defect
• but both are worse off
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Example: Coordination Game (I)

An example of a common interest game
• each agent receives the same payoff (sometimes we write only 

one payoff in each cell)
 e.g., want to meet at Starbucks or Second Cup

• no competition, only issue is coordination
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Example: A “Random” 2x3 Game
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Best Responses and Equilibria

Notation:  a-i refers to pure strategy profile a with action 
for agent  i removed

Action  ai ∈ Ai is a best response to a-i iff

ui(ai∙a-i) ≥ ui(b∙a-i) for all b ∈ Ai

Let   BRi(a-i )  denote the set of best responses
A pure strategy Nash equilibrium is any pure strategy 

profile a s.t. ai ∈ BRi(a-i ) for all i
• intuitively, an equilibrium is stable in the sense that no agent has 

any incentive to unilaterally deviate
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Pure Equilibria in Examples

Battlebots: 
• <C,T> and <T,C> are both pure equilibria
• which is better? which would each prefer? how to decide?
• equilibrium selection a critical issue in predicting behavior
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Pure Equilibria in Examples

Random 3x3 game:
• can follow best response paths

 from any profile consider move one agent would to maximally 
improve payoff; if no player moves, then it’s a pure NE

• only pure equilibrium is <B,C> (payoff 8,8)
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Pure Equilibria in Examples

Prisoners Dilemma
• <Defect, Defect> is only equilibrium
• note: NE is not even Pareto optimal (let alone socially optimal)
• is this good? bad? how would you fix it?
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Pure Coordination Game

Common interest game
• two pure NE
• where do we meet? Any suggestions on how you might resolve 

the issue in practice?
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Unbalanced Coordination Game

Common interest game, but unbalanced
• two pure NE
• choice “seems” easier now
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Battle of the Sexes

Famous game (Luce and Raiffa 1957)
• two pure NE
• where do we meet?
• equilibrium selection paramount

20CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

2 / 1

Sports
Arena

Opera 1 / 2

0 / 0

0 / 0

Sports
Arena

Opera



Stag Hunt  (Rousseau)

Stag Hunt a classic example of equilibrium selection
• If two hunter’s team up, they will bag a stag; but if one tries 

alone, sure to fail
• Safer option: hunt alone for a hare (no cooperation needed)
• two (deterministic) NE: (stag,stag) and (hare,hare)

 (s,s) gives better payoff, but poor outcome if partners opts out
 (h,h) gives lesser payoff, but guaranteed
 which would you predict? why? can you justify either prediction?
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Example: Coordination Game (II)

Three pure NE
• two are very attractive: (A,A) and (C,C)
• but penalties make miscoordination “painful”
• should you take the safe alternative (B,B)?
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Three-Player Example: Voting Game

 Example: three MLAs: (closed) voting on salary increase. Vote passes if at 
least two vote for it. All want the raise, but would prefer to vote against it (and 
have the other two vote for it!)

• Pk if raise passes, k votes against: 2
• Pk if raise passes, k votes for: 1
• Pk if raise fails, k votes against: 0
• Pk if raise fails, k votes for: -1

Four pure NE:
• any pair vote for a raise, third votes against (3)
• all three vote against (1) 
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Equilibrium Selection

A very subtle topic, and important in practical settings
• e.g., studied extensively in political science, behavioral 

economics, social psychology, etc.
Focal points one “heuristic” means of resolving issue

• factors external to the game may influence choices
 past history (met at Starbuck’s last week)
 social conventions (generally agree to pass on the right)

• factors internal to game structure may matter
 as in the unbalanced coordination game, or penalty game
 or risk attitude (Stag Hunt)

• learning often proposed as explanation for good eq. selection
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Pure Equilibria in Examples

Matching Pennies:
• no pure equilibrium
• why? (consider the “infinite regress”)
• rock-paper-scissors-lizard-Spock: same thing…
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Mixed Strategies

A mixed strategy σi  for i is a distribution over Ai
• a randomized choice (uncorrelated with other agents)

A mixed strategy profile: σ = <σ1 … σn >
• pure strategy profile a special case (singleton support for each i)

Utility of strategy profile to player i : ui(σ) = E[ ui(a) | σ ]
• randomization of each agent is independent

Define  BRi(σ-i ) in the standard way:

𝑢𝑢𝑖𝑖(σ𝑖𝑖 � σ−i) ≥ 𝑢𝑢𝑖𝑖(�σ𝑖𝑖 � σ−i) for all �σ𝑖𝑖 ∈ ∆(𝐴𝐴𝑖𝑖)
A Nash equilibrium is any (mixed) strategy profile σ

s.t. σi ∈ BRi(σ-i ) for all i
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Mixed Equilibria: Matching Pennies

In MP: only NE is  <{0.5H,0.5T}, {0.5H,0.5T}>
Why is this an equlibrium?

• If Even plays 0.5/0.5, then for Odd we have
EU(H) = EU(T) = EU(any mixture)

• So no incentive for Odd to deviate from 0.5/0.5
• Reasoning for Even is symmetric

Why is this a unique equilibrium?
• If Even plays p:H, (1-p):T  for any p > 0.5, best response for Odd 

is T with probability 1.0     (and analogous switch if p < 0.5)

• But then Even would not want to stay with p(H) > 0.5
• Intuitively, if Even does anything but 50-50, Odd will exploit it 

and get a higher payoff (which means Even gets a lower payoff)
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Mixed Equilibria: BattleBots

Battlebots has a mixed NE
• Both robots use same strategy

 Pr(coffee) = 5/9
 Pr(tea) = 4/9

Why is this an equilibrium?
• If Red plays (5/9; 4/9)

 For Blue: EV(coffee) = 5/9(0) + 4/9(10) = 40/9
 For Blue: EV(tea)= 5/9(8) + 4/9(0) = 40/9

• No (positive) incentive for Blue to deviate
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Mixed Equilibria: Properties

If mixed σi is a BR for i, then each ai s.t. Pr(a) > 0 must 
also be a BR (otherwise EU would be higher without it)

• this provides a way to compute equilibria in some cases
• exercise: do it for BattleBots

Some games have only mixed equilibria
• e.g., Matching Pennies

All (finite) games have some NE
• famous result due to John Nash
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Existence of Nash Equilibria

Nash’s Celebrated Theorem: Any finite normal form 
game has a (mixed strategy) equilibrium
Proof intuition:

• strategy profiles S form a compact (closed, bounded), convex subspace 
of Rm (where m is number of agent-action pairs)

• best response correspondence (mapping)  BR: S→SS (subsets of S)
 Let BR(σ) is set of all best response profiles for σ

• BR(σ) is a convex subset of S (recall that any linear combination of BRs 
must also be a BR)

• The correspondence BR is also upper-hemicontinuous
 This is a simple generalization of continuity for correspondences

• Kakutani fixed-point theorem: BR must have a fixed point
 in other words, there is some σ s.t. σ ∈ BR(σ)

• By definition: any fixed point of the BR correspondence is an equilibrium
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Existence of Equilibria

The proof is entirely nonconstructive
Computation of NE is generally quite difficult

• we’ll return to this
Special cases: can be solved easily

• identical interest games
• two-person, zero-sum games
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Interpretation of Mixed Equilibria
Genuine randomization of choices to prevent exploitation

• soccer penalty kicks, bluffing in poker, many contests and sports, ...
 Conditions on stable beliefs (or expectations, conjectures) about how 

opponent will play
• if I believe you will play q = 0.5, and I believe that you believe I will play p = 0.5, and I believe 

that you believe that I believe that you will play q = 0.5, and …

 Learning interpretations: beliefs based on experience with opponent (or 
related opponents)

• I’ve (P2) seen you (P1) play heads 47 times ,tails 53 times: I assume strategy is p = 0.47
• My best response is heads (q = 1.0)
• But you learn in similar fashion and also adopt best response to what you’ve observed
• In some cases, observed frequencies converge to NE
• But actually play may often be deterministic (and quite cyclic, not random at all)

 Evolutionary interpretations (evolutionary stable strategies)
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Two-Person, Zero-Sum (2PZS) Games

2PZS games embody “pure competition”
• two players (1,2); for all joint actions a, u1(a) = -u2(a) 
• usually write u(a) assuming 1 maximizes, 2 minimizes
• more generally, “constant sum”
• MP, chess, soccer, etc.

An agent maxminimizes if it selects a strategy whose 
guaranteed payoff is best

• i.e., you choose best a assuming other guy does worst a for you
• Player 1 plays σ*1∈ argmaxσ1 minσ2 u(σ1,σ2) 
• Player 2 plays σ*2∈ argminσ2 maxσ1 u(σ1,σ2) 
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Two-Person, Zero-Sum Games

Theorem (von Neumann):
• In a 2PZS game, a strategy profile is a Nash equilibrium iff both 

players maxminimize in that profile

• Thus if <σ1, σ2> is an equilibrium, then 
u(σ1, σ2) = max min u(σ1, σ2) = min max u(σ1, σ2)

So, while there may be multiple equilibria for a 2PZS 
game, they all have the same value to each player
Can be solved by linear programming (next slide)
In MP: max min u(σ1, σ2) → <0.5,0.5>

• if Even does more than 0.5 heads, Odd picks tails and Even 
loses more than ½ the time
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LP for 2PZS Game (basic & slack formulations)

Vars:
• Player 2’s mixed strategy 

(probs s_k)
• Player 1’s minimax value

Aim: min 1’s payoff s.t.
constraint that it’s at least as 
great as the expected value of 
his best action

• Slack formulation (useful 
in LCP to follow)

• Slack for 1’s action a: 
how much worse than a 
best response
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Computation of Equilibria

Computation of NE is generally quite difficult
Two-player games, classic algorithm is Lemke-Howson, 

relies on formulation as a linear complementarity problem
• Looks like LP for 2PZS, but with complementarity constraints to 

ensure that each player only mixes over pure best responses 
given strategy of other player (nonlinear constraint)

In general, no great strategies other than to rely on some 
form of enumeration (e.g., use LCPs as subroutines)

• simple enumerative algorithm: identify support sets and see if 
some mixture of these is a NE; finding probabilities for fixed 
support sets is easy: a linear (feasibility) program for 2 players 
(more generally, polynomial feasibility program)

• see Chapter 4 of S&LB for more discussion of this

36CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



LCP for 2-player General Sum Game

Much like the LP for 2PZS, but with an objective, and the nonlinear 
complementarty constraints: agent can only assign an action 
positive probability if it has zero slack (i.e., is a best response)
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Extensive Form Games
Normal form (matrix) very general, but games seem somewhat limited

• Players move simultaneously and outcome determined at once
• No observation, reaction, etc.

Most games have a dynamic structure (turn taking)
• Chess, tic-tac-toe, cards games, soccer, corporate decisions…
• See what “opponent” does before making move
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A More Realistic Sharing Game

 Example: two firms competing 
for market in two areas

• Each firm, 1 and 2, can 
tackle one area only

• Total revenue ($M) in Area 
A: 12, Area B: 9

• If firm is alone in one area, 
get all of that area’s revenue

• If both firms target same 
area, “first mover” gets 2/3, 
second 1/3

• Firm 1 makes first move, 
Firm 2 chooses after Firm 1

• Critical: Firm 2 observers 
Firm 1’s choice before 
moving!
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Perfect Information Games
Looks exactly like a decision tree (as we will discuss 

when we look at sequential problems), except:
• each node controlled by a player, and corresponds to a 

complete history of the game
• edges correspond to actions
• payoff vector at each terminal node
• often no chance nodes internal to tree, but easy enough to do
• see formal definition in S&LB

Since player knows entire history, this is called a perfect 
information, extensive form (PIEF) game

• knows all prior moves, stochastic outcomes
• much like full observability in MDPs
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Strategies and Equilibria

A pure strategy for i in a PIEF-game is any function that 
assigns an action ai ∈ A(h) to any node/history h owned 
by i

• like policies in decision trees: each node must be assigned, 
whether it is realizable or not

• unlike (seemingly) strategic/normal form games, my decision 
can depend on what you did in the past

A Nash equilibrium is any strategy profile σ s.t.
ui(Term(σi,σ-i )) ≥ ui(Term(σ’i,σ-i )) for all i, σ’i

• note: we’ll focus on deterministic strategies (why?)
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Determining Nash Equilibria
Backward induction of game tree (like in a decision tree) will 

determine some, but not all NE (we’ll see this in a moment)
But PIEF games easily converted to normal form

• consider each pure strategy in tree to be an action
 e.g., strategy [ONO]: “will accept if offered [2,0], reject if [1,1], accept if [0,2]”

• NE in normal form identical to NE in extensive form (by defn)
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2,0 1,1 0,2
2,0 1,1 0,0
2,0 0,0 0,2
2,0 0,0 0,0
0,0 1,1 0,2
0,0 1,1 0,0
0,0 0,0 0,2
0,0 0,0 0,0

[2] [1] [0]
[000]

[00N]

[0N0]

[0NN]

[N00]

[N0N]

[NN0]

[NNN]

Identify two different (classes of) 
pure strategy equilibria in this game.
Which is most natural?

First player strategy: make offer 
(column) 2=[2,0], 1=[1,1], 0=[0,2]
Second player strategy: OK or NO for 
each of the three possible offers (row)



Conversion to Normal Form
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8,4 8,4 12,9 12,9
9,12 6,3 9,12 6,3

A

B

AA/AB AA/BB BA/AB BA/BB

Game has three NE:
• A/BA,AB and A/BA,BB(equivalent outcomes)

• fact that 1 chooses A makes 2’s choice “when 1 picks B” irrelevant
• B/AA,AB: Firm 2 threatens to move into A if Firm1 does

• Threat sufficient to make Firm 1 move to B (alone): full amount (9) 
of smaller payoff is better than 2/3-share (8) of larger payoff

• Is this threat credible?

Firm 1 : market in region A or B 
Firm 2: four strategies
• AA/AB (i.e., always A): A if Firm 1 does 

A, A if 1 does B
• BA/AB: B if Firm 1 does A, A if 1 does B
• AA/BB: ditto
• BA/BB (always B): ditto

Firm 1

Firm 2 Firm 2

Reg. A Reg. B

8, 4 12, 9 9, 12 6, 3

Reg. A Reg. BReg. A Reg. B



Subgame Perfect Equilibria
A subgame is the game corresponding to a specific subtree (written 

SG(h) for node h)
A subgame perfect equilibrium (SGPE) is a profile σ such that σ[h] 

(i.e., σ restricted to h) is a NE for SG(h), for every node h
Subgame perfection rules out NE B/AA,AB  in the previous game

• It is not an equilibrium at “node 2 subgame” (2’s choice after 1 picks A)
• SGP ignores history (hence ability to “punish” for past actions)
• intuitively, punishment not rational/threats not credible (in one-shot game)

 If one could precommit to a strategy, threats could be credible
• e.g., computer program, legal contract, …
• however, such precommitment is a move in a

more involved game
• retaliation in future interactions possible, but also

a different game (repeated, or Markov game)
• SGPE is the most natural form of equilibrium for EF
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The Ambassador reveals that his side has installed a doomsday device
that will automatically destroy life on Earth if there is a nuclear attack
against the Soviet Union. The American President expresses amazement
that anyone would build such a device. But Dr. Strangelove… admits that
it would be "an effective deterrent... credible and convincing.“

Strangelove explains the technology behind the Doomsday Machine and
why it is essential that not only should it destroy the world in the event
of a nuclear attack but also be fully automated and incapable of being
deactivated. He further points out that the "whole point of the
Doomsday Machine is lost if you keep it a secret". 

When asked why the Soviets did not publicize this, Ambassador de
Sadeski sheepishly answers it was supposed to be announced the
following Monday at the (Communist) Party Congress because
"the Premier loves surprises."

From en.wikipedia.org/wiki/Dr._Strangelove#Plot



SGPE: Notes

Chance nodes easy to incorporate into picture
• utility of strategy profile given by expectation
• history must still be observable (like decision trees)

Randomization comes in two forms
• randomize over the strategies σi (i.e., mixture within normal form)
• randomize choices at specific nodes (independently); called 

behavioral strategies (choices at different nodes are 
uncorrelated)

Theorem (Kuhn): There is a SGPE for any finite 
extensive form game

• fairly obvious: backward induction (DP) to calculate it
• unique (except for ties); no role for randomization
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Backward Induction
Simple way to compute a SGPE

• back values up the tree exactly as in a decision tree
• only differences

 you back up entire payoff vectors
 at choice node controlled by player i, action is the one 

maximizing that player’s value
• leaves no role for threats, action choice made at nodes 

independent of path taken to get to that node
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Backward Induction: Toy Illustration

Firm 1

Firm 2 Firm 2

Region A Region B

Region A Region B

8, 4 12, 9

Region A Region B

9, 12 6, 3

A with
payoff 12
(better 
than B)

B with
payoff 9
(better 
than A)

A with payoff 12
better than B
With payoff 9

12, 9 9, 12

12, 9



Criticisms of Backward Induction
Centipede game show difficulties of NE (even subgame perfect NE) 

in predicting behavior
• players alternate decisions: across (continue), down (terminate)

Only NE (hence only SGPE) is (D,D,D,D,D)
• seems more problematic as game goes on longer!
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Fig from Multiagent Systems,
Shoham and Leyton-Brown, 2009



Different (Related) Criticism of NE
Traveller’s dilemma

• backdrop: two travellers lose suitcase with identical items (e.g., valuable 
souvenirs) on airline, airline customer service rep trying to assess 
(“elicit”) true value

• two players, must write a dollar value between 2 and 100
• if numbers are the same, each get number they wrote
• if different, each gets lowest number, but bonus of $2 to person with 

lower number, penalty of $2 to person with higher number
• only NE (reasoning similar to SGPE) is for each to write down $2

 100 dominated by 99 (no matter what other guy does, your payoff is 
better if you write down 99 instead of 100)
 repeating this reasoning, driven down to only NE of (2,2)

• experimentally, people rarely do this: claims are much higher in the lab; 
but they are influenced by the penalty: higher penalties cause people to 
make lower claims
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Imperfect Information EF Games

Matching pennies can’t be modeled as a perfect info EFG
• the simultaneity of moves can’t be captured
• many other truly dynamic games have partial obervability, partial 

simultaneity, etc. (like move from MDPs to POMDPs)
Imperfect information games capture this

• information set for a player i: a subset of nodes owned by player 
i in an EFG; intuitively, this set reflects a set of histories that 
can’t be distinguished by i

• the set of moves at each node in an info set must be the same
• a player’s strategy is restricted to choosing same move (or 

mixed move) at each node in a given information set
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Imperfect Information
See S&LB for formal defn; somewhat informally

• each player’s nodes must be partitioned into info sets
• strategy maps info sets into action choices
• we can no longer ensure pure strategy NE exist; in general 

mixed strategies needed (since the full observability of moves no 
longer holds)

• NE defined in this strategy space in usual way
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1

2

(1,-1) (-1,1)

H T

2

(-1,1) (1,-1)

H T

H T
A dashed line (sometimes
an oval) connects nodes in
the same info set



Imperfect Info Games: Notes
Every NF game can be converted to an imperfect info EF game

• what is the obvious way?

A natural way to incorporate some lack of information about states of 
nature, exogenous events
Sequential equilibria: analog of SGP when we have incomplete info

• players need to form beliefs over possible histories at each information 
set and reason about other player’s beliefs at their information sets

• beliefs and strategies both must be equilibrium
Backward induction no longer makes sense

• can resort to normal form computation (or use “sequence representation”)

Usually we assume perfect recall
• history of i’s own actions at nodes in any information set must be identical (i

remembers everything it did)
• we can restrict randomization to randomizing action choices independently at 

each information set (no extra power in randomizing over complete strategies)
• we call such strategies behavioral strategies (exactly as in perfect info EFGs)
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Imperfect vs. Incomplete Info Games

Don’t confuse imperfect information games with incomplete
information games

• incomplete info games are games where full game structure unknown
• we’ll discuss these later; vital in mechanism design
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Repeated and Markov Games

Extensive form games capture some sequential reasoning, but are 
“hand-crafted” like decision trees
MDPs and POMDPs are more “generic”
Repeated games, Markov games extend normal form games by 

allowing agents to repeatedly interact, possibly in different contexts
Repeated games: matrix game played over finite or infinite horizon

• payoffs are sum of payoffs received over all games
• strategies map history of play into (randomized) action choice
• e.g., repeated Prisoner’s dilemma: much richer strategy space, allows 

threats of retaliation, promises of cooperation, etc.
Markov games: similar, but different “games” played at each stage

• at each stage, agents are in a state (as in an MDP)
• (randomized) action choices at each stage determine immediate payoffs
• action choices also determine (stochastic) state transition: next stage
• goal is to maximize total or discounted sum of payoffs
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