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2534 Lecture 2: Utility Theory
 Tutorial on Bayesian Networks: Weds, Sept.17, 5-6PM, PT266
 LECTURE ORDERING: Game Theory before MDPs? Or vice versa?

Preference orderings
Decision making under strict uncertainty
Preference over lotteries and utility functions
Useful concepts

• Risk attitudes, certainty equivalents
• Elicitation and stochastic dominance

Paradoxes and behavioral decision theory
Multi-attribute utility models

• preferential and utility independence
• additive and generalized addition models
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Why preferences?
Natural question: why not specify behavior with goals?
Preferences: coffee ≻ OJ ≻ tea

• Natural goal: coffee
 but what if unavailable? requires a 30 minute wait? …

• allows alternatives to be explored in face of costs, infeasibility,…
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Preference Orderings

Assume (finite) outcome set X (states, products, etc.)
Preference ordering ≽ over X:

• y ≽ z interpreted as: “I (weakly) prefer y to z”
• y ≻ z iff y ≽ z and z ⋡ y  (strict preference)
• y ~ z iff y ≽ z and y ≽ z   (indifference, incomparability?)

Conditions: ≽ must be: 
• (a) transitive: if x ≽ y and y ≽ z then x ≽ z
• (b) connected (orderable): either y ≽ z or z ≽ y 
• i.e., a total preorder
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Preference Orderings

Total preorder: seems natural, but conditions reasonable?
• implies (iff) strict relation ≻ is asymmetric and neg. transitive*

• *if a not better than b, b not better than c, then a not better than c

• why connected? why transitive? (e.g., money pump)
Are preference orderings enough?

• decisions under certainty? under uncertainty?

Exercise: what properties of ≽, ≻ needed if you desire incomparability?
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Revealed Preference

Given a non-empty subset of Y⊆ X, preferences “predict” 
choice: c(Y) ∈ X should be a most preferred element
More general choice function: select subset c(Y)⊆ Y

Given ≻, define c(Y, ≻) = {y∈ Y : ∄ z∈ Y s.t. z ≻ y}
• i.e., the set of “top elements” of ≻ (works for partial orders too)
• Exercise: show that c(Y, ≻) must be non-empty
• Exercise: show that if y, z ∈ c(Y, ≻) then y ~ z

CF c is rationalizable iff exists≻  s.t. for all Y, c(Y)=c(Y,≻) 
• are all choice functions rationalizable? (give counterexample)
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Weak Axiom of Revealed Preference

Desirable properties of choice functions:
• (AX1) If y∈ Y, Y⊆ Z, and y∈ c(Z), then y ∈ c(Y)
• (AX2) If Y⊆ Z, y,z∈ c(Y), and z∈ c(Z), then y ∈ c(Z)

Thm: (a) given prefs ≻, c(∙,≻) satisfies (AX1) and (AX2)
(b) if c satisfies (AX1) and (AX2), then c=c(∙,≻) for some ≻

• Exercise: prove this

Thus: a characterization of rationalizable choice functions
Weak axiom of revealed preference:

• (WARP) If y,z∈ Y∩Z, y∈ c(Y), z∈ c(Z), then y ∈ c(Z) and z ∈ c(Y)
• Alternative characterization: c satisfies WARP iff (AX1) and (AX2)
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Making Decisions: One-shot
Basic model of (one-shot) decisions:

• finite set of actions A, each leads to set of possible outcomes X
• given preference ordering ≽, is decision obvious?

Deterministic actions: f:A ⟶ X
• Let f(A) = {f(a) ∈ A} be the set of possible outcomes, choose a

with most preferred outcome: c(f(A))
• preferences more useful than goals: what if A is set of plans?

Is it always so straightforward?
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Making Decisions: Uncertainty
What if a given action has several possible outcomes

• Nondeterministic actions: f:A ⟶ P(X)

• Stochastic actions: f:A ⟶ Δ(X)
• Initial state uncertainty (nondeterministic or stochastic)
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Making Decisions: Uncertainty

Two solutions to this problem:

Soln 1: Assign values to outcomes
• decision making under strict uncertainty if nondeterministic
• expected value/utility theory if stochastic
• Question: where do values come from? what do they mean?

Soln 2: Assign preferences to lotteries over outcomes
• decision making under quantified uncertainty
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Making Decisions: Strict Uncertainty
Suppose you have no way to quantify uncertainty, but 

each outcome has some “value” to you
• require the value function respect ≽:  v(x) ≥ v(y)  iff x≽ y

Useful to specify a decision table
• rows: actions; columns: states of nature; entries: values
• unknown states of nature dictate outcomes, table has: v(f(a,Θ1))
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Strict Uncertainty: Decision Criteria
Maximin (Wald): choose action 

with best worst outcome
• maxa minΘ v(f(a,Θ))
• a with max security level s(a)
• very pessimistic

Maximax: choose action with 
best best outcome

• maxa maxΘ v(f(a,Θ))
• a with max optimism level o(a)

Hurwicz criterion: set α ∈ (0,1)
• maxa α s(a) + (1- α)o(a)

Maximin: a2

Maximax: a3

Hurwicz: which 
decisions are possible?
What if a3 = <0.5 3 2 2>?
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Minimax Regret (Savage)

Regret of ai under outcome Θj: rij = max {vkj } – vij
• How sorry I’d be doing ai if I’d known Θj was coming
• Why worry about worst outcome: beyond my control

Minimax regret: choose arg mina maxj rij
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Qualitative Criteria: Reasonable?

Criteria all make sense at some level, but not at others
• indeed, all have “faults”

Independence of irrelevant alternatives (IIA): adding an 
action to decision problem does not influence relative 
ranking of other actions

Minimax regret violates IIA
• a1 lower MR than a2 (no a3)
• a2 lower MR than a1 (with a3)

Classic impossibility result:
• no qualitative decision criterion satisfies all of a set of intuitively 

reasonable principles (like IIA)
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Making Decisions: Probabilistic Uncertainty

What if:
• 2% chance no coffee made (30 min delay)?  10%?  20%?  95%?
• robot has enough charge to check only one possibility
• 5% chance of damage in coffee room, 1% at OJ vending mach.
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Preference over Lotteries

If uncertainty in action/choice outcomes, ≽ not enough
Each action is a “lottery” over outcomes

A simple lottery over X has form:
l = [ (p1 ,x1), (p2 ,x2), …, (pn ,xn) ]

where  pi ≥ 0 and ∑ pi = 1
• outcomes are just trivial lotteries (one outcome has prob 1)

A compound lottery allows outcomes to be lotteries:
[ (p1 ,l1), (p2 ,l2), …, (pn ,ln) ]

• restrict to finite compounding
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Constraints on Lotteries

Continuity:  
• If  x1 ≻ x2 ≻ x3 then  ∃ p s.t. [(p,x1), (1-p,x3)] ~ x2

Substitutability: 
• If  x1 ~ x2 then [(p,x1), (1-p,x3)] ~ [(p,x2), (1-p,x3)] 

Mononoticity:
• If  x1 ≽ x2 and p≥ q then  [(p,x1), (1-p,x2)] ≽ [(q,x1), (1-q,x2)] 

Reduction of Compound Lotteries (“no fun gambling”):
• [ (p, [(q,x1), (1-q,x2)] ), (1-p, [(q’,x3), (1-q’,x4)]) ] 

~ [ (pq,x1), (p-pq,x2), (q’-pq’,x3), ((1-p)(1-q’),x4) ]

Nontriviality:
• xT ≻ x⊥
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Implications of Properties on ≽

Since ≽ is transitive, connected: representable by ordinal 
value function V(x)

With constraints on lotteries: we can construct a utility 
function U(l)∈ R s.t. U(l1)≥ U(l2) iff l1 ≽ l2

• where U([ (p1 ,x1), … , (pn ,xn) ]) =  ∑i piU(xi)
• famous result of Ramsey, von Neumann & Morgenstern, Savage

Exercise: prove existence of such a utility function
Exercise: given any U over outcomes X, show that ordering ≽ over 

lotteries induced by U satisfies required properties of ≽
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Implications of Properties on ≽

Assume some collection of actions/choices at your 
disposal

Knowing U(xi) for each outcome allows tradeoffs to be 
made over uncertain courses of action (lotteries)

• simply compute expected utility of each course of action

Principle of Maximum Expected Utility (MEU)
• utility of choice is a expected utility of its outcome
• appropriate choice is that with maximum expected utility
• Why? Action (lottery) with highest EU is the action (lottery) that 

is most preferred in ordering ≽ over lotteries!
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Some Discussion Points
Utility function existence: proof is straightforward

• Hint: set U(xT)= 1; U(x⊥)= 0; find a p s.t. x ~ [(p,xT), (1-p,x⊥)] 

Utility function for > over lotteries is not unique:
• any positive affine transformation of U induces same ordering >
• normalization in range [0,1] common

Ordinal preferences “easy” to elicit (if X small)
• cardinal utilities trickier for people: an “art form” in decision anal.

Outcome space often factored: exponential size
• requires techniques of multi-attribute utility theory (MAUT)

Expected utility accounts for risk attitudes: inherent in 
preferences over lotteries

• see utility of money (next)
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Risk profiles and Utility of money
What would you choose?

• (a) $100,000   or  (b)  [(.5, $200,000),  (.5, 0) ]
• what if (b) was $250K, $300K, $400K, $1M; p = .6, .7, .9, .999, …
• generally, U(EMV(lottery)) > U(lottery)    EMV = expected monetary value

Utility of money is nonlinear:  e.g., U($100K) > .5U($200K)+.5U($0)

Certainty equivalent of l:  U(CE) = U(l); CE = U-1(EU(l))
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Risk attitudes
Risk Premium: EMV(l) – CE(l)

• how much of EMV will I give up to remove risk of losing
Risk averse:

• decision maker has positive risk premium; U(money) is concave
Risk neutral:

• decision maker has zero risk premium; U(money) is linear
Risk seeking:

• decision maker has negative risk premium; U(money) is convex
Most people are risk averse

• this explains insurance
• often risk seeking in negative range
• linear a good approx in small ranges
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St. Peterburg Paradox

How much would you pay to play this game?
• A coin is tossed until it falls heads. If it occurs on the Nth toss 

you get $2N

• Most people will pay about $2-$20

Not a paradox per se… doesn’t contradict utility theory

22CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

∞==





= ∑∑

∞

=

∞

= 11
12

2
1

n

n
n

n
EMV



A Game

Situation 1: choose either
• (1) $1M, Prob=1.00
• (2) $5M, Prob=0.10;  $1M, Prob=0.89;  nothing, Prob=0.01
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Another Game


•
•

Situation 2: choose either
• (3) $1M, Prob=0.11; nothing, Prob=0.89
• (4) $5M, Prob=0.10; nothing, Prob=0.90
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Allais’ Paradox

Situation 1: choose either
• (1) $1M, Prob=1.00
• (2) $5M, Prob=0.10;  $1M, Prob=0.89;  nothing, Prob=0.01

Situation 2: choose either
• (3) $1M, Prob=0.11; nothing, Prob=0.89
• (4) $5M, Prob=0.10; nothing, Prob=0.90

Most people: (1) > (2)   and  (4) > (3)
• e.g., in related setups:  65% (1) > (2);   25% (3) > (4)

Paradox: no way to assign utilities to monetary outcomes 
that conforms to expected utility theory and the stated 
preferences (violates substitutability)

• possible explanation: regret
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Allais’ Paradox: The Paradox
Situation 1: choose either

• (1) $1M, Prob=1.00
 equiv: ($1M 0.89; $1M 0.11) 

• (2) $5M, Prob=0.10;  $1M, Prob=0.89;  nothing, Prob=0.01
• So if (1)>(2), by subst:  $1M > ($5M 10/11; nothing 1/11)

Situation 2: choose either
• (3) $1M, Prob=0.11; nothing, Prob=0.89
• (4) $5M, Prob=0.10; nothing, Prob=0.90

 equiv: nothing 0.89; $5M 0.10; nothing 0.01
• So if (4)>(3), by subst: ($5M 10/11; nothing 1/11) > $1M
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…and the Fall 2014 survey says

Situation 1:
• (1)>(2): a (x%)
• (2)>(1):  b (y%)

Situation 2:
• (3)>(4):  c (w%)
• (4)>(3):  d (z%)

The 2534 class of 2014 is ___________________
• many people who take a class on decision theory tend to think in 

terms of expected monetary value (so 2534 surveys tend to be 
consistent than more standard empirical results; however, if 
there was real money on the line, my guess is the proportions 
would be somewhat more in line with experiments)
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Ellsberg Paradox

Urn with 30 red balls, 60 yellow or black balls; well mixed
Situation 1: choose either

• (1) $100 if you draw a red ball
• (2) $100 if you draw a black ball

Situation 2: choose either
• (3) $100 if you draw a red or yellow ball
• (4) $100 if you draw a black or yellow ball

Most people: (1) > (2)   and  (4) > (3)
Paradox: no way to assign utilities (all the same) and 

beliefs about yellow/black proportions that conforms to 
expected utility theory

• possible explanation: ambiguity aversion
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Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
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Product Configuration*

Luggage Capacity?
Two Door? Cost?

Engine Size?
Color? Options?
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COACH*
POMDP for prompting Alzheimer’s patients

• solved using factored models, value-directed compression of 
belief space

Reward function (patient/caregiver preferences)
• indirect assessment (observation, policy critique)
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Winner Determination in Combinatorial 
Auctions

Expressive bidding in auctions becoming common
• expressive languages allow: combinatorial bids, side-constraints, 

discount schedules, etc.
• direct expression of utility/cost: economic efficiency

Advances in winner determination
• determine least-cost allocation of business to bidders
• new optimization methods key to acceptance
• applied to large-scale problems (e.g., sourcing)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



33

Non-price Preferences
A and B for $12000.
C and D for $5000…

A for $10000.
B and D for $5000 if A;
B and D for $7000 if not A...Joe

Hank

etc…

A, C to Fred.
B, D, G to Frank.
F, H, K to Joe…
Cost: $57,500.

That gives too 
much business 
to Joe!!
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Non-price Preferences
WD algorithms minimize cost alone

• but preferences for non-price attributes play key role 
• Some typical attributes in sourcing:

 percentage volume business to specific supplier
 average quality of product, delivery on time rating
 geographical diversity of suppliers
 number of winners (too few, too many), …

Clear utility function involved
• difficult to articulate precise tradeoff weights

• “What would you pay to reduce  %volumeJoe by 1%?”

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



35

Manual Scenario Navigation*
Current practice: manual scenario navigation

• impose constraints on winning allocation 
 not a hard constraint!

• re-run winner determination
• new allocation satisfying constraint: higher cost
• assess tradeoff and repeat (often hundreds of times) until 

satisfied with some allocation

Here’s a new allocation with 
less business to Joe.
Cost is now: $62,000.
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Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
Some structural form usually assumed

• so u parameterized compactly (weight vector w)
• e.g., linear/additive, generalized additive models

Representations for qualitative preferences, too
• e.g., CP-nets, TCP-nets, etc. [BBDHP03, BDS05]
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Flat vs. Structured Utility Representation

Naïve representation: vector of values
• e.g., car7:1.0, car15:0.92, car3:0.85, …, car22:0.0

Impractical for combinatorial domains
• e.g., can’t enumerate exponentially many cars, nor expect user 

to assess them all (choose among them)
Instead we try to exploit independence of user 

preferences and utility for different attributes
• the relative preference/utility of one attribute is independent of 

the value taken by (some) other attributes
Assume X ⊆ Dom(X1) x Dom(X2) x … Dom(Xn)

• e.g., car7:   Color=red, Doors=2, Power=320hp, LuggageCap=0.52m3
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Preferential, Utility Independence

X and Y = V-X are preferentially independent if: 
• x1y1 ≥ x2y1  iff x1y2 ≥ x2y2 (for all x1, x2, y1, y2)
• e.g., Color: red>blue regardless of value of Doors, Power, LugCap
• conditional P.I. given set Z: definition is straightforward

X and Y = V-X are utility independent if: 
• l1(Xy1) ≥ l2(Xy1)  iff l1(Xy2) ≥ l2(Xy2)  (for all y1, y2 , all distr. l1,l2)
• e.g., preference for lottery(Red,Green,Blue) does not vary with 

value of Doors, Power, LugCap
 implies existence of a “utility” function over local (sub)outcomes

• conditional U.I. given set Z: definition is straightforward
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Question
Is each attribute PI of others in preference relation 1?  2?

Does UI imply PI? Does PI imply UI?
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Additive Utility Functions

Additive representations commonly used [KR76]
• breaks exponential dependence on number of attributes
• use sum of local utility functions ui over attributes
• or equivalently local value functions vi plus scaling factors λi

• e.g., U(Car) = 0.3 v1(Color) + 0.2 v2(Doors) + 0.5 v3(Power)
and v1(Color) :  cherryred:1.0, metallicblue:0.7,  …, grey:0.0

This will make elicitation much easier (more on this next time)
 It can also make optimization more practical (more next time)
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Additive Utility Functions

An additive representation of u exists iff decision maker is 
indifferent between any two lotteries where the marginals
over each attribute are identical
 l1(X) ~ l2(X)  whenever l1(Xi) = l2(Xi) for all Xi
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Generalized Additive Utility

Generalized additive models more flexible
 interdependent value additivity [Fishburn67], GAI [BG95]

• assume (overlapping) set of m subsets of vars X[j]
• use sum of local utility functions uj over attributes

• e.g., U(Car) = 0.3 v1(Color,Doors) + 0.7 v2(Doors,Power) with
v1(Color,Door) :  blue,sedan:1.0; blue,coupe:0.7;blue,hatch:0.1,

red, sedan: 0.8, red,coupe:0.9; red,hatch:0.0

This will make elicitation much easier (more on this next time)
 It can also make optimization more practical (more next time)
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GAI Utility Functions

An GAI representation of u exists iff decision maker is 
indifferent between any two lotteries where the marginals
over each factor are identical

• l1(X) ~ l2(X)  whenever l1(X[i]) = l2(X[i]) for all i
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Further Background Reading
 John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton 

University Press, Princeton, 1944.
 L. Savage. The Foundations of Statistics. Wiley, NY, 1954.
 R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. 

Wiley, NY, 1976.
 P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility 

theory. International Economic Review, 8:335–342, 1967.
 Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.
 F. Bacchus , A. Grove. Graphical models for preference and utility. UAI-95, pp.3–10, 1995.
 S. French, Decision Theory, Halsted, 1986.
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