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2534 Lecture 10: Mechanism Design and 
Auctions
Mechanism Design

• re-introduce mechanisms and mechanism design
• key results in mechanism design, auctions as an illustration
• we’ll briefly discuss (though we’ll likely wrap it up next time):

 Sandholm and Conitzer’s work on automated mechanism design
 Blumrosem, Nisan, Segal: limited communication auctions

Announcements
• Project proposals back today
• Assignment 2 in today
• Projects due on Dec.17
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Recap: Second Price Auction

I want to give away my phone to person values it most
• in other words, I want to maximize social welfare
• but I don’t know valuations, so I decide to ask and see who’s 

willing to pay: use 2nd-price auction format
Bidders submit “sealed” bids; highest bidder wins, pays 

price bid by second-highest bidder
• also known as Vickrey auctions
• special case of Groves mechanisms, Vickrey-Clarke-Groves 

(VCG) mechanisms

2nd-price seems weird but is quite remarkable
• truthful bidding, i.e., bidding your true value, is a dominant 

strategy

To see this, let’s formulate it as a Bayesian game
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Recap: SPA as a Bayesian Game

n players (bidders)
Types: each player k has value vk ∊ [0,1] for item
strategies/actions for player k: any bid bk between [0,1]
outcomes: player k wins, pays price p (2nd highest bid)

• outcomes are pairs (k,p), i.e., (winner, price)
payoff for player k:

• if k loses: payoff is 0
• if k wins, payoff depends on price p: payoff is vk – p

Prior: joint distribution over values (will not specify for now)
• we do assume that values (types) are independent and private
• i.e., own value does not influence beliefs about value of other bidders

Note: action space and type space are continuous
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Recap: Truthful Bidding: A DSE
Needn’t specify prior: even without knowing others’ 

payoffs, bidding true valuation is dominant for every k
• strategy depends on valuation: but k selects bk equal to vk

Not hard to see deviation from truthful bid can’t help (and 
could harm) k, regardless of what others do

We’ll consider two cases: if k wins with truthful bid bk = vk
and if k loses with truthful bid bk = vk
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Recap: Equilibrium in SPA Game
Suppose k wins with truthful bid vk

• Notice k’s payoff must be positive (or zero if tied)
Bidding bk higher than vk:

• vk already highest bid, so k still wins and still pays price p equal 
to second-highest bid b(2)

Bidding bk lower than vk:
• If bk remains higher than second-highest bid b(2) no change in 

winning status or price
• If bk falls below second-highest bid b(2) k now loses and is worse 

off, or at least no better (payoff is zero)
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Recap: Equilibrium in SPA Game
Suppose k loses with truthful bid vk

• Notice k’s payoff must be zero and highest bid b(1) > vk

Bidding bk lower than vk:
• vk already a losing bid, so k still loses and gets payoff zero

Bidding bk higher than vk:
• If bk remains lower than highest bid b(1), no change in winning 

status (k still loses)
• If bk is above highest bid b(1), k now wins, but pays price p equal 

to b(1) > vk (payoff is negative since price is more than it’s value)

So a truthful bid is dominant: optimal no matter what 
others are bidding
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Truthful Bidding in Second-Price Auction

Consider actions of bidder 2
• Ignore values of other 

bidders, consider only their 
bids. Their values don’t 
impact outcome, only bids 
do.

What if bidder 2 bids:
• truthfully $105?

 loses (payoff 0)
• too high: $120

 loses (payoff 0)
• too high: $130

wins (payoff -20)
• too low: $70

 loses (payoff 0)
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Truthful Bidding in Second-Price Auction

Consider actions of bidder 2
• Ignore values of other 

bidders, consider only their 
bids. Their values don’t 
impact outcome, only bids 
do.

What if bidder 2 bids:
• truthfully $105?

wins (payoff 10)
• too high: $120

wins (payoff 10)
• too low: $98

wins (payoff 10)
• too low: $90

 loses (payoff 0)
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Other Properties: Second-Price Auction
Elicits true values (payoffs) from players in game even though they 

were unknown a priori
Allocates item to bidder with highest value (maximizes social welfare)
Surplus is divided between seller and winning buyer

• splits based on second-highest bid (this is the lowest price the winner 
could reasonably expect to pay)

Outcome is similar to Japanese/English auction (ascending auction)
• consider process of raising prices, bidders dropping out, until one 

bidder remains
• until price exceeds k’s value, k should stay in auction

 drop out too soon: you lose when you might have won
 drop out too late: will pay too much if you win

• last bidder remaining has highest value, pays 2nd highest value! (with 
some slop due to bid increment)
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Mechanism Design

SPA offers a different perspective on use of game theory
• instead of predicting how agents will act, we design a game to facilitate 

interaction between players
• aim is to ensure a desirable outcome assuming agents act rationally

This is the aim of mechanism design (implementation theory)
Examples:

• voting/policy decisions: want policy preferred by majority of constituents
• resource allocation/usage: want to assign resources for maximal 

societal benefit (or maximal benefit to subgroup, or …); often includes 
determination of payments (e.g., “fair” or “revenue maximizing” or …)

• task distribution: want to allocate tasks fairly (relative to current 
workload), or in a way that ensures efficient completion, or …

Recurring theme: we usually don’t know the preferences 
(payoffs) of society (participants): hence Bayesian games

• and often incentive to keep these preferences hidden (see examples)
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Mechanism Design: Basic Setup
Set of possible outcomes O
n players, with each player k having:

• type space Θk

• utility function uk : O X Θk →R 
 uk(o,θk) is utility of outcome o to agent k when type is θk ∈ Θk

 think of θk as an encoding of k’s preferences (or utility function)
 (Typically) a common prior distribution P over Θ
A social choice function (SCF) C: Θ → O

• intuitively C(θ) is the most desirable option if player preferences are θ
• can allow “correspondence”, social “objectives” that score outcomes

Examples of social choice criteria:
• make majority “happy”;  maximize social welfare (SWM);  find “fairest” 

outcome;  make one person as happy as possible (e.g., revenue 
max’ztn in auctions), make least well-off person as happy as possible…

• set up for SPA: types: values; outcomes: winner-price; SCF: SWM
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A Mechanism

A mechanism ((Ak),M) consists of:
• (A1,…, An): action (strategy) sets (one per player) 
• an outcome function  M: A ⟶ Δ(O)     (or  M: A ⟶ O ) 
• intuitively, players given actions to choose from; based on 

choice, outcome is selected (stochastically or deterministically)
• for many mechanisms, we’ll break up outcomes into core 

outcome plus monetary transfer (but for now, glom together)
Second-price auction:

• Ak is the set of bids:  [0,1]
• M selects winner-price in obvious way

Given a mechanism design setup (players, types, utility 
functions, prior), the mechanism induces a Bayesian 
game in the obvious way
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Implementation
What makes a mechanism useful?

• it should implement the social choice function C
• i.e., if agents act “rationally” in the Bayesian game, outcome proposed 

by C will result
• of course, rationality depends on the equilibrium concept

A mechanism (A,M) S-implements C iff for (some/all) S-solutions σ of 
the induced Bayesian game we have, for any θ ∈ Θ, M(σ(θ)) = C(θ)

• here S may refer to DSE, ex post equilibrium, or Bayes-Nash equilibrium
• in other words, when agents play an equilibrium in the induced game, 

whenever the type profile is θ, then the game will give the same outcome 
as prescribed for θ by the social choice function

• notice some indeterminacy (in case of multiple equilibria)
For SCF C = “maximize social welfare” (including seller as a player, 

and assuming additive utility in price/value), the SPA implements SCF 
in dominant strategies
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Revelation Principle

Given SCF C, how could one even begin to explore space of 
mechanisms?

• actions can be arbitrary, mappings can be arbitrary, …
Notice that SPA keeps actions simple: “state your value”

• it’s a direct mechanism:   Ak = θk (i.e., actions are “declare your type”)
• …and stating values truthfully is a DSE
• Turns out this is an instance of a broad principle

Revelation principle: if there is an S-implementation of SCF C, then 
there exists a direct, mechanism that S-implements C and is truthful

• intuition: design new outcome function M’ so that when agents report 
truthfully, the mechanism makes the choice that the original M would 
have realized in the S-solution

Consequence: much work in mechanism design focuses on direct 
mechanisms and truthful implementation
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Revelation Principle
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Fig from Multiagent Systems,
Shoham and Leyton-Brown, 2009

If truthful reporting
not in EQ in New, then
some agent k wants an
action different than
that dictated by sk
under her true type.
But this means sk was
not in EQ in Original.



Gibbard-Satterthwaite Theorem
Dominant strategy implementation a frequent goal

• agents needn’t rely on any strategic reasoning, beliefs about types
• unfortunately, DS implementation not possible for general SCFs

Thm (Gibbard73, Sattherwaite75): Let C (over N, O) be s.t.:
(i) |O| > 2; 
(ii) C is onto (every outcome is selected for some profile θ); 
(iii) C is non-dictatorial (there is no agent whose preferences “dictate” the 
outcome, i.e., who always gets max utility outcome); 
(iv) all preferences are possible.

Then C cannot be implemented in dominant strategies.
Proof (and result) similar to Arrow’s Thm (which we’ll see shortly)
Ways around this:

• use weaker forms of implementation
• restrict the setting (especially: consider special classes of preferences)
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Groves Mechanisms
Despite GS theorem, truthful implementation in DS is possible 

for an important class of problems
• assume outcomes allow for transfer of utility between players
• assume agent preferences over such transfers are additive
• auctions are an example (utility function in SPA)

Quasi-linear mechanism design problem (QLMD)
• extend outcome space with “monetary” transfers

 outcomes: O x T, where T is set of vectors of form (t1, … tn)
• quasi-linear utility: uk((o,t),θk) = vk(o,θk) + tk
• SCF is SWM (i.e., maximization of social welfare SW(o,t,θ) )

Assumptions:
• value for “concrete” outcomes is commensurate with transfer
• players are risk neutral

 In SPA, utility is valuation less price paid (negative transfer to winner), 
or price paid (positive transfer to seller) (see formalization on slide 3)
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Groves Mechanisms
A Groves mechanism (A,M) for a QLMD problem is:

• Ak = θk = Vk : agent k announces values v*k  for outcomes
• M(v*) = (o, t1, … tn) where:

 o = argmaxo∊O ∑k v*k(o)
 tk(v*k) = ∑j≠k v*j(o) – hk(v*-k),   where hk is an arbitrary function

 Intuition is simple:
• choose SWM-outcome based on declared values v*
• then transfer to k: the declared welfare of chosen outcome to the other 

agents, less some “social cost” function hk which depends on what 
others said (but critically, not on what k reports)

Some notes:
• in fact, this is a family of mechanisms, for various choices of hk

• if agents reveal true values, i.e., v*k = vk for all k, then it maximizes SW
• SPA: is an instance of this
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Truthfulness of Groves

Thm: Any Groves mechanism is truthful in dominant 
strategies (strategyproof) and efficient. Proof easy to see:

• outcome is:  o = argmaxo∊O ∑k v*k(o)
• k receives:   tk(v*) = ∑j≠k v*j(o) – hk(v*-k) 
• k’s utility for report v*k is:  vk(o) + ∑j≠k v*j(o) – hk(v*-k), 

 here o depends on the report v*k

• k wants to report v*k that maximizes vk(o) + ∑j≠k v*j(o) 
 this is just k’s utility plus reported SW of others
 notice k’s report has no impact on third term hk(v*-k)

• but mechanism chooses o to max reported SW, so no report by k
can lead to a better outcome for k than vk

• efficiency (SWM) follows immediately
This is why SPA is truthful (and efficient)
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Other Properties of Groves

Famous theorem of Green and Laffont: The Groves mechanism is 
unique in the following sense---any mechanism for a QLMD problem 
that is truthful, efficient is a Groves mechanism (i.e., must have 
payments of the Groves form)

• see proof sketch in S&LB

Famous theorem of Roberts: the only SCFs that can be implemented 
truthfully (with no restrictions on preferences) are affine maximizers
(basically, SWM but with weights/biases for different agents’ 
valuations)

Together, these show the real centrality of Groves mechanisms
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Participation in the mechanism
While agents participating will declare truthfully, why would agent 

participate? What if hk = -LARGEVALUE?
 Individual rationality: no agent loses by participating in mechanism

• basic idea: your expected utility positive (non-negative), i.e., the value 
of outcome. should be greater than your payment

Ex interim IR: your expected utility is positive for every one of your 
types/valuations (taking expectation over Pr(v-k | vk) ):

• E [ vk(M(σk(vk), σ-k(v-k))) - tk(σk(vk), σ-k(v-k)) ] ≥ 0   for all k, vk

 where σ is the (DS, EP, BN) equilibrium strategy profile
Ex post IR: your utility is positive for every type/valuation (even if you 

learn valuations of others):
• vk(M(σ(v))) - tk(σ(v)) ≥ 0   for all k, v

 where σ is the (DS, EP, BN) equilibrium strategy profile

 Ex ante IR can be defined too (a bit less useful, but has a role in places)
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VCG Mechanisms
Clarke tax is a specific social cost function h

• hk(v*-k) = maxo∊O[-k] ∑j≠k v*j(o)
• assumes subspace of outcomes O[-k] that don’t involve k
• hk(v*-k) : how well-off others would have been had k not participated
• total transfer is value others received with k’s participation less value that 

they would have received without k (i.e., “externality” imposed by k)
With Clarke tax, called Vickrey-Clarke-Groves (VCG) mechanism

Thm: VCG mechanism is strategyproof, efficient and ex interim 
individually rational (IR).

 It should be easy to see why SPA (aka Vickrey auction) is a VCG 
mechanism

• what is externality winner imposes?
• valuation of second-highest bidder (who doesn’t win because of presence)
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Other Issues
Budget balance: transfers sum to zero

• transfers in VCG need not be balanced (might be OK to run a surplus; 
but mechanism may need to subsidize its operation)

• general impossibility result: if type space is rich enough (all valuations 
over O), can’t generally attain efficiency, strategyproofness, and budget 
balance

• some special cases can be achieved (e.g., see “no single-agent effect”, 
which is why VCG works for very general single-sided auctions), or the 
dAGVA mechanism (BNE, ex ante IR, budget-balanced)

 Implementing other choice functions
• we’ll see this when we discuss social choice (e.g., maxmin fairness)

Ex post or BN implementation
• e.g., the dAGVA mechanism
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Issues with VCG
Type revelation

• revealing utility functions difficult; e.g., large (combinatorial) outcomes
 privacy, communication complexity, computation

• can incremental elicitation work?
 sometimes: e.g., descending (Dutch auction)

• can approximation work?
 in general, no; but sometime yes… we’ll discuss more in a bit…

Computational approximation
• VCG requires computing optimal (SWM) outcomes

 not just one optimization, but n+1 (for all n “subeconomies”)
 often problematic (e.g., combinatorial auctions)
 focus of algorithmic mechanism design

• But approximation can destroy incentives and other properties of VCG
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Issues with VCG
Frugality

• VCG transfers may be more extreme than seems necessary
 e.g., seller revenue, total cost to buyer
 we’ll see an example in combinatorial auctions

• a fair amount of study on design of mechanisms that are “frugal” (e.g., 
that try to minimize cost to a buyer) in specific settings (e.g., network 
and graph problems)

Collusion
• many mechanisms are susceptible to collusion, but VCG is largely 

viewed as being especially susceptible (we’ll return to this: auctions)

Returning revenue to agents
• an issue studied to some extent: if VCG extracts payments over and 

above true costs (e.g., Clarke tax for public projects), can some of this 
be returned to bidders (in a way that doesn’t impact truthfulness)?

25CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Combinatorial Auctions

Already discussed 2nd price auctions in depth, 1st price auctions a bit 
(and will return in a few slides to auctions in general)

Often sellers offer multiple (distinct) items, buyers need multiple items
• buyer’s value may depend on the collection of items obtained

Complements: items whose value increase when combined
• e.g., a cheap flight to Siena less valuable if you don’t have a hotel room

Substitutes: items whose value decrease when combined
• e.g., you’d like the 10AM flight or the 7AM flight; but not both

 If items are sold separately, knowing how to bid is difficult
• bidders run an “exposure” risk: might win item whose value is 

unpredictable because unsure of what other items they might win

26CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Simultaneous Auctions: Substitutes

 If both flights auctioned simultaneously, how should he bid?
Bid for both? runs the risk of winning both (and would need to hedge 

against that risk by underbidding, reducing odds of winning either)
Bid for one? runs the risk of losing the flight he bids for, and he might 

have won the other had he bid
 If items auctioned in sequence, it can mitigate risk a bit; but still 

difficult to determine how much to bid first time

27CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Flight1 (7AM, no
airmiles, 1 stopover)

Value: $750

Flight2 (10AM, get
airmiles, direct)

Value: $950

Bidder can only use one of the flights:
Value of receiving both flights is $950



Simultaneous Auctions: Complements

 If flight, hotel auctioned simultaneously, how should he bid?
Useless to bid for only one; but if he bids for both, he runs the risk of 

winning only one (which is worthless in isolation). Requires severe 
hedging/underbidding to account for this risk.
 If items auctioned in sequence, it can mitigates risk only a little bit. If 

he loses first item, fine. If he wins, will need to bid very aggressively 
in second (first item a “sunk cost”) and can end up overpaying for pair
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Combinatorial Auction

Combinatorial auctions allow bidders to express package bids
• for any combination of items can say what you are willing to pay for that 

combination or package
• do not pay unless you get exactly that package
• outcome of auction: assign (at most) one package to each bidder
• can use 1st-price (pay what you bid) or VCG
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Combinatorial and Expressive Auctions

Expressive bidding in auctions becoming common
• expressive languages allow: combinatorial bids, side-constraints, 

discount schedules, etc.
• direct expression of utility/cost: economic efficiency

Advances in winner determination
• determine least-cost allocation of business to bidders
• new optimization methods key to acceptance
• applied to large-scale problems (e.g., sourcing)
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Reverse Combinatorial Auctions

Buyer: desires collection of items G
Sellers: offer “bundle” bids 〈bi,pi〉, where b⊆G

• possibly side constraints (seller, buyer)
Feasible allocation:  subset B’ ⊆ B covering G

 let X denote the set of feasible allocations
Winner determination: find the least-cost allocation

• formulate this as an integer program
 variable qi indicates acceptance of bid bi

• can add all sorts of side constraints, discounts, etc.
• NP-hard, inapproximable, but lots of research on “practically 

effective” algorithms, special cases, …
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Incentives in Combinatorial Auctions

How could you get bidders to reveal their true costs?
Use VCG

• collect bundle bids 〈bk,pk〉 from each bidder
• find optimal allocation a (min cost set of bundles covering 

requirements): has cost c
• for each winning (accepted) bidder k, compute the optimal 

allocation without his bid: has higher cost ck

• accept bids in optimal allocation a, and pay (receive from) each 
winning bidder using VCG:   bk + (ck – c)
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Potential Problems with VCG for CAs
Winner determination is NP-complete and inapproximable

• yet we don’t just solve it once, we solve it m times (m winning bidders)
• in practice, VCG is seldom used in CAs
• sealed-bid: uses first-pricing; but ascending auctions sometimes used 

which can have VCG-like properties
 It would be nice to use an approximation algorithm

• but truthfulness and IR guarantees go away (in practice, not a problem)
Can overpay severely (reverse auction example, Conitzer-Sandholm)

• n items: two bidders offer to supply all n, A at price p, B at price q < p
 B wins and is paid p = q + (p – q)

• now add n bidders C1… Cn, each offering one good for free
• the C’s win and are paid q each: total payment is n*q
• adding bidders increased the total price paid significantly (and not 

frugal with respect to true cost)
• note also how susceptible to collusion
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Auctions
Auctions widely used (to both sell, buy things)

• our SPA was a one-sided, sell-side auctions: that is, we have a single 
seller, and multiple buyers

• examples: rights to use public resources (timber, mineral, oil, wireless 
spectrum), fine art/collectibles, Ebay, online ads (Google, Yahoo!, 
Microsoft, …), …

Variations:
• multi-item auctions: one seller, multiple items at once

 e.g., wireless spectrum, online ads
 interesting due to substitution, complementarities (see CAs)

• procurement (reverse) auctions: one buyer, multiple sellers
 common in business for dealing with suppliers
 government contracts tendered this way
 aim: purchase items from cheapest bidder (meeting requirements)

• double-sided auctions: multiple sellers and buyers
 stock markets a prime example, matching is the critical problem
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Single-item Auctions (Sell-side)

Assume seller with one item for sale
Several different formats

• Ascending-bid (open-cry) auctions (aka English auctions)
 price rises over time, bidders drop out when price exceeds their 

“comfort level”; final bidder left wins item at last drop-out price
• Descending-bid (open-cry) auctions (aka Dutch auctions)

 price drops over time, bidders indicate willingness to buy when price 
drops to their “comfort level”; first bidder to indicate willingness to 
buy wins at that price

• First-price (sealed bid) auctions
 bidders submit “private” bids; highest bidder wins, pays price he bid

• Second-price (sealed bid) auctions
 bidders submit “private” bids; highest bidder wins, pays price bid by 

the second-highest bidder
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The First-Price Auction Game

n players (bidders)
Types: each player k has value vk ∊ [0,1] for item
Prior: assume all valuations are distributed uniformly on [0,1]

• unlike SPA, prior will be critical here (of course, other priors possible)
strategies/actions for player k: any bid bk between [0,1]
outcomes: player k wins, pays price p (her own highest bid)

• outcomes are pairs (k,p), i.e., (winner, price)
payoff for player k:

• if k loses: payoff is 0
• if k wins, payoff depends on price p: payoff is vk – p

Like SPA, the FPA mechanism induces a Bayesian game among the 
bidders
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First-Price Auction: No dominant strategy

Notice that there is no dominant strategy for any bidder k
Suppose other players bid: highest bid from others is b(1)

• If value vk is greater than b(1) then k’s best bid is bk that is just a “shade” 
greater than b(1) (depends on how ties are broken)

• This gives k a payoff of (just shade under) vk - b(1) > 0
• If k bids less than b(1): k loses item (payoff 0)
• If k bids more than b(1): pays more than necessary (so k’s payoff is 

reduced)
• Notice k should never bid more than vk

So k’s optimal bid depends on what others do
Thus k needs some prediction of how others will bid

• requires genuine equilibrium analysis in the Bayes-Nash sense
• must predict others’ strategies (mapping from types to bid) and use 

beliefs about others’ types (to predict actual bids)
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Bid Shading in First-Price Auction
 Consider actions of bidder 2

• ignore values of other bidders, 
consider only bids.

• assume “bid increment” $1and 
that ties broken against bidder 2

 If bidder 1 bids $95:
• bidder 2 should bid $96

 wins (payoff 9)
• if 2 bids $94, loses (0)
• if 2 bids $97, payoff 8

 If bidder 1 bids $100
• bidder 2 should bid $101

 wins (payoff 4)
 If bidder 1 bids $110

• bidder 2 should bid “less”
 loses (payoff 0)
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Bid Shading in First-Price Auction
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Equilibrium: First-Price Auction
Let’s run through simple analysis
Game of incomplete information

• k’s strategy s depends on value vk :  sk(vk) selects a bid bk in [0,1]
 other players have strategies too: sj

• k’s payoff depends on its strategy and the strategy of others (as in 
Nash equilibrium), but also on its value and the value of others
 i.e., it’s a “true” Bayesian game: priors influence bids

Let’s look at game with two bidders k and j
• Assume that their values are drawn randomly (uniformly) from the 

interval [0,1]  and that they both know this
• Let’s see what strategies are in equilibrium…
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BNE: 2-bidder 1st Price Auction
Bidding strategy for k : function sk(vk) = bk :

• it tells you what bid to submit taking your value for the item as input
• e.g., truthful strategy: s(0)=0;    s(0.1) = 0.1;   s(1) = 1;  etc…  
• e.g., s(v) = ½v says “bid half your value”: s(0)=0; s(0.1)=0.05; s(1) = 0.5; …

Some simplifying assumptions
• strategy is strictly increasing (if value is higher, bid is also higher)

 intuitively makes sense, but some sensible strategies might not
• strategy is differentiable

 makes analysis easier, but not a critical in general
• strategy cannot bid higher than value:  s(v) ≤ v

 an obvious requirement for rational bidders
• strategies are symmetric: k and j use same function, sk same as sj

 not necessary: we derive only a symmetric equilibrium (non-symmetric 
equilibria may also exist)
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BNE: 2-bidder 1st Price Auction
By symmetric assumption, k never wants to bid more than s(1) (since 

this is the maximum j will bid)
• and obviously s(0) = 0, so k can’t bid less than s(0) 

We want to find a strategy s such that neither k nor j deviate from s
But for any strategy s satisfying our assumptions (specifically, 

differentiability), k can produce any bid bk between s(0) and s(1) by 
plugging in some “pretend” valuation v (possibly different from true vk)

• like an internal version of the revelation principle

So we can focus attention (reduce our search) to strategies where the 
payoff for bidding s(vk), when k’s true value is vk, is greater than the 
payoff for bidding s(v) for a different value v when k’s true value is vk

42CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Fixing a strategy and changing the bid
Even with a fixed strategy s, bidder k can produce any bid between 0

and s(1) by “pretending” to have a different value v’ than his true v
• … and it’s his bid that influences the outcome, not s per se
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What is expected value of strategy s?

What is k’s expected payoff for playing s?
• Payoff is zero if k loses
• Payoff is “value minus bid” if k wins: vk -s(vk)
• So if k wins with probability p, expected payoff is p(vk -s(vk))

What is probability k wins?
• Since strategies are symmetric, k wins just when vk > vj

• This happens with probability vk

• So k’s expected payoff is vk(vk -s(vk))
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What is optimal bidding strategy?
Want a strategy s where expected value of bidding true valuation vk

is better than bidding any other valuation v
• If true valuation is vk and bid is v: probability of winning is v, and payoff 

if bidder wins is vk -s(v)
• So we want s satisfying: vk(vk -s(vk)) ≥ v(vk -s(v)) for all v
• i.e., payoff function g(v) = v(vk -s(v)) must be maximized by input vk

Result is: s(v) = v/2
 In other words, the bidding strategy where both bidders bid half of 

their valuation is a Nash equilibrium
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For More Than Two Bidders

Same analysis can be applied (uniform valuations on any bounded 
interval) to give an intuitive result:
 If we have n bidders, the (unique) symmetric equilibrium strategy is 

for any bidder with valuation vi to bid (n-1)/n vi

• e.g., if 2 bidders, bid half of your value
• e.g, if 10 bidders, bid 9/10 of your value
• e.g, if 100 bidders, bid 99% of your value

Each bidder: bids expectation of highest valuation excluding his own 
(conditioned on his valuation being highest)
 Intuition (again): more competing bidders means that there is a 

greater chance for higher bids: so you sacrifice some payoff (vi - bi) to 
increase probability of winning in a more “competitive” situation
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Symmetric Equilibria in General

Analysis more involved for general CDF F over valuations
• each specific form requires its own analysis, but general picture 

is very similar to the uniform distribution case
Still, general principle holds in symmetric equilibrium: 

s(vk) = EV~F [ V(1) | V(1) < vk ], 

where  V(1) is the highest value of n-1 independent draws from F
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Other Properties: First-Price Auction
Bidders generally shade bids (as we’ve seen)

• Does seller lose revenue compared to second-price auction?
 If bidders all use same (increasing) strategy, item goes to bidder with 

highest value (will maximizes social welfare, like second-price)
• but note that our symmetric equilibrium needn’t be only one

Outcome is similar to Dutch auction (descending auction)
• lower prices until one bidder accepts the announced price
• until price drops below k’s value, k should not accept it

 jump in too soon: will pay more than necessary (equivalent to bid shading)
 jump in too late: you lose when you might have won

• first bidder jumping in pays the price she jumped in at (1st price)
• games are in fact “strategically equivalent”; seller gets same price

 with some “slop” due to bid decrement in Dutch auction
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Revenue Equivalence

Goal of auction may be to maximize revenue to seller
• this is just a different SCF
• do any of these auctions vary in expected revenue?

First note that 1st and 2nd price net same expected 
revenue: expectation of v(2) 

Revenue equivalence
• under a set of reasonable assumptions, all auctions (assuming 

symmetric equilibrium play) result in a bidder with a specific 
valuation vk making the same expected payment, hence lead to 
the same expected revenue for the seller

• assumptions: IPV from bounded interval [vlow, vhigh], F is strictly 
increasing (atomless), auction is efficient, bidder with vlow has 
expected utility (hence payment) zero

49CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Reserve Prices and Optimal Auctions

 If SCF is revenue maximization, none of the auction formats 
implement this SCF
Well-chosen reserve price r increases revenue to seller

• reserve prices also make sense when seller has value for item
 In 2nd price (notice still dominant to bid truthfully):

• runs risks of not selling item (all bids below r)
• increases sale price if v(1)  > r > v(2)

• no impact if v(2)  > r
 In 1st price: bid “as before:”  E[max(r,V(1))| V(1) < vk ] 
Revenue improves if r set carefully to balance probability of not 

selling against increased price when item is sold
A rather simple optimization, but relies on CDF F over valuations

• hence used rarely in practice (but see discussion of AMD)
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Optimal Reserve Price
Suppose IPV, prior density f (with CDF F) over valuations

• let g be density (with CDF G) over highest value from n-1 draws from f
Expected payment (1st or 2nd price auction) of bidder k with val vk :

• If k wins:  pays r if 2nd highest val less than r;  2nd highest val otherwise

Ex ante expected payment is then:

Expected revenue to seller is n times this (n bidders)
Optimal reserve price r* should satisfy (w/ mild assumptions of F, f): 
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Myerson Auction
Myerson auction generalizes these insights, allowing for knowledge 

of each bidder’s “personal” CDF Fk

• Does some bid shading for the bidder and sets “personalized reserve 
prices” for each bidder

• Bidder submits valuation vk

• Compute virtual valuation ψk

• Set reserve price rk satisfying ψk(rk)= 0
• Award item to bidder k* with highest virtual valuation (if above reserve)
• Price p = smallest valuation that would have still allowed k* to win

Properties
• Bidding truthfully still dominant
• Can awards item to bidder with lower valuations (but higher virtual 

valuation): increases power of bidders with lower true valuations to put 
pressure on bidders with higher valuations (increases competition)

• Provably maximizes seller revenue
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Common/Correlated Values
Five companies bidding (1st-price) for oil drilling rights in area A

• ultimate value is pretty much the same for each: a certain amount of oil 
(B bbls); each will sell it at market price (ignore technology differences)

• seller, companies don’t know the value
• each produces its own (private) estimate of the reserves (quantity B)

 value is now random (probabilistic): bid based on your expected value

Estimates are related to B, but noisy (error-prone):
• e.g., U estimates 50M bbl; V: 47M; W: 42M; X: 40M; Y: 38M
• once U wins, learns something about other’s estimates: all lower than U’s
• suggests U’s estimate was too high: perhaps U overpaid!

Phenomenon is known as winner’s curse
• winning auction: implies value is less than you estimated
• may still profit (attain a surplus), but could even have negative (expected) surplus!
• occurs in any common/correlated value auction (e.g., buying items for resale)

Bidding strategies must reflect this (and interesting information flow)
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Automated Mechanism Design
General view in MD

• hand-designed mechanisms proven to work for wide-class of problems
• prior independent (VCG), parameterized (Myerson, dAGVA), …

Drawbacks
• Gibbard-Satterthwaite: settings are still restrictive
• specific SCFs, specific preferences (quasi-linearity), etc…

Automated mechanism design [Conitzer and Sandholm]
• hard work to handcraft mechanisms, so need these to be broad
• but this generality runs smack into impossibilities (GS, Roberts, etc.)
• if you have specific info about problem at hand, generality not needed

 e.g., suppose you have specific restrictions/priors on preferences
• but can’t handcraft mechanisms for specific settings: hard work!
• what if we could create one-off mechanisms automatically?
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AMD: Basic Setup
Assume usual MD setup

• finite set of outcomes O, finite set of (joint) types Θ (restrictive), prior Pr
over joint types, utility functions

A direct (randomized) mechanism specified by parameters
• probability of outcome given report: p(θ,o) for all o∈O,θ ∈Θ
• payment (or transfer to) agent k: πk(θ) for all k, θ ∈Θ

Given a social choice objective (rather than SCF), optimize choice of 
these parameters by setting up as a math program (LP or MIP)

• flexibility in objective (max social welfare, revenue, fairness, minimize 
transfers, etc…)

Only complication: need to ensure that parameters are set so that 
appropriate incentive and participation constraints are satisfied

• these can be expressed as linear constraints on the parameters
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MIP/LP Formulation
Objective (example, expected social welfare):

• Σθ1, …, θn   Pr(θ1, …, θn) Σi  (Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn))
• many other objectives can be formulated

 Incentive compatibility constraints (example, dominant strategy):
• Σo   p(o | θ1, …, θn) uk(o, θk) + πk(θ1, …, θn) ≥ 

Σo  p(o | θ1, …, θk’, …, θn) uk(o, θk) + πk(θ1, …, θk’, …, θn);   ∀k, θ-k ,θk , θk’
• Bayes-Nash implementation formulated by taking expectation over θ-k

 Individual rationality constraints (example, ex post IR):
• Σo p(o | θ1, …, θn) uk(o, θk) + πk(θ1, …, θn) ≥ 0;    ∀k, θ 
• ex interim IR formulated by taking expectation over θ-k

For randomized mechanisms, this is an LP (assuming linear objective)
• solvable in polytime (though size proportional to  |θ ||O|  )

For deterministic mechanisms, this is a MIP (assuming linear objective)
• even for restricted cases, problem is NP-hard
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Divorce Arbitration (Conitzer, Sandholm)

Painting: who gets it
• five possible outcomes:

Two types for husband/wife: high (Pr=0.8), low (Pr=0.2)
Preferences of high type (art lover):

• u(get the painting) = 110
• u(other gets the painting) = 10
• u(museum) = 50
• u(get the pieces) = 1
• u(other gets the pieces) = 0

Preferences of low type (art hater):
• u(get the painting) = 12
• u(other gets the painting) = 10
• u(museum) = 11.5
• u(get the pieces) = 1
• u(other gets the pieces) = 0
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Max Social Welfare (deterministic, no payments)
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Max Social Welfare (randomized, no payments)
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Max Social Welfare (randomized, including payments, 
excluding “center”)
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VCG (max social welfare ignoring payments)
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AMD: Discussion/Issues to Consider
Is use of priors in this way acceptable? useful in practice?
Direct mechanisms:

• can we avoid full type revelation (especially for large 
combinatorial spaces, but even just relaxing precision required) 

Related: assumption of finite type space
• relax by discretization… how best to do this?
• finite outcome space less problematic (payments broken out)

Sequential (multi-stage) mechanisms
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Partial Type Revelation
Direct mechanisms assume that preference (type) 

specification is not a problem for agents
• but as we saw earlier in course, preference elicitation very hard

Some work addresses this by allowing agents to specify 
their valuations/types only partially or incrementally

 incremental auctions (English/Japanese, Dutch, CA versions)
• Blumrosen, Nisan, Segal (communication constraints)
• Grigorieva et al. (bisection auction)
• Hyafil and Boutilier (partial revelation VCG)
• Feigenbaum, Jaagard, Schapira; Sui and Boutilier (privacy)
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Limited Communication Auctions
BNS: limit number of bits bidders use to bid in an auction

• instead of arbitrary precision, k messages (log(k) bits)
• what is the best protocol for n agents, each with k messages?

 e.g., maximize (expected) social welfare, or revenue?
Basic design parameters: choose winner, payments for each tuple of 

messages received (bid profile)
Approach: begins abstractly, but proves that optimal auctions have a 

fairly natural structure (we’ll work directly with that structure)

Let’s focus on two bidders, social welfare
Optimal strategies: intuitively, bids correspond to intervals of 

valuation space, so you can view these as auctions with “limited 
precision” bids
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Two-Bit, Two-Bidder Auction: Example

Ask each bidder: “Is your valuation at least 0, ¼, ½, ¾?”
• Threshold strategies (BNS): but we pick thresholds by setting the prices
• We divide valuation space into intervals:   [0, ¼), [¼, ½ ), [½, ¾), [¾,1]

Winner: A if bid is “higher” than B; B if higher or tied
• B has “priority” over A (priority game in the terminology of BNS)

Payment: minimum bid needed to still win (lower bound of interval)
Obviously incentive compatible (in dominant strategies)
Can’t guarantee maximization of social welfare

• if A, B tied, B wins;  but A might have higher val (e.g., A: 7/16, B: 6/16)
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Two-Bit, Two-Bidder Auction: Different Example

Though we don’t maximize social welfare, loss can be bounded
• e.g., if valuations are uniform 0,1, easy to determine expected loss at “ties”

BNS show that to minimize welfare loss, thresholds should be mutually 
centered (as in the example above, for uniform [0,1] valuations)
Also provide analysis of revenue maximization, multiple bidders, etc.
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Discussion (Brief)
Big picture:

• approach to “partial preference elicitation” in mechanism design
• derived from a very general “communication” framework
• trades off communication (cognitive, privacy) for outcome quality
• BNS are able to obtain DS implementation in SWM case (circumvents 

Roberts because of restricted valuation space: 1-dimensional)
Value of partial elicitation more compelling in large outcome spaces 

(multidimensional)
• difficulties arise with DS implementation due to Roberts, etc.
• still there are things that can be done (e.g., by relaxing the equilibrium 

notions, and bounding incentive to misreport [HB06,07] using minimax
regret)
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