
Competitions, Controversies, and Computer Chess

I. Introduction

Claude Shannon was a remarkable scientist. In 1948 he developed a branch of

mathematics known as information theory, which allowed for a quantification of what

information is, and directly led to solutions in such varied problems as encryption,

compression, and error correction. One of his lesser-known publications was

Programming a Computer for Playing Chess, which appeared in 1950 and became the

ground-breaking statement of the problem. [Shannon 1950] At the time the play of the

best chess algorithm was described as "aimless." [Turing 1953] Today a computer has

beaten the reigning world champion. In 1950 there were no programs that played chess,

and Alan Turing, among others, tested their algorithm by working through every step by

hand, with paper and pencil. The Deep Blue computer that beat the World Champion

Garry Kasparov in 1997 had 256 processors, together capable of analyzing 200 million

moves per second. [King 1997] There have been many incremental improvements and

some significant ones, but on the whole Deep Blue remained just a much faster version of

Turing’s hand simulations, following the rules Shannon specified in his exposition. Deep

Blue has no intelligence: it is not capable of realizing its errors and improving its own

play. It is capable of billions of operations per second. Is this the only possible way for a

computer to play chess? Many have disagreed, and hope to build a computer that makes

"intelligent" decisions. Still, all of their attempts so far have failed. This paper will look at

the approaches used for chess play in some detail, tracing their development, their

weaknesses and strengths, and finally why one has prospered while the other has been

largely a failure. It will also look at a related controversy, the role of chess in science in

general and artificial intelligence in particular: should researchers strive to write better

chess programs through any way possible, or should they use chess to attain some higher

goal.

II. Why play Chess?

When Shannon’s article first appeared computer games were unheard of. Computers were

meant to be serious tools for solving difficult computational problems, and not

entertainment centers. So why study a game? In 1950 Computers were commonly

regarded as large (back then they were very large!) calculators, useful for number

crunching but with no other apparent applications. Shannon saw that while programming

chess was “perhaps of no practical importance, the question is of theoretical interest.” He

lists several problems which could be solved by the same methods as chess, and explains

that "chess is neither so simple as to be trivial nor too difficult for a satisfactory solution.”

[Shannon 1950] Chess also has the advantage of clear rules, a notion of move order that

is easy to implement on the computer and an easily checkable goal. It would also be easy

to track the progress of computer programs, because of the abundance of human players

of all levels. Thus the initial goal was to learn how to solve a larger class of problems, of

which chess was only an example. A final, and perhaps most important factor was that

many of the mathematicians and computer scientists who wrote these programs were avid

chess players, and could try out the programs and trace their progress themselves. In

summary, chess presented a theoretical challenge with many possible practical results,

and was just plain fun.

III Chess and Game Theory Background

Chess is a zero-sum, deterministic, complete information game. Said more simply, there

is a winner and a loser, or the game is a draw (unlike the stock market), there is no

randomness (unlike backgammon), and both players know the complete state of the game

(unlike poker). Because chess is deterministic, all positions (including the starting one)

are either winning for white, winning for black, or drawn. The longest possible chess

game has only a finite number of moves because of the 50 move rule: if 50 moves go by

without a pawn moved or piece taken, the game is declared a draw.

 In the late 40s John von Neumann, one of the pioneers of Computer Science,

developed a method of mathematically representing complete information games known

as minimax, or game trees.

[von Neumann 1947]

Each node of the tree is

either a max-node (a move

by a player who is trying

to maximize his own

score) or a min-node, a

move by his opponent,

trying to minimize the

score. Each edge represents a possible move. The positions are only evaluated on the

lowest level using a utility (or payoff) function f. This function, when applied to a

position, yields how attractive the position is for a particular side. Because chess is a

zero-sum game the utility of the same position for the other side is just the negation of

what it is for the first. The simplest utility function returns a 1 if the side for which you

Illustration 1: A minimax tree. The maximizing player will make the move A1.

are evaluating has checkmated, a -1 if it has been checkmated, and a 0 in all other cases.

Because in chess it is almost always impossible to search deep enough to find a

checkmate, the utility function has to be much more complicated, taking into account

material balance and positional considerations. While it is easy to assign approximate

point values to pieces, it is hard to quantify their worth in a particular position: the value

of pieces changes during the course of the game, with knights stronger than bishops in the

middle game, and weaker in the endgame, while the value of pawns grows as fewer of

them are left on the board. Positional considerations are even harder to approximate in

point values. While everyone agrees that a passed pawn (one whose path to the 8th rank is

not blocked by any opposing pawns) is good while an isolated one (which cannot be

defended by another pawn) is bad, putting the exact point values on these aspects is

impossible. It is also hard to estimate how “safe” a king is from attack and when it is time

to start using it as an attacking piece. The design of a good utility function is a very hard

task, and a good function is essential for the creation of a strong algorithm.

IV Shannon’s two methods

Shannon's ground-breaking work not only suggested the problem, but also offered two

potential ways of solving it: a thorough search of all possible variations (hereafter type A

strategy), or a human-like consideration of only the better moves, played out until it is

clear which side has the edge (type B strategy).

 The game tree in type A strategies consist of all legal moves, each one considered

in turn. For each of the moves all of the possible responses have to be considered, all of

the responses to those moves, etc. The evaluation ends a certain number of half-moves, or

ply into the search. An average middle-game position has about 20 legal moves. Because

with minimax trees the only positions evaluated are those on the lowest level of the tree,

doing a full search at 3 ply requires the evaluation of ~8000 positions, a search at 5 ply

requires ~3200000 positions, and a search at 7 ply needs ~1280000000 evaluations. This

phenomenon is known as exponential explosion: the number of positions which need to

be evaluated grows exponentially in the depth. In general exponential functions are

considered intractable, that is computers are unable to cope with them for all but the

smallest inputs. When dealing with exponential functions getting faster computers

is usually of only limited help, as a computer

which is 400 times faster will only be able to

look 2 ply deeper. Consequently type A

strategies are necessarily near-sighted: although

they do not make trivial beginner blunders, they

are incapable of finding a plan which takes

more then a few moves to execute (see position

1). [Brudno 2000] Second the strategies suffer

from the horizon effect: after carrying out a

search to its set depth it may think it is winning

by some margin, but in reality it is left in a vulnerable position just a move past its depth.

 Type B strategies are much more flexible, and consequently much harder to

implement. They do not consider all possible moves, but only the “plausible” ones, as a

human chess player would. The immediate problem is which moves to consider

“plausible”, since it is generally impossible to decide that a certain move is not worth

considering without first looking at it (humans are much better at this than computers).

Position 1: White has a trivial win, but because it
requires a 10 move maneuver a trivial type A
strategy will not find it.

Consequently, the programs which follow this approach are as good as their “plausible

move generators.” Since an average middle game position has on average 5 plausible

moves (those which a human would consider), if a program were able to choose these

moves perfectly every time it would be able to search much deeper in the tree than a type

A strategy. Although the number of positions still grows exponentially, it does so much

more slowly. On the other hand type B strategies, just like human players, would make

“blunders” by failing to consider strong responses to their moves. Shannon suggests that

the computer be “taught” standard maneuvers, sacrifices, and combinations. He makes it

clear, however, that such an approach would require a very deep understanding of the

game, and that humans are much better than computers in generalizing from a few

examples, and that “explaining” to a computer all of the possible situations is a non-

trivial task.

 Another important feature in type B strategies is an open-ended search depth.

While type A strategies generally terminate their search a certain number of ply (half-

moves) into the search, type B strategies should run until some “quiescent” position is

reached. Although this term is hard to define, basically it implies no immediate danger to

either side. This approach makes the strategy able to overcome the horizon effect. Type B

strategies are hard to define, and hence hard to implement on a computer. Over the course

of time some features of type B strategies found their way into type A programs, but all of

the best programs after about 1970 employed mainly the type A approach.

V Type A Strategies: Improved Algorithms

The 1960s saw the development of two new powerful techniques, alpha-beta pruning

[Brudno 1963] and the killer heuristic. Alpha-beta was a novel and powerful technique

which was not directly related to chess, but applicable to any game trees. The killer

heuristic was only of limited utility in itself, but after the development of alpha-beta

became a very useful tool for narrowing down the game tree and maximizing the gain

made from the usage of alpha-beta.

 Alpha-beta is a pruning technique which allows a program to remove from

consideration large portions of the game tree if a better move has already been

considered. It provably returns the same exact answer as regular minimax, but does so

much faster. If the plausible move generator works well, there is a significant increase (as

much as two fold) in the

depth to which the

program can search in

an equal amount of

time. At the same time

alpha-beta allows for

some mistakes by the

plausible move

generator. Even if the

plausible move generator fails to suggest a good move, it will eventually be found, though

this will take longer. The development of alpha-beta allowed researchers to ignore the

problem of making very good plausible move generators: if a program using a plausible

move generator which picked the right move four out of five times ran as a type B

strategy, it would make a blunder once every five moves. The same plausible move

generator but now using a full search with alpha-beta would not make any mistakes, but

Illustration 2: Alpha-beta pruning for the minimax tree from illustration 1. In our
analysis it is not necessary to consider moves A22 and A23 because the result of node
A2 is guaranteed to be worse then the already-calculated result of node A1.

would take longer once every five moves. Once this increase in time usage is divided

over the other four moves as well it is not very significant. Thus alpha-beta, while

allowing researchers to improve other aspects of their programs, stopped development of

forward pruning techniques (methods where some moves are not looked at all, as in a

standard type B strategy). At the same time the game tree resulting from even the most

efficient alpha-beta, where every possible elimination is made, still grows exponentially,

although the exponent is halved. This means that it is still impossible to search very

deeply.

 Alpha-beta can be used very effectively with the killer heuristic. If during the

search of the minimax tree it is discovered that a certain move that you opponent can play

is very powerful (for instance it delivers a checkmate), that is the first move that your

algorithm should examine in all other branches of the game tree, because if the move that

the program is examining fails to stop the checkmate, it is irrelevant what other options

the opponent has. By remembering what “killer” moves have been already seen and

having alpha-beta analyze these moves first, it is possible to attain close to the optimal

number of cutoffs.

Some researchers feel that “Brute-force alpha-beta may have done as much

damage to the progress and credibility of computer-chess research as it has given chess

programs high ratings.” [Donskoy 1989] The availability of such a powerful technique

which is not directly chess-related has pushed the emphasis away from chess-based

solution to more generic answers. Many of the key advances made between 1970 and now

were based on improvements in computers and not due to any improved understanding of

chess.

VI Type A Strategies: Improved Computers

The history of improvements in Computers during the time period is largely beyond the

scope of this essay, but several trends need to be illustrated in order to explain why the

development of chess-playing programs progressed the way it did. The first is what is

commonly referred to as Moore’s law, the fact that the fastest computer chips available

double in speed every eighteen months, while their price decreases. Although a chip that

is twice as fast is not really able to examine any deeper into the tree, over time the

increases become substantive: Even if no other improvements are made in the computer

program, every 7.5 years an old program will be able to search one ply deeper (given our

assumption of 20 continuations) in the same amount of time. But it is the other

phenomenon of Moore’s law that has lead to the most significant increase in the strength

of chess programs. Because processors get cheaper with every new generation, it has

become possible to harness many of them together in order to vastly improve the

performance overall.

 Chess is a problem that is easily parallelized: you can give each chip its own

variation to consider, wait for it to return its answer, and then just check which chip found

the best line. Although this approach can not lead to very large gains because of the

exponential nature of the problem, harnessing together many processors has turned out to

be a useful technique. Versions of the alpha-beta algorithm for parallel systems were

developed throughout the 80s [Hsu 1990], and by the end of the decade using multiple

processors within a single program became common. Another consequence of the

decreased cost of hardware was the ability to develop specialized hardware for chess.

Because a computer chip is limited in its size and the amount of current that it can draw,

it can only support a small set of basic operations. If the programmer wants the chip to

do something more complicated, he needs to do this through repeated calls to some of the

basic functions. The basic operations are generally very fast, while those that need to be

programmed are much slower. A generic computer chip has no notion of a chess position,

the position is represented as a portion of memory containing bytes which represent

pieces. By making a chess position something basic to the computer, that is by

implementing it “in hardware,” it is possible to speed up operations such as move

generation and utility calculation. [Hsu 1987]

 Another improvement in computers which has lead to improved chess programs

was the larger amounts of memory available on more modern machines: the M20

computer which was used by the ITEP program (described lower) had 24 thousand bytes

of memory. The computer on which I am typing this essay has 64 million. This

improvement allowed programs to remember positions that it has already evaluated, so

that if it encounters them again it can just see what evaluation it previously gave the

position and not bother recalculating. This is referred to as a transposition table, and

because transpositions commonly occur in chess play these tables allow for a remarkable

increase in the possible depth of the search. This tool proves especially useful in the

endgame, where the total number of positions is small, while the number of ways to get to

any of them is large. This method was developed from an earlier method of backward

enumeration. Using backward enumeration it was first determined that the “untouchable

king” problem (position 2) is a win for

white [Brudno 1969]. In order to solve

this problem every possible position

which could occur from the movement of

the two “free” pieces was given a ranking:

all of the positions with the black king

checkmated were given a rank of 0, all of

the position from which it is possible to

get to the winning position in one move

are given rank one, and so on, with

positions of rank N being those which are wins, if both sides play properly, in N ply. If a

certain position is never enumerated then it is not winning. In addition to solving the

untouchable king problem, the method of backward enumeration was used to study many

simple endings, with some very novel results: for instance two bishops versus one knight

endings were thought to be drawn in some cases and won in others, but a backward

enumeration approach showed that the ending was always a win for the stronger side,

although in some cases the win might take longer then the 50 moves allowed by the rules.

 Finally programmers have used the availability of cheap disk storage to store large

amounts of known opening theory into the computer. Because chess has been so widely

studied it is well known that certain opening moves are much better then others. If a

computer is “taught” all of these moves, it does not have to use precious time in the

opening, and also does not fall into simple opening traps even if it does not really

understand why a particular move is bad (because, for instance, of the horizon effect). We

Position 2 “The Untouchable King”: White to mate the
black king without moving its own king. First chess
problem solved by a computer before it was solved by a
human.

will see how the computer exploited its opening book in order to defeat a very strong

chess player.

 Transposition tables, opening books, specialized hardware, and parallel

algorithms are the only significant improvements implemented in chess programs since

the early 1970s, and the three ideas arise not out of a better understanding of chess, but

out of the capabilities of the computer.

VII Type B strategies

Although type A strategies are much simpler to implement, type B strategies are much

more pleasing to humans. There is something aesthetically pleasing in the emphasis on

cognition, rather than brute force, and hence it should not be surprising that many

researchers have tried to implement a type B strategy. What is surprising is their uniform

failure. Although many algorithms for type B programs have been presented in papers and

at conferences, they have been failures when implemented, mainly because they make

horrible blunders when actually playing. This section will concentrate on the work of the

most famous proponent of type B strategies the late Soviet World Chess Champion

Mikhail Botvinnik and on machine learning methods..

A. Mikhail Botvinnik’s Algorithm

Botvinnik seemed to be the perfect person to develop chess programs: he was the best

chess player of his generation, who held on to the world championship for almost 15

years. His education was in Electrical Engineering, a profession that gave him a deep

understanding of the internal workings of the computer. Finally he was very good in not

only using, but also imparting chess knowledge: he trained both Karpov and Kasparov,

two men who would go on to become world champions. It is ironic that some of these

advantages turned against him in his quest to develop a chess program.

 Botvinnik’s interest in Computer Chess started very early. In 1968 he published

his main treatise on the subject, An Algorithm for Chess, in which he suggested a method

for finding the “weaknesses” in the opponent’s position and organizing attacks against

these. He spectacularly demonstrated his approach on some very hard tactical problems.

In position 3, for instance, white sacrifices

both its bishop and its knight in order to

attain a winning attack. Finding the winning

sequence of moves is difficult, and Fritz II

one of the strongest chess programs from the

mid-90s, was unable to do so (actually

finding the moves is left as an exercise for

the reader). Botvinnik’s algorithm

succeeded in this difficult position.

[Botvinnik 1968] The problem was that it

failed in many simple ones. Although good

at finding complicated themes and formulating powerful attacks, the algorithm was

helpless when faced with a trivial situation: Botvinnik’s co-worker recalled his frustration

when the program would follow Botvinnik’s algorithm and find the weakness in the

opponent’s position and attack it, while missing a much simpler checkmate in two moves.

When this was remedied by making a special case in the program, it would miss taking an

undefended piece. Once that was remedied another problem would come up. [Brudno

Position 3: Botvinnik-Capablanca 1938. By playing
1.Ba3!! White starts a remarkable combination which
gives it a victory 12 moves later. This position was
used by Botvinnik as a test case for his chess
algorithms.

2000] Botvinnik was used to explaining the intricacies of chess to very good human

players, to whom something as trivial as seeing a mate in two did not need to be

explained. Consequently while Botvinnik’s algorithm played well on certain hard

examples, it never played a consistently strong game, and in actual matches would lose

due to bad blunders long before it had any opportunity to show its brilliant tactical

abilities.

 The failure of Botvinnik’s programs were closely paralleled by several others. In

general, type B strategies, because of their narrower game trees, were able to look deeper

into the position. The unsolved problem has been making them look at the strongest

moves and ignore the weak ones.

B. Machine Learning

Another approach taken by researchers trying to develop a type B strategy is machine

learning. Machine learning is a very active research area in artificial intelligence, and one

of the most successful. Using various learning algorithms (neural networks, decision

trees, support vector machines, and others) researchers have been able to design

“intelligent” systems like auto-pilots for airplanes, cars which drive themselves, and

programs which pick jokes for your taste. All of this success, however, came in one of the

two sub-fields of machine learning, directed learning. The other, undirected learning, has

been largely a failure. [Russell 1994]

 In directed learning the human programmer tells the computer which parts of the

data are relevant and what features to look for in the data. The algorithm is responsible

for figuring out the relative importance of each of the features and whether some of the

features work in groups (i.e. any single feature is insufficient, but three specific ones

together are) in order to classify the data into one of the pre-determined groups (in cases

of games the positions could be classified based on how attractive they are for a specific

side). In particular, the neural networks approach has been very successful in playing

backgammon, where TD-Gammon achieved master-level strength just by playing against

itself [Tesauro 1994]. Similar efforts in chess, however, have been failures. Chess

positions are much more complicated then backgammon ones, and all of the features that

are responsible for contributing to the strength and/or weakness of the position are hard to

enumerate. Because directed learning techniques rely on a complete set of the relevant

feature being provided by the programmer. Consequently learning chess has turned out to

be a very hard problem, with no satisfactory solution to date.

History of Computer Chess

The next few sections summarize the most important matches and games played by

computers over the course of the last half-century. These are of interest not only for

historical reasons, but because the successes and failures in these matches affected the

development of the subsequent chess programs. The competitions also attracted the

attention of the press and the general public. Finally these competitions were useful for

deciding which approaches to programming chess were most successful, the proof being

the standings table at the end of the tournament.

VIII Cold War on an 8x8 Board

Round 1: In between 1950, when Shannon’s paper was first published, and 1966 only

three chess programs were developed. By 1970 six programs (none from the initial three)

participated in the first US Computer Chess Championship. The first World

Championship in 1974 had 13 participants. This remarkable growth was largely spurred

by a well publicized match between the Kotok/McCarthy program developed at MIT and

Stanford University and a program developed at the Institute for Theoretical and

Experimental Physics (ITEP) in Moscow. This match was a “first” in many ways: it was

the first match between two computer programs. It was the first match where a type A

strategy faced a type B strategy. But most importantly it was a challenge in the Cold War

scientific race. Just as putting a man into space, it was of no practical value, but it had

similar psychological implications.

 Alan Kotok developed his program while an undergraduate at MIT in

collaboration with several other students and under the direction of John McCarthy. His

program implemented a type B strategy, considering 4 moves at the first ply, 3 moves on

second, 2 on levels three and four and 1 on five through eight. The payoff function

considered such elements as material (the main component), development, control of the

center, and pawn structure. It also did not use several of the latest algorithmic

improvements made between its initial creation (1962) and the match, most notably

alpha-beta and the killer heuristic. It had a weak plausible move generator, causing

Botvinnik to remark that “the rule for rejecting moves was so constituted that the machine

threw out the baby with the bath water.” [Botvinnik 1967]

 The Soviet program was implemented by Georgiy Adelson-Velskiy, Vladimir

Arlazarov, Alexander Bitman, Anatoly Uskov, and Alexander Zhivotovsky, working in

Alexander Kronrod’s Laboratory. It implemented Shannon’s type A strategy, with the

search depth set as a parameter. In games 1 and 2 the machine looked ahead 3 ply, while

in games 3 and 4 a depth of 5 ply was used. The payoff function was similar to the one in

the Kotok/McCarthy program, but an emphasis was placed on gaining a spatial

advantage.

 The match was played by telegraph, starting on November 22 1967 and continuing

for a year. All games were agreed drawn if no mate was delivered or announced in 40

moves, as both programs showed complete incompetence in the endgame. In games one

and two, against the weaker version of the ITEP program Kotok/McCarthy drew twice

through the 40 move rule, although it was slightly worse in one of the games and much

worse in the other. It was thoroughly beaten in both of the games against the stronger

version, losing game three in 19 moves and game four in 41. In all of the matches the

ITEP program was playing slightly better positional chess: because of the emphasis on

space advantage the ITEP program was better at pushing pawns forward. It won,

however, not because of any superiority in positional play, but by taking advantage of

blunders on the part of the American program. [Newborn 1975] Because there were

possible moves that were much better then the moves the Kotok/McCarthy program

actually made, it was clear that the program failed to consider them at all, indicating a

weakness in the plausible move generator. Thus the first round was won by the Russians

and by the type A approach, and although the Soviet dominance in Computer chess was

short-lived, the dominance of type A approaches continues today.

 This match has a very sad postscript: Alexander Kronrod, the head of the

Computational lab at ITEP, was a highly principled person who, among with many other

mathematicians, signed a letter in defense of Esenin-Volpin, a mathematician who was

placed in an insane asylum for anti-Communist views. For his signature of the letter

Kronrod was reprimanded by the Communist Party. The physicists at ITEP, who were

irritated because computer time was “wasted” on game playing instead of their problems

used the reprimand as an excuse to oust Kronrod from his position. At the same time

Kronrod was fired from his professorship at the Moscow Pedagogical Institute. These

actions effectively ended the career of this brilliant mathematician. [Landis 2000]

Round 2: The second round of the east-west battle was held in 1974, at the Computer

World Championship at Stockholm. Although the tournament featured programs from

eight countries, the real competition would be between the Soviet Kaissa1, an

improvement of the old ITEP program by Michael Donskoy, and American programs, of

which David Slate’s Chess 4.0 from Northwestern University was considered the

strongest. Kaissa won the tournament by winning all 4 matches, but avoided a match with

Chess 4.0 when that program lost in the second round. An exhibition game held at the

end of the tournament ended in a draw. Chess 4.0, like Kaissa, relied on an exhaustive

search. Both of the programs added a variable cutoff depth, through which they were able

to look at the more interesting variations in depth. The first World Championship was

also the last won by a Soviet program. Kaissa finished second in 1977 and seventh in

1980. The main reason was that it was not further improved (beyond some minor

modifications) during the time period. After the first World Championship the Soviet

government decided that the programmer’s time was better spent working on practical

projects, and Arlazarov’s group was transferred to a different institute where they

concentrated on database programming, developing the Russian equivalent of Oracle. The

loss, however, was an impetus for better funding for chess research in the US, and the

new American programs quickly surpassed Kaissa.

1 Kaissa is the legendary goddess of chess

Although the rivalry between Soviet and American programs ended soon after the

first World Championship, another rivalry quickly took its place. Throughout the 60s and

early 70s it was impossible to talk about computers challenging any serious chess players,

but as Kaissa faded from the scene as a serious contender, a different rivalry was

established, one that pitted the silicon-based computer against carbon-based life forms.

IX Man v. Machine

When people talk about artificial intelligence they think of human intelligence as a

model. So it was only logical that in order to test the success of the chess programs, they

would be matched up not only among themselves, but also against human players.

Because human players tend to last for more years than an average computer, they

provide a more consistent scale to track the improvement of chess programs. A program

capable of beating a strong human player has been called intelligent by some, and the

quest to create a program capable of beating the best human players has affected the

development of chess programs. The history of man-machine matches is best divided into

three periods, based on the strength of the best algorithms: the first is 1950-1972, during

which the machine improved from the level of a weak beginner to about a class C

ranking: an average high school player. The second period is 1972-1988, during which

the computer rose to grandmaster level chess, and the third is 1988-1997, a period during

which started with the computer defeating a series of Grandmasters and ended with the

fall of the World Champion. Although throughout the time-period the improvements in

the programs were incremental, these periods correspond to improvements in computing

power: the programs until the early seventies ran on very weak machines, most of which

were not capable of doing a full search of a tree of more than five ply. After 1970 the

improvements in algorithms and hardware allowed for effective brute force solutions

which were immediately implemented in Chess 4.0 and Kaissa. Finally in 1988 the final

step in computer advancements was made with VLSI (Very Large Scale Integration)

technology, which allowed for large scale, specialized chess computers to be made.

A. The Beginnings

The first recorded game between a human and a chess algorithm was played without a

computer: Alan Turing simulated his algorithm by hand. The opponent was a weak

beginner. The result was an easy win for the human. The “program” had only a search-

depth of one ply and could not see the trivial combination (such as forks) of its opponent.

Turing resigned for his program on the 30th move. Although Turing himself described his

algorithm’s play as aimless, it was the first proof that there existed an algorithm for chess,

one that could (and would) be improved in the later programs.

 The first chess program that played with any success against human competitors

was Mac Hack Six. It used a type-B strategy and was running on a very modern PDP-10

computer. In the several tournaments in which it participated it accumulated three wins,

twelve losses and three draws, and a ranking of about 1400 on the USCF scale,

commensurate with a strong beginner.

The early 70s saw the introduction of the first powerful full-tree search programs,

Kaissa (1972) and Chess 4.0 (1973). The use of faster machines and more efficient

algorithms pushed the strength of the programs to about 1650, the level of a strong high

school player. In 1972 Kaissa played a match against the readers of Komsomol’skaya

Pravda, a popular Russian newspaper. The previous year Boris Spassky, then the world

champion also played the readers of the paper and finished with only a half a point out of

two, losing one game and drawing the other. The match was played with Kaissa’s move

posted in the paper every Sunday and the readers mailing in their response in the next few

days. It surprised many when Kaissa matched Spassky’s result. One advantage that

Kaissa had in a correspondence game is that it could spend hours pondering a single

move, impossible in over-the-board situations. Unlike a human, the computer is not

fatigued by hours of thinking. Overall Kaissa played very impressively, foreshadowing its

success at the first World Computer Chess Championship.

B. Target: David Levy

Throughout the 1970s and eighties the computer chess community seemed to concentrate

on beating a particular human opponent: David Levy. In 1968 Levy, a master chess player

and an expert on computer chess agreed to a wager of 500 pounds with John McCarthy

and several others that no computer would beat him in the next ten years. Over the next

few years the size of the bet increased, as more people wanted to join in on the

computer’s side. It should be noted that although David Levy was a very strong chess

player, he was even stronger when facing a computer. He had probably more experience

in playing against computers then any other strong player. He was the Tournament

Director for every World and North American Computer Chess Championship through

the eighties. Levy easily beat his computer opposition throughout the time period of the

bet. His strategy of “do nothing, but do it well” would result in positions in which

computers had the least hope of finding good moves. Consequently the computer would

beat itself by making aimless moves while Levy would strengthen his position and

prepare for the killer blow. During the 1978 payoff match, Levy handily defeated Chess

4.7 with a score of 3.5/5. It was apparent, however, that Levy could beat the program at

will, the only game he lost it was clear that he was experimenting.

 After winning his bet, Levy, together with OMNI magazine offered a $5000 prize

to the first program to beat Levy. In 1984 Levy was challenged by Cray Blitz, a program

based on the Cray supercomputer which had already beat several strong masters. Levy’s

experience at playing computers gave him a definite advantage, and Cray Blitz was shut

out 4-0.

 In 1989 Levy faced another challenge, this time from Deep Thought, a VLSI

specialized Chess super-computer, capable of analyzing 700,000 positions per second.

Deep Thought had already beaten several grandmasters, but its effortless defeat of Levy,

winning all 4 games and claiming the Levy/OMNI prize showed that an era in computer

chess had ended. The computer was playing grandmaster level chess, and Levy, the

standard benchmark for the past 20 years was surpassed. Only one target remained at that

point -- the world champion.

C. Better than the Best Human

The world champion at that point was Gary Kasparov of the USSR (now Russia).

Although currently it is unclear who the World Champion is because politics have

fragmented the chess throne, Kasparov remains one of the best, if not the best player. In

1989 the predictions for when Kasparov would lose varied: Kasparov himself set the time

as between five and ten years, while Levy, who in 1990 wrote a piece called “How Will

Chess Programs Beat Kasparov” predicted twenty to twenty five. And although in 1989

just before the Deep Thought- Levy match, the same computer also faced Kasparov in a 2

game exhibition match, and was trounced 2-0 the question was when Kasparov would

fall, and not whether.

 In 1996 and 1997 there were two matches between Kasparov and Deep Blue, an

improvement of Deep Thought sponsored by IBM, with the name being a combination of

Deep Thought and Big Blue, IBM’s nickname. Both matches received wide-spread

coverage in the specialized and the main-stream press. During the first match Deep Blue

ran on a machine capable of analyzing 100 million positions per second. In the second,

200 million. The program was also improved based on the lessons learned from the first

match. By comparison, Kasparov analyzes about three positions per second, but can

change his playing style at any point of the game, not just between matches. He can also

adopt to the style of his opponent, something that Deep Blue cannot do.

 The first match started with a surprise: Kasparov lost the first game, the first time

a computer beat the reigning champion in tournament conditions. He quickly recovered,

winning game 2, and after two draws he won games five and six, winning the match 4-2.

The second match started with Kasparov winning the first game and Deep Blue pulling

even in the second. Three more draws set up a game six showdown. In that game

Kasparov chose to use the conservative Caro-Kann defense, well suited to counter the

computer’s playing style. The disadvantage of using that particular opening is that

Kasparov did not use it on a regular basis in tournaments, and was not an expert on it.

During the opening Kasparov mistakenly interchanged the move order, setting up a

brilliant finish: the computer sacrificed a piece and through very strong tactical play

forced a resignation on only the 19th move. The world of chess was shocked. Kasparov

was not only beaten, he was humiliated. Could it be that the computer had finally become

better then humans in chess? It has been widely argued that it was not the computer that

beat Kasparov in the last game. The strategic sacrifice that Deep Thought made had been

known to chess players for many years, and was entered into the computer’s opening

book. It would not have found the move on its own. Furthermore, the sacrifice was

allowed by a blunder from Kasparov, something which happens rarely. Perhaps what this

match showed best was that Kasparov was human. Regardless, he was beaten, and

although it is unclear how Deep Blue would do in a rematch with Kasparov or in a match

against another top-flight grandmaster, the psychological implications of the match on the

chess community were devastating. There was a wide-spread feeling that Deep Blue, a

large piece of silicon, was in some way more intelligent than humans could ever be. In

fact Deep Blue had no intelligence. It just out-calculated Kasparov, not a very hard feat

when you evaluate 100 million positions for every one that your opponent looks at. [King

1997]

X The Role of Chess in Science

Alexander Kronrod, when attacked for wasting computer time on mere games, remarked

that “Chess is the Drosophila of Artificial Intelligence,” referring to the fruit fly, the

study of which led to many discoveries in genetics. This, in fact, was the emphasis of

chess research during the sixties, with improvements like alpha-beta pruning and the

killer heuristic developed for making strong chess programs but useful in a much wider

range of problems. This emphasis was lost in the 70s. John McCarthy feels that before

1970 chess was mainly a research area within artificial intelligence, but became largely a

sport afterwards. Following the analogy created by Kronrod, McCarthy suggests that

“computer chess has developed much as genetics might have if the geneticists had

concentrated their efforts starting in 1910 on breeding racing Drosophila. We would have

some science, but mainly we would have very fast fruit flies.” He thinks that the quest to

win championships and defeat players has created an atmosphere where the immediate

goal of higher ratings has supplanted the larger one, that of doing good research.

[McCarthy 2000]

 Michael Donskoy and Jonathan Schaeffer suggest that the sporting atmosphere

surrounding the chess tournaments has been detrimental for another reason: “Since the

benefits of winning are high, there is little incentive for quickly disseminating new

research results. Many chess programmers hold back on new ideas to ensure that their

programs maintain a competitive edge. Consequently, each team of chess programmers

may have to discover ideas that are well known to other teams. This can only slow down

progress in computer chess.” [Donskoy 1989] At the same time the competitions provide

motivation to improve the programs from year to year and provide publicity for the

science.

 Others, like the authors of the Deep Blue program point out that chess has

continued to contribute to computer science, but instead of contributing to artificial

intelligence it has been useful for the study of parallel algorithms and specialized

hardware. When asked when the Deep Blue project would end, Chung-Jen Tan, the

manager of the Deep Blue team, said "This is really part of the overall research to

understand how to use parallel processing's computational capability to solve complex

problems. We have many activities going on, and chess is one of them. When we get to a

point where we think we understand enough from chess to derive benefit from it for

improving our understanding of parallel processing, we will stop.” [Tan 1996] In fact the

parallel algorithms developed initially for playing chess are now being used to simulate

protein folding, a very hard computational problem an effective solution to which would

greatly facilitate drug design. [Altman 2000]

 Even if one looks at the contributions of chess just to artificial intelligence, they

have not been small: alpha-beta pruning and transposition tables are both basic algorithms

which originated in chess research, but have been used in other settings as well. Chess has

also helped to create interest in artificial intelligence in the general public. While possibly

not as useful to artificial intelligence as the Drosophila was to genetics, it occupies a level

at least equivalent to Mendel’s peas, which were used to find the most fundamental laws

of genetics, but abandoned soon thereafter.

XI Conclusion

If the goal of chess research is considered to be the writing of the strongest chess

program, the research of the last fifty years has to be judged a great success: the world

champion has been beaten, while desktop computers can compete in master-level play. If

instead we define our goal to be the creation of a program which “understands”

something about the position at which it is looking and is capable of formulating a “plan

of action” as a human player would, the research has been largely a failure, as most of the

successful programs rely on brute force to find the correct move. To some extent by

selecting a criteria for success or failure one presupposes the answer. Because of this it is

probably useful to look back at the original source of the problem to find an unbiased

criterion.

 In his ground-breaking article, Claude Shannon made it clear that “It is not being

suggested that we should design the strategy in our own image. Rather it should be

matched to the strengths and weaknesses of the computer.” [Shannon 1950] If one

considers this to be a valid benchmark, computers have progressed substantially, taking

advantage of the advances in computer science: alpha-beta pruning allows programs to

search the best variations, while the worst ones can be quickly eliminated. Transposition

tables have allowed computers to play endgames on a strong level, and have solved

several open chess problems. Specialized hardware has allowed chess programs to

improve to play on the level of the best humans. Chess programs have adapted

themselves extremely well to the advances made in computer science throughout the time

period. Although some people find it aesthetically displeasing that the initial problem has

been solved by brute force calculation rather than through an efficient and beautiful

algorithm, it should be noted that in this regard chess is an exception. Most hard problems

in computer science have not been solved at all.

Bibliography

English Books: (including translations)

Adel’son-Vel’skii, G. M. et al. Algorithms for games. Translated by Arthur Brown,

Springer-Verlag, 1988.

Botvinnik, M. M. Computers, Chess and Long-range Planning. Translated by Arthur

Brown. Springer-Verlag, 1970.

Frey, Peter Ed. Chess Skill in Man and Machine. Springer-Verlag, 1978

King, Daniel. Kasparov v Deeper Blue. Batsford, 1997.

Levy, David Chess and Computers. Computer Science Press, Inc, 1976

Levy, David Ed. Computer Chess Compendium. Springer-Verlag, 1988

Levy, David How Computers Play Chess. Computer Science Press, 1991.

Marsland, T. Anthony and Jonathan Schaeffer, Ed. Computers, Chess, and Cognition.

Springer, 1990.

Newborn, Monroe Computer Chess. Academic Press 1975

Russell S. and P. Norvig Artificial Intelligence, A Modern Approach Prentice Hall 1994

Von Neumann, J. and O. Morgenstern Application to Chess. in Theory of Games and

Economic Behavior, Princeton University Press, 1947

Journal Articles and Shorter works:

Adelson-Velskiy, G.M., et al. Programming a Computer to Play Chess. Russian Math

Surveys, 1970, 25, 221-262.

Brudno A.L. Bounds and Valuations for Abridging the Search of Estimates. Problems of

Cybernetics vol. 10 pp. 225-241

Donskoy, M and J. Schaeffer Perspectives on Falling from Grace. Journal of the

International Computer Chess Association, 12.3 pp. 155-163.

Hsu, F-h. A Two Million moves/s CMOS Single Chip Move Generator. IEEE Journal on

Solid State Circuits 22.5 pp. 841-846 1987.

Hsu F-h. Large Scale Parallelization of Alpha-Beta Search. PhD thesis Carnegie-Mellon

University, Dept. of Computer Science 1990.

Kotok, Alan A Chess playing Program for the IBM 7090. MIT Undergraduate Thesis,

June 1962.

Landis E.M. and I.M. Yaglom Remembering A. S. Kronrod. Stanford Center for

Computational Mathematics Technical Report 1/2000. Available at

http://www-sccm.stanford.edu/pub/sccm/sccm00-01.ps.gz

Levy, David How Will Chess Programs Beat Kasparov. In Marshland & Schaeffer

Computer, Chess and Cognition (see above).

Michie, D. Brute Force in Chess and Science. Journal of the International Computer

Chess Association, 12.3 pp 127-143.

McCarthy, John Chess as the Drosophila of AI. In Marshland & Schaeffer Computer,

Chess and Cognition (see above).

Shannon, C. E. Programming a Computer to Play Chess. Philosophical Magazine, 1950,

41, 256-275.

G. Tesauro, TD-Gammon, A Self-Teaching Backgammon Program Achieves Master-level

Play. Neural Computation, vol. 6, no. 2, p. 215-19, March 1994

Turing, Alan Chess. First appeared in Bowden, B.V. ed. Faster Than Thought, London,

Pitman 1953 pp. 286-295

Russian:

Adelson-Velskiy, G.M., et al Programmirovanie igr Nauka, 1978

Arlazarov, V.L. and A.R. Bitman Obygraet li mashina cheloveka? Shakhmaty v SSSR

1968-2 pp. 9-11

Botvinnik, M. Algoritm igry v shakhmaty Nauka 1968

Brudno A.L. and I.Ya. Landau Neprikasaemyi Korol’. Shakhmaty 1969

Donskoy, M.V. O programme igrayuschei v shahmaty Problemy Kibernetiki, 1974

29.169-200

Interviews:

Altman, Russ (Stanford University, personal interview by author 2000)

Brudno, Alexander L. (Israel, several phone interviews by author in 2000)

Donskoy, Michael (Moscow, communication by electronic mail by author 2000)

McCarthy, John (Stanford University, personal interview by author 2000)

Tan, Chung-Jen (IBM Research, interview by Scientific American available at Error!

Bookmark not defined., 1996)

http://www.sciam.com/explorations/042197chess/042197blueinter.html
http://www.sciam.com/explorations/042197chess/042197blueinter.html

	Newborn, Monroe Computer Chess. Academic Press 1975
	Russell S. and P. Norvig Artificial Intelligence, A Modern Approach Prentice Hall 1994

