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1. Consider MDP diagrammed below. It consists of four states, s1, s2, s3 and s4; but the only action
choice is at state s1, where either action a or b can be taken. At all other states, there is a single action
(call it d) that induces a specific stochastic transition function. s4 and s5 are the only states with
associated rewards (10 and −10, respectively). Each action at each state has a 0.1 chance of inducing
a self-transition, and a 0.9 chance of moving to the nominal successor state indicated in the diagram.
There are two exceptions:

• s2, which is a “sticky state.” It has a probability pS (the stickiness factor) of self-transition (and
probability 1− pS of moving to s4.

• s3, which is a “risky state.” It has the usual probability of self-transition (0.1), but has a proba-
bility pR (the riskiness factor) of moving to s5 and probability 0.9− pR of moving to s4.
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Assume our utility is measured using total discounted reward over an infinite horizon with discount
factor β = 0.95.

(a) Fix the stickiness probability to be pS = 0.2. Describe the optimal value function and policy for
this MDP if the risky probability is pR = 0.01. Describe the optimal value function and policy
for this MDP if the risky probability is pR = 0.03. For what value of pR is the decision maker
indifferent between doing a or b at state s1. Note: You may assume that the decision maker always
starts out at s1; you do not have to compute values at unreachable states if you like. Please give
some brief justification or explanation for how you arrived at your conclusions.

(b) Fix the stickiness probability to be pS = 0.6. Repeat the above questions for pR = 0.1 and
pR = 0.2. And again compute the indifference level for pR.



2. We’re going to model the following problem as a POMDP. Patients arrives at a doctor’s office, and
either have disease X , disease Y or no disease N . These conditions are mutually exclusive. Depend-
ing on the patient characteristics, time of year, etc., the doctor’s prior probability for each of these
diseases may vary: so she wants you to develop a POMDP policy/value function to help diagnose and
treat patients as a function of her prior beliefs (which will be modeled within a belief vector).

The doctor has the following actions at her disposal, and rewards or costs associated with specific
actions and patient states.

• She can treat the patient with one of three medications, M1, M2, or M3. Once treated with
a medication, no further actions are possible by the doctor. Each medication is more or less
effective depending on the actual disease and can be more or less harmful if applied to the
wrong disease. We summarize the positive and negative effects using the following utilities for
each medication-disease (or lack of disease) combination:

X Y N
M1 0 20 6
M2 20 2 4
M3 12 12 8

In your POMDP, you should treat these as rewards associated with taking these treatment actions
in states where those diseases are present.
Each of these treatments can be applied only once. To model this, assume that once one of these
actions is applied, the patient is considered “Treated”. We model by assuming a “patient state”
variable that can take one of four values, X,Y,N,Tr :

– X means the patient has disease X and has not been treated.
– Y means the patient has disease Y and has not been treated.
– N means the patient has no disease and has not been treated.
– Tr means the patient has been treated (this does not depend on the disease that was actually

present when the patient was treated).

Once any of the three treatments is applied, Tr becomes true with probability 1. If any of the
three treatments is applied when Tr holds (i.e., a second treatment is applied), the action cost is
−100.

• She can run tests prior to prescribing a medication. Test T1 returns either a High or Low result
and and helps distinguish disease X from Y , but provides little information about the presense
versus absense of a disease. Test T2 returns a Yes or No result helps distinguish having some
disease from having none. The following are the probabilities of each test result conditional on
the underlying disease (or lack thereof):

X Y N Tr

Pr(T1 = H) 0.9 0.2 0.5 1.0
Pr(T1 = L) 0.1 0.8 0.5 0.0
Pr(T2 = Y ) 0.7 0.8 0.1 1.0
Pr(T2 = N) 0.3 0.2 0.9 0.0

Each test has an action cost of −2.
Furthermore, once one of the tests is administered, it destroys the sensitivity of any other test,
and may be harmful. To model this we assume a “test state” variable that can take on of two
values: Ts (patient has been tested) or NTs (patient has not been tested).



Once any test is applied, Ts becomes true with probability 1. If any test is applied when Ts holds
(i.e., a second test is applied), the action cost is −100. The result of either test is completely
random (each result is equally likely) if a test is applied when Ts holds.

• The doctor has a Null action (in which she does nothing). It has no cost/reward and has no
impact the patient state or test state.

• Once the consultation with the doctor ends, there is a terminal reward that depends on the patient
state at the end of the process: r(X) = 3; r(Y ) = 3; r(N) = 10; r(Tr) = 0. Note that
the reward for treating a patient (more or less) appropriately is encoded in the action rewards,
not the terminal reward. (The terminal reward encodes the relative value of ending the process
without having treated a patient as a function of his disease state.)

All action costs, action rewards, and terminal rewards are additive. We model this problem as an
undiscounted, finite-horizon POMDP with two stages. The POMDP has eight states, which are num-
bered/labeled as follows:

• s1 : X,NTs s2 : Y,NTs s3 : N,NTs s4 : Tr ,NTs;
• s5 : X,Ts s6 : Y,Ts s7 : N,Ts s8 : Tr ,Ts .

Please use this exact numbering in your answer to any questions below that refer to states.

(a) Give an intuitive justification why we should model this problem using two stages (i.e.,
why one stage or three or more stages are either insufficient or unnecessary).

(b) List all 1-stage-to-go conditional plans for this problem. Which of these are useful and
which are pointwise dominated by some other 1-stage-to-go conditional plan? You can
justify your response qualitatively (no need to describe their α-vectors).

(c) Consider the following 10 2-stage-to-go conditional plans:

• P1: Do test T1. If H , do M2, if L, do M1.
• P2: Do test T1. If H , do M2, if L, do Null .
• P3: Do test T1. If H , do M2, if L, do M3.
• P4: Do test T2. If Y , do M1, if N , do Null .
• P5: Do test T2. If Y , do M2, if N , do Null .
• P6: Do test T2. If Y , do M3, if N , do Null .
• P7: Do test T1. If H , do M1, if L, do M2.
• P8: Do test T1. If H , do M1, if L, do M1.
• P9: Null. Do M1.
• P10: Null. Do M3.

For each of these ten plans, give their α-vectors restricted to states s1, s2, s3, s4. Give each
α-vector in the form: [v(s1), v(s2), v(s3), v(s4)] in that order. You may list them in a table,
using column or row vectors, etc., but be sure that however you do it, the components are
listed in the proper order. Be sure to label your α-vectors consistent with the conditional
plans, i.e., α1, α2, etc.
Tips: Don’t try to compute these by hand: a simple script or even spreadsheet table will
allow your to compute these values quickly, since they use many of the same structural
ingredients.



(d) Three of the conditional plans in the set above are pointwise dominated by another con-
ditional plan in the set (hence these three plans are useless no matter what the doctor’s
belief state is). Identify them and, for each, state which other plan pointwise dominates
them. (As above, belief states give probability zero to any of s5, . . . , s8, so you may ignore
these.)

(e) For each of the seven conditional plans that is not pointwise dominated, describe a belief
state (over the four reachable states) for which that plan is better than any of the others in
this set. Hint: you need only consider belief states that assign probability 0 to s4.) Justify
your answer by stating the expected value of all seven nondominated conditional plans for
the belief state chosen: use a script or spreadsheet to produce a table or matrix showing the
values for the seven computed belief states for each of the seven plans.

(f) None of the plans above is optimal for state s4. What 2-stage-to-go conditional plan is
optimal for s4? Why?

3. Suppose you are given an MDP M = 〈S,A,Pr, R〉 and asked to determine the optimal value V ∗(s)
for a specific state s, assuming a discounted, infinite-horizon optimality criterion, with discount rate
β. We assume the reward function is non-negative, that R+ = max{R(s) : s ∈ S}, and that
R− = min{R(s) : s ∈ S}. You are asked to build a search tree rooted at s in order to compute an
estimate of this value V ∗(s). In the following you are only allowed to build the search tree and back
up values once (i.e., you cannot build a search tree to a certain depth, compute an estimated value,
and then build a deeper tree).

(a) To what depth will you need to build the tree in order to ensure that the backup up value at
the root is within ε of V ∗(s)? (In other words, give an (as tight as possible) a priori bound
on the required depth.) Prove your bound.

(b) Suppose you are given a heuristic function Ṽ that can be used to evaluate the states at the
leaves of the search tree. You are told that Ṽ (t) is within δ of V ∗(t) for all states t. To
what a priori depth must you build the tree, using Ṽ at the leaves, to ensure and ε-accurate
estimate of V ∗(s)? Prove your bound.

(c) Suggest ways in which the heuristic function Ṽ might be used to prune the search tree and
speed up the computation of V ∗(s).


