
Subrecursive Programming Languages, Part h Efficiency 
and Program Structure 

R O B E R T  L. C O N S T A B L E  

Cornell University, Ithaca, New York 

AND 

A L L A N  B. B O R O D I N  

University of Toronto, Toronto, Ontario, Canada 

ABSTRACT. The structural  complexity of programming languages, and therefore of programs 
as well, can be measured by the subrecursive class of functions which characterize the language. 
Using such a measure of structural  complexity, we examine the trade-off relationship between 
structural  and computational complexity. 

Since measures of structural  complexity directly related to high level languages interest us 
most, we use abstract language models which approximate highly structured languages like 
Algol. 
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1. Introduction 

It is widely accepted that the theory of computing can be organized on the basis of 
conservation principles or trade-off relationships. Such relationships hold among 
quantities characterizing computation (such as logical complexity, structural com- 
plexity, resource expenditure, etc). Some important exchange relationships are well 
known. For instance, the universal machine involves a trade-off of machine struc- 
ture for size and computational complexity. Structural complexity in this example 
is a quantity like the "sta/e symbol product" for Turing machines. 

The structural complexity of programming languages, and therefore of programs 
as well, can be measured by the subrecursive class of functions which characterize 
the language. Using such a measure of structural complexity, we examine the trade- 
off relationship between structural and computational complexity. 

Since measures of structural complexity directly related to high level languages 
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interest us most, we use abstract language models which approximate highly struc- 
tured languages like Algol. 

Our at tention to programming language models is also motivated by concern for 
a thesis (somewhat like Church's or Turing's thesis), implicitly known in the litera- 
ture, that  all functions actually used in computing are a subset of the primitive re- 
cursive functions. This thesis implies that  the subrecursive programming languages 
considered here are adequate for actual computing. Furthermore, these languages 
have advantages over universal (general reeursive) languages; among them are: all 
programs halt on all inputs, the run time of any program can be bounded above from 
its syntax, and mathematical expressions can be uniformly assigned to programs in a 
natural manner. 

But are these advantages free? Not entirely. Blum [3] has shown that  one cost is 
economy of program size. The subrecursive languages will always be very uneconom- 
ical in the sense that  for every recursive function f(  ) there will be functions k( ) 
whose shortest subrecursive programs, 7r, satisfies 

f(trl) <1-1 
where I I measures size and r is a general reeursive program for k ( ) .  

It  was conjectured that  a price was paid for run time as well as for size, at least by 
certain interesting subreeursive languages and formalisms, such as [19]. We show 
that the conjecture is false and that  in fact these subreeursive run times are, given 
the right basie operations, within a linear factor of general reeursive run times. 

The ease for subreeursive languages is supported further by the observation in 
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Constable [8] that  the uneconomically long subrecursive programs known from Blum 
must also be computationally very complex (at least on a finite set). 

The advantages of these languages over general recursive languages should be 
explored more carefully, especially in regard to such problems as equivalence and 
correctness of programs and especially with attention to their exchange relationships 
with other properties of programs. 

In this paper we examine the exchange between structure and efficiency for specific 
subrecursive languages for the primitive recursive functions. The languages pre- 
sented here are nail based on existing languages. They are selected with several criteria 
in mind. One is to point out their expressive power as support for the "implied 
thesis." Another is to facilitate definitions of structural complexity. A third is to 
relate our languages to the most elegant examples in the literature. From each lan- 
guage, one acquires a better "feel" for the primitive recursive functions and their 
apparent "naturalness. ''(1) 

2. General Recursive Languages  

Simple abstract models of numerical programming languages are now common in 
the literature (see [9, 25, 26]). These models characterize the core of most high level 
programming languages (like Algol, Fortran, and P L / I ) .  We shall use modifications 
of such models to study the relationship between program structure and computa- 
tional complexity for the specific task of computing functions from H n into N = 
{0, 1, 2, . . .}  or •+ = {1, 2, 3, . . . } .  (2) 

The languages we s tudy can be described in terms of a set of statement types 
(assignment, conditional, go to, and iterative) where the statements are composed of 

arithmetic expressions (or terms) and relations. For simplicity, only binary and 
unary terms and relations are used. 

2.1. TERMS ~ND RELATIONS. Using B N F  we present the syntactic categories 
used to form the programming languages. 

(variable} :: = ~ ]l (variable} X 
(constant} :: 1[ 2 I . . .  
(argument} : : =  (variable} (constant} 
(1-operator} :: = 0o 1' 0111 021 .--  
(2-operator} :: = 002 012 022 . . .  

(terms} :: = (argument} I (1-operator} ((argument}) I 
(2-operator} ((argument}, (argument}) 

We will use customary abbreviations and let X~ denote X. - . .  X, thus X1 = X, 
i times 

X2 = X X ,  . . . .  We let vi denote variables, and also 0, v, v -Jr 1, v ~ 1 abbreviate 
001 (v), 011 (v), 021 (v), 031 (v), respectively, and vl + v2, vl -" v2, vl .v2,  Vl + v2 ab- 
breviate 002 (Vl, v2), 012(Vl, v2), 022 (vl, v2), 032(vl, v2), respectively. 

(1) Ano the r  implici t  problem in the  l i t e ra tu re  of recursive funct ion  theory  and the  theory  of 
comput ing  is to explain the  appa ren t  na tura lness  of (R 1. Some authors  in te rp re t  the i r  results 
as denying na tura lness  [20], others  go to lengths to affirm it  [8]. 
(2) Other  numerical  tasks  such as comput ing  over  the  ra t ionals  (or the  reals) can be na tura l ly  
reduced to this  one. 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Subrecursive Programming Languages I: E~ciency and Program Structure 529 

The interpretation is that  the O~ ~ are n-argument functions. Thus 0o I (x) = 0, 
01 l(x) = x, 02 l(x) = x + 1, and 

{0 x i f x  = 0, 
03 l(x) = - 1 otherwise 

are the common mathematical expressions for the functions denoted by 0 i .  Among 
the Oi the only infrequently seen definition is O32(x, y) = x + y = greatest integer 
less than or equal to x/y if y > 0 else 0 (also read ix~y] = floor of x/y). 

A class of relations is defined by 

(1-relator} :: = P01 IF2'[ " '" 
(2-relator) :: = P02 I P12[ - "  
(relation} :: = (1-relator} ((argument>) [ 

<2-relator} (<argument>, (argument>) 

The common abbreviations are P01 for = 0, P11 for ~ 0, P0 2 for = ,  and P12 for ~ .  
The interpretation is again standard: Pi  1 (v) denotes a predicate on N 1 and Pi 2 (Vl, 

v2) denotes a predicate on N 2. The standard predicates are P01 (x) iff x = 0, P11 (x) 
i f f x ¢ 0 ,  P0 2(x,y)  i f fx  = y, P l ~ ( x , y ) i f f x ~ y .  We could also add < , _> , < , > i n  
the same manner. 

Terms and relations are used in building statements. The statement types are 
listed below with brief informal interpretations. They are so common that  a formal 
semantics would only be an exercise in formalism. 

2.2. LABELS. For the purposes of describing the relationship between statements, 
these languages will use statement labels. (We shall see that  they are dispensable.) 
The simplest labels are the positive integers, ~r*, and the simplest labeling conven- 
tion is that  all statements are labeled, giving programs a linear structure. 

<label> :: = 1[ 2 I 3 I . . -  

2.3. STATEMENTS. Terms and relations are used to form the following statement 
types. 

(1) Assignments. The general assignment statement is 
(i) <variable) ~-- (term> 

but we also consider the special assignments of the form 
(ii) v ~- f l (v) 

(2) go to's. The  basic go to is 
(i) go to + (label) or 
(ii) go to - (label) 

In addition we consider the computed go to's: 
(ci) go to + (variable) 
(cii) go to - (variable) 

The signs + ,  -- indicate the direction in which the label must be; the plus sign 
indicates tha t  control goes forward in the program to a statement with a higher label 
than the go to itself. 3 The minus sign indicates that  the label is the same or lower 

~When the  p r o g r a m  s t r u c t u r e  is suff icient ly s imple  (i.e. i t  con ta ins  cond i t iona l s  and H + as 
labels) ; t hen ,  go to =t:c can  be i n t e r p r e t e d  as " g o  ± c s t a t e m e n t s  f rom this  o n e , "  i.e. e i the r  add 
c or s u b t r a c t  c f rom the  label  of t he  go to.  T h e n  add ing  0 is no t  a l lowed b u t  s u b t r a c t i n g  i t  is. 
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t han  the  label of the  go to itself. T h e  signs are clearly dispensible. We  only use them 
to emphasize  the  distinction. 

In  the  compu ted  go to, the  conten t  of the  var iable  is the  label. Here  it is essential 
t h a t  labels be numbers ;  also if the  compu ted  label lies in the  wrong direction f rom the 
go to, the  s t a t e m e n t  is t r ea ted  as a " n o - o p "  (i.e. is not  executed) .  

(3) Condit ionals.  The  basic condit ional  is 
(i) (conditional} :: = if (relation} then  (go to} else (go to} 

But ,  the  more  complex form, (ii), is of ten useful. 
(ii) (nested-conditional} :: = if (relation} then  (program} else (program) 

where  the  syntac t ic  var iable  (program} is defined below. 
The  in te rpre ta t ion  of the  condit ional  is comple te ly  s tandard ,  as in Algol. The 

nested condit ional  can be in te rpre ted  by  first reducing it to a s imple conditional.  
A c o m m o n  abbrev ia t ion  is, if (relation) then  ±(label},  for, if (relation} then  go to 

±( label}  else go to "next  s t a t e m e n t . "  We call this the  "one  branch  condit ional ."  
(4) I n p u t / o u t p u t  ( I / O ) .  T h e  s t a t emen t s  

(i) I N v l ,  . - .  , v, and  
(ii) O U T  wl,  . . .  ,Wm 

are  the  only I / O  commands .  We will a lways use these commands  in a s imple man- 
ner. Each  will appea r  only  once in a p r o g r a m  and it serves to indicate which vari- 
ables are inputs  and which are outputs .  The  c o m m a n d  O U T  wl,  • • • , w~ will mean 
t h a t  the  p r o g r a m  hal ts  and  the  ou tpu t  is to be found in wl,  • • • , wp. The  command  
I N  v~, • • • , v, means  t h a t  var iables  v~, • • • , v, are loaded with  the  input  values. 

(5) I t e r a t i v e  s ta tements .  The  basic i t e ra t ive  is 
(i) D O  v 

E N D  
where  ~r is a p rog ram;  in B N F  we can wri te  

( i terat ive)  :: = DO(variable} ;(program} ; E N D  

We also allow 
(ii) D O  W H I L E  P 

7r 

E N D  
where  ~- is a p r o g r a m  and P is a relat ion;  in B N F :  

(while i terat ive} :: = DO W H I L E  (relation} ;(program} ; E N D  

The  in te rp re ta t ion  here is described s imply  in t e rms  of the  previous s t a t emen t  
types .  Namely ,  occurr ing in a p r o g r a m  ~, 

DO v 
lr 

E N D  

is ~e--y 

1 i f ~  = 0 t h e n 2  

~ - - ~  --" 1 
go to 1 
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where ~ does not appear in ~- or ~- (~ is called the loop control variable). Also 

is 
DO W H I L E  P 1 if --~P then 2 

END go to 1 

531 

(Notice that  for every relation, P, its negation, -nP, is also a relation.) 
(6) Function procedures. Certain programs can be selected which compute 

functions f (  ): N~ ~ ~V (or vector functions, ( f ( ) ) : N "  ~. iV p where ( f ( ) )  = ( f ( ) 1 ,  
• .. , f ()p) each f ( )i:  H n ~ 2~). Briefly, these are programs with n input variables, 
one output (p outputs).  They will be defined more precisely below. Function pro- 
cedures are ways to introduce new operations by definition within the program. The 
syntactic baggage required is the following. 

(n-ary function variables) :: = f0 n If1 ~ I " '"  
(n-ary function) :: = (n-ary function variable) ( ( v a r i a b l e ) , . . . ,  (variable)) 

The class of (function definitions) is defined by equations of the form 

(i) (a) fi" (xl,  •. • , x~) = (n-argument function computing program no t involving 
the function variable fi"). 

These function definitions are used to expand the class of terms. Namely an (f-term) 
is f f  (al, . . .  , a~) for ai an (argument). Then (f-assignments) are defined as 

(b) (variable) ~- (f-term) 

The interpretation is that  the program in (i) defines the function letter f~" (non" 
recursively) and w ~ fi ~ (vl, • • • , v~) is interpreted to be the code 

u~,~(vl, . . . ,  v~) 
W ~ - - - U  

where ~ I f i n ( V l  , ' ' "  , Vp)  is the program defining the f-term, f~'~(vl, " . .  , vp) with 
vl, . . .  , vp as input values and u as output  (see Section 3 for details). 

(ii) An important  subclass of program function definitions is made up of those 
which can be given explicitly in terms of compositions of other functions or substitu- 
tion of variables and constants for other variables. These operators are called the 
operations of substitution, abbreviated Os, and they are the most basic kinds of func- 
tion definition. The class of functions explicitly definable from functions fl ( ) ,  " "  , 
f~ ( ) is denoted [fl ( ) ,  " '"  , f~ ( ); Os]. 

When function definition is required to be explicit, we have a statement category 
like the Fortran function statement. The concept of explicit definition is basic for the 
usual notion of recursion in mathematics. We briefly mention reeursion in program- 
ming below. 

(7) Recursive (function) procedures: 
(i) When the condition that  f n not appear on the rhs (right-hand side) of (i-a) 

is removed in (6), then (6) defines the classes of (recursive function definition), 
(recursive f-term}; and (recursive f- term assignments). 
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The interpretation in this case is more difficult. One can use the mechanism of 
Algol recursive procedures. We shall not go into this in detail. We include (7) only 
for completeness; it is not needed in what follows. 

(ii) When f~ can be explicitly defined by terms allowing fi n, then we have the 
definition of general recursion in mathematics (see Kleene [14]). 

In Section 3 we shall extend these statement types to include subrecursion of 
two kinds, (8-i) a specialization of (7-i) to subreeursive programs, and (8-ii) a 
specification of (7-ii) to certain types of recursion schemes, for example the primi- 
tive recursion scheme. 

We summarize the statement types using BNF: 

(statement} :: = (assigument) l 
(go to) [ (computed go to) l 
(conditional) I (nested conditional)] 
(input) [ (output) I 
(iterative} [ (while iterative) ] 
(function definition)[ (recursive function definition) I 
(f-assignment) [ (recursive f-assignment) 

2.4. PROGRAMS AND LANGUAGES. A program is a finite sequence of uniquely 
labeled statements. For definiteness, the labels 1 to n are used in a program of n 
statements} and any (go to) in the program refers to only labels 1 to n + 1, where 
n +'5 1 is used to designate a halt. The following are specimens of programs. 

Example 1. 1 IN X 
2 D O X  
3 X ~ - - - X +  1 

END 
4 OUT X 

Example 2. 1 IN X 
2 DO X; X ~-- X "5 1; END 
3 OUT X 

Example 3. 1 IN X1, X2 
2 if X1 ~ X2 then if X1 ~ 0 then go to 5 else go to 3 else go to 6 
3 Y~--X1 + X2 
4 go to 8 
5 D O X 1 ; X i ~ - - X i + X 2 ; E N D  
6 Y~-- X1 
7 DO W H I L E Y  ~ 0; X2~--X2 + 1; Y~-- Y-"  1 ;END 
8 OUT Y 

We also prohibit branching into the scope of a DO. 
Various specific programming languages are defined by selecting subsets of the 

possible statement types and subsets of the operations and relations. We will 
define (below) the following language types: Algol-R, GR, GRt~, and G3. The 
language is the collection of all programs whose statements come from the types 
allowed in the language base. 

For convenience in describing the multitude of possible languages, we adopt the 
following abbreviations. 
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arithmetic operations 
unary +1,  -" 1, 0, ( ) (4) 
binary + ,  " - , . ,  + 

relations 
unary = 0, ~ 0 
binary =,  

go to -~- (label) 
go to - (label) 1" 
go to + (variable) (,L) 
go to - (variable) ( T ) 
conditional 
nested conditional ( ~ )  
one-branch conditional ~ 1 
iterative DO 

END 
while iterative DOWH 

END 
function procedures E 
explicit function statements E0 
recursive function procedures R 
recursive explicit function 

statement R0 
(R0 is also referred to as explicit recursive definition. ) 

LettingA8 = {--k 1 , - 1 , 0 ,  ( ) ,  + , - ' ,  , +} a n d P 4 { = 0 , ~ 0 ,  = 
languages are: 

(1) Algol-R: 

(2) GRu: 

, ~ }, the basic 

DO DOWH 
[As,P4, .L, 1", ( ~ ) ,  (T) ,  ( ~ ) , E N D ,  END, E,R] 

DO DOWH 
[As, P4, l ,  T, ( l ) ,  (1"), ~1,  ~ ,  END, END, E] 

DO 
[As, P4, l ,  T, (.~), (1"), ~1,  {}, END, E] (3) GR: 

(4) Gj:  [+1, "-1, .~, T, ~1] 

Remark. The only difference between GR and GRu is the DO WHILE state- 
ment. This statement allows direct implementation of the least number operator, t~, 
defined as 

t~Y[P(~, Y)] = least y such that P(~, y) for 5 6 2~ ~, y E N 

The direct implementation is 

Y ~ 0  
DO WHILE ~ P ( X 1 ,  . . .  , X,,, Y) 
Y ~ - - Y + i  
END 

(4) These  u n a r y  o p e r a t o r s  a p p e a r  o n l y  i n  s p e c i a l  a s s i g n m e n t s ,  v ~ -  v + 1, v ~-- v - '  1, e x c e p t  f o r  
the i d e n t i t y  o p e r a t o r ,  ( ) ,  w h i c h  a p p e a r s  as  v ~-- w. 
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as long as ~ P  ( ) is expressible. Normal ly  predicates other  t han  those in P4 will be 
represented by  their characterist ic funct ion f P  ( ) such tha t  

f P  (Xl, • • • , x : )  = if P (xl, • • • , x . )  then  1 else 0 

I n  this case the  implementa t ion is 

Y ~ - - 0  
DO W H I L E S  ~ 1 
S ": - fP(X1,  ' ' '  , Xn ,  Y)  
Y ~ - - - Y A - 1  
E N D  

2.5. COMPUTATIONS, FUNCTIONS, AND RUN TIMES. Programs  are intended to de- 
fine computat ions .  For  a simple language like Ga it is easy to be precise about  how. 
For  G R  it is more difficult and for Algol-R still more difficult. We shall t reat  the 
la t ter  by  reducing t h e m  to G3. 

I t  is not  difficult to  see tha t  Algol-R, and hence GR~  and GR,  can be translated 
into G3. I n  fact,  the definition of each of the seven instruct ion types,  except the 
computed  go to, included a reference to a G3 interpreta t ion of it. All t ha t  remains for 
a complete reduct ion of these types  to G~ is a t ranslat ion of the ari thmetic operations 
and a t r ea tmen t  of procedures. The  former will be given below (Theorem 3.2), and 
for the lat ter  we have referred the  reader to discussions of actual  programming 
languages (such as Wegner  [27]). The  t ranslat ions 

T1 : Algol-R --~ G3 
T2: GR~ --~ G3 
T3:  G R  --~ G~ 

will be used to define the  semantics for these languages by  the rule t h a t  the  meaning 
of II  is the meaning of T~(H), i = 1, 2, 3. 

The  programs we interpret  are those which compute  functions. These can be 
singled out  syntactically.  A program ~ is a function program iff the first s ta tement  is 
I N  vl, • • • , vn and the last is O U T  Wl, • • • , wp for vi, wj variables of 4~, and no other 
I / O  s ta tements  occur in ~b. 

To describe the (partial) function, 4~(), which ~b computes  we would define a 
computa t ion  of ¢ and a terminating computation of ¢. However ,  this mat te r  is treated 
extensively in the  l i terature (e.g. [9, 25]), and we refer the  reader to these sources 
for precise definitions. Suffice it to say t h a t  a computation, as defined on a RASP 
for example, is a sequence of states, ~0, ~1, " " ,  ~ ,  " ' "  Each  state is a pair, 
~ = (ai, M~}, where Mi  is a list of values of all of the variables of ~ and ai is the 
label of a s ta tement  (the s t a t ement  in control at  t h a t  momen t  of the computat ion) .  
The  p rogram 4~ takes one state into the next, ~i ~ ~i+1, iff the change in memory 

f rom Mi  to Mi+l is the result of executing the s ta tement  labeled al, and if ai+l is 
the  label of the  next s ta tement  to be executed. 

The  sequence a0, a l ,  • • • of labels is the  flow of control and M0,  M1, • - • is the 
sequence of memory configurations. A finite computa t ion  is said to be terminating 
and we write ~0, ~ ,  • • • , ~n for n < oo. I f  a~ is a halt  s ta tement  (OUT v), then the 
computa t ion  is nominally terminating and the  p rogram ~i is said to halt, abbreviated 
~(Xl, " " ,  x~) ~. 

A funct ion p rogram ~b computes the partial function ch ( ) : N  = --~ H iff when 
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X1, • •. , Xn are the input variables and Y the output  variable, then when Xi starts 
with value xl ,  and all other variables have value 0, the computation of O terminates 
iff O(xl, • • • , xn) is defined, and if 4~ terminates then Y has the value ~b(xl, • • • , x~). ~5) 

The number of steps in a terminating computat ion of 4~ on inputs xl ,  " ' ,  xn 
is denoted tOi (x~, • • • , xn). The step counting function tOi ( ) can be syntactically 
defined from 4~ in a simple manner,  as follows: pick a variable S not in 0~ ; replace 
OUT Y by OUT S; after the input instruction of ~ ,  place S ~ 0; then after each 
statement of Oi insert S ~ S + 1; change all labels, L, in conditionals to L'  (L' is 
a temporary new symbol not in the language) and for each label L '  put  the pair of 
statements 

{ L ' : S ~ - - - S  + 1 
go to L 

at the end of q~ ; then relabel the new program in order and call the result t ~ .  (6) 

2.6. CHARACTERIZING LANGUAGES. We can now speak precisely about  the ex- 
pressive power of programming languages. A programming language 2 is capable of 
computi~g 4~: ~V n ~ '  N iff there is a program ~r of 2 which computes ~. The program- 
ming language is characterized by the class of partial number  theoretic functions 
which it is capable of computing. 

We use the following notation for the function classes: 

(Pn all n argument  partial  functions, a: .N ~ ---~ 2V, 
• GL, all n argument  partial  recursive functions, Oi : ~ --~ ~ ,  
ff~ all n argument  total  functions, f :  N ~ --~ 2V, 
~ all n argument  total  recursive functions. 

When used without the subscript, the letters designate the union over all n, 
thusS: = U:=05:, .  

When discussing functions we follow Rogers [24] and let lower-case Greek letters 
a, ~, v denote partial functions and lower-case Latin letters f, g, h denote total  func- 
tions. We frequently use the notation ¢ ( ) ,  f (  ) to distinguish the function (as a 
set of ordered pairs) from the rule 4~, f describing the function. 

Now we can state a well-known characterization. 
(1) G3 is characterized by (PGt. This fact is established in Minsky [21] and in 

Shepherdson and Sturgis [26]. 
From the translation in Subsection 2.5 we know tha t  
(2) Algol-R, GRg, and G R  are characterized by ~PGt. A language characterized 

by (P(R is called universal or general recursive. A language characterized by a subset 
of 6t is called subrecursive. We shall see some of them in Section 3. 

2.7. INDEXING UNIVERSAL LANGUAGES AND ABSTRACT COMPUTATIONAL COMPLEX- 

ITY. Some of the results in Section 3 can be treated very abstractly in terms of re- 
cursive function theory. In  order to pursue tha t  viewpoint we will present very 
briefly the formal apparatus  needed. We emphasize tha t  the following definitions 

(~/One can drop this assumption on the other variables if he selects syntact ical ly those pro- 
grams in which all noninput  variables (work variables) are initialized before use. This is per- 
haps more realistic but technically more tedious. 
(~) Of course, the instructions S ~- 0 and "go to L"  are t ranslated into their Ga equivalents, and 
relabeling involves adjus tment  of the labels in their conditionals. 
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and theorems  are included for reference only,  with the  unders tanding  t h a t  the 
reader  interested in this v iewpoin t  is a l ready famil iar  wi th  t h e m  f rom sources such as 
[1, 13, 24]. 

We  begin wi th  a list ( indexing) of all funct ion comput ing  p rograms  of the  lan- 
guage  (in general  of the  formal ism for expressing a lgor i thms) .  Therefore ,  let ~0, ~1, 
~ ,  • • • be  an effective enumera t ion  of all funct ion comput ing  programs.  7 T h e  basic 
theorems  needed abou t  the  list are the  "universa l  machine  t h e o r e m "  and the  "S-m-n" 
t h eo rem (so called for Kleene ' s  original fo rmula t ion) .  We s ta te  these theorems  for 
the  simple case of one a rgumen t  functions.  

THEOREM 2.1 (Universal  machine  for one a r g u m e n t  funct ions) .  There is a 
~ 2 such that ~ 2 (i, x )  = ¢i (x ) for all i and all x. s 

THEOREM 2.2. There is a function ~ ( ) such that 4~ (i, x )  = O0,(j.i) (x) for all x, i. 
I t  tu rns  out  t h a t  these  two simple theorems  serve to character ize  any  list, {4~ ( )}, 

of (P(R which arises f rom any  formal i sm which can be recursively t rans la ted  to G3, 
and  to which G3 can be recursively t rans la ted .  Such indexings of (P~ are called 
acceptable, i.e. a m a p p i n g  4), ~: H --~ (P(R, is acceptable iff it satisfies Theorems  2.1 
and  2.2 (generalized to n a r g u m e n t  funct ions) .  See Rogers  [24] for an account  of 
these indexings. 

The  t ime  measure  of computa t iona l  complexi ty ,  T = {t~; ( )}, is convenient ly 
t hough t  of as the  list { t~  ( )}. Two  critical proper t ies  of the  list are the  following. 

THEOREM 2.3. O~(X) ~ (is defined) iff tOi(x) ~ (is defined). 
THEORE~I 2.4. There is a recursive predicate Mt  ( ) such that 

Mr(i ,  x, y )  iff t4~(x) = y. 

These  two theorems  are left to the  reader.  T h e  first one is t r ivial  and  the  second 
says t h a t  to tell whe the r  t~i (x) = y we need only use the  universal  p r o g r a m  known 
f rom T h e o r e m  2.1, ~2,  to run  ~b~ for y s teps and  de te rmine  whe the r  the  computa t ion  
has  hal ted.  

I t  turns  out  t h a t  these two theorems  serve to character ize  the  not ion of computa -  
t ional  complexi ty  in a ve ry  fruitful  manner .  We  call a list {m~i ( )} an abstract (or 
Blum ) computational complexity measure iff 

A1. ~b~(x) ~ iff mO~(x) ~,  
A2. There  is a recursive predica te  Mm ( ) such t h a t  Mm (i, x, y)  iff m¢~i (x) = y. 
See B l u m  [1], Borodin  [4], and  H a r t m a n i s  and  Hopcro f t  [13] for an account  of this 

theory.  

3. Subrecursive Programming Languages 

3.1. LANGUAGE DEFINITION. We consider three  subrecursive languages,  Al- 
gol-R01, SR, and  Loop.  For  the  first language,  we need the  mechan ism of primit ive 
recursion. Given  funct ions h ( ) C 5:n+~ and g ( ) C 5:~ and  ~ C N ~, then  f (  ) is 

7 We think of lists as including functions of any finite number of inputs, but we usually want 
only the one argument functions, (i.e. the ¢i have only one input variable specified, usually x). 
Therefore, we think of the list as containing n-argument functions for all n from which the sub- 
list of n argument functions for fixed n can be effectively extracted, and we use the same nota- 
tion for both lists unless this will be confusing, in which case we write ~ indicating n argument. 
8 ~i(x) = 4,~3(i, x) means ¢,i(x) ,L iff 4~2(i, x) ~ and if 4~(x) JL then ¢,i(x) = ~ ( i ,  x). 
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defined from g ( ) ,  h ( ) by the schema of primitive recursion, Ro 1, iff 

R0' ( f ( X ,  0) - - 
( f (X,  n ~ ~(~)= h(.X, n, f ( X ,  n))  

or, written as a conditional expression, 

f ( X , n )  = ( i fn  = Otheng( .X)  else h (.X, n --" 1, f ( X , n  "-- 1)) 

This schema R01 is but  one of the infinitely many possible ways to write an ex- 
plicit reeursive definition which is guaranteed to define a total function if h ( ) and 
g ( ) are total. I t  is, however, general enough to permit nearly all forms of reeursion 
which arise naturally in mathematics. 

We now define the subreeursive languages. 

DO 
(1) Algol-R01: [As,P4,,L , (~ ) , (~ ) ,EN D ,E ,R0  I] 

DO 
(2) SR: [As,P4, ~ ,( ~ ) , ~ i , ~ , E N D , E ]  

DO 
(3) Loop: [+1,0 , (  ) ,END] 

DO 
(4)  L o o p m i n  : [+ i ,0 ,END]  

The semantics for these languages is again given by regarding each statement 
type as an abbreviation for the equivalent G3 program. These abbreviations were 
supplied in defining the statement types in Subsection 2.3. 

The Loop languages are due independently to Ritchie [19] (Loop) and 5Iinsky 
[21] (Loopmln). They are based on ideas developed by the logician Robinson [23]. 
It is easy to prove that  the Loop languages are characterized by the primitive 
recursive functions, 6l 1. 

6t 1 = [+1,  0, Uin; Os, R01] 

where U~(xl ,  . . .  , xn) = xl.  For more on 6t 1 see [11, 14, or 23]. 
THEOREM 3.1. Loop and Loopm~ are characterized by 611. 
PRoof. See [19 or 21]. We shall sketch a proof of this in Section 4. 
Both SR and Algol-R01 are also characterized by 611. We show the "hard par t "  

of this (Theorem 3.2) and leave the other as an exercise. I t  would be interesting to 
formulate a natural version of subrecursive Algol which allowed full recursive pro- 
cedures, rather than explicit recursive procedures, and which was still characterized 
by 6t ~. 

3.2. TRANSLATING INTO Loop 
THEOREM 3.2. SR is characterized by 611. 
DISCUSSION of  PROOf. The idea is to show that  SR can be translated into Loop 

in the sense that  for every SR program z- there is a Loop program, p~, and 

*: 7r(xl, ""  , x~) = pi(xl ,  "'" , z~) 

for all xl,  • • • , x~. Since the meaning of the statement types in both SR and Loop 
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are given in terms of G3, the precise verification of • can be done in G3 where the 
semantics are manageable (and standard in the literature, especially [9 or 21] ). We 
shall often leave to the reader the final detail of verifying this G3 level equivalence. 

The proof is given in three parts. First the operations and predicates of SR are 
reduced. The reduced language has the form: 

DO 
[+1,0, ~0, = 0, $ ,( $ ),(}i,~,END,E] 

Next the conditional ~ is reduced to ~1, computed go to's are reduced to go to's 
and procedures are eliminated. This leaves the language 

DO 
[+1,0,~0, =0, $ ,~x,END] 

The final, and hardest, phase is the elimination of all go to's and conditionals. This 

DO 
is done using the END statement as a switch to "shut-off" statements under appro- 

priate conditions. 
We absorb a proof of correctness of the translation into the construction itself. 

This is done at the end of each phase. 

PROOFS. 

DO 
Phase I. We define all operations, As, in [+i,0,END] 

(1) First X~-- Y becomes X ~ 0  

(3) So Z ~ - - X 4 - Y  

(5) Then Z ~ - - X . Y  

(4) And Z ~  Y--" X 

DO Y 
X~- -X- { - -1  
END 

becomes S ~- 0 
Z~--0 
DO Y 
Z~---S 
S ~ - - S ~ I  
END 

becomes Z ~-- X 
DO Y 
Z ~ - - Z + I  
END 

becomes Z ~ Y 
DO X 
Z~-'--Z --" 1 
END 

becomes Z ~-- 0 
DO Y 
Z ~ - - - Z + X  
END 

(2) Then Z ~ - Y ~  1 
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(6) And Z ~ - - X  ÷ Y becomes 8 ~ - - X  
Z ~ - - 0  
DO X 

8 ~ - - S  -" Y 
B~--O 

DO S 
DO Y 
B ~ - 0  
B e - B + 1  
E N D  

E N D  
DO B 
Z * - Z + I  
E N D  

E N D  

(where B = 1 iff 8 > 0 so B is simply a "switch" which allows Z to increase only 
while Y can still be subtracted from S, thus Z counts the number  of times Y can 
be subtracted from S as long as Y > 0). 

The reader can verify tha t  these Loop programs are equivalent to the usual inter- 
pretation of the operations (given in Subsection 2.3). 

We next show tha t  the relations v = w and v # w can be replaced by  relations 
u = 0 ,  u # 0 .  

Notice, X = Yif f  ( X - "  Y) + ( Y - "  X )  = 0 s o w h e n e v e r X  = Y o r X  # Y 
occurs compute: 

(7) S i ~ - X - - "  Y 
& ~ - Y - ' X  
8 ~ 8 1 + &  

and test S = 0 or S # 0 respectively. 
The replacements described in phase I are used in translation as follows. Given 

~r E SR, find variables 8, $1 ,82 ,  B not in ~ and replace each assignment s ta tement  
of ~r by the Loop code. Before each conditional which tests v = w (v # w) place the 
Loop code (7) and move the label of the conditional to the first s ta tement  of (7), 
and change the relation to S = 0 (8 # 0). 

Phase I I .  Whenever,  if p then s else s2, is encountered it can be replaced by 

(1) if p then sx 
82 

So, the new program obtained this way is equivalent to the original. 
A computed go to, go to + X ,  can be replaced by  a sieve of go to's. First notice 

that only finitely many  of the values of X can make sense, say 1, • • -, m. Therefore, go 
to + X  can be replaced by  

(2) i f X  = l t h e n + l  
i f X  = 2 t h e n + 2  

i f X  = m t h e n + m  

where X = i is provided for by  setting a certain number  of variables to constants 
at the beginning of the program, e.g. set N~ = m by  

. l o u r n M  of thA A~tqnei~tinn fn r  ~ n r n n u t l n g  Mmeh |n~vv  Vn l  1Q N~'n 5t I, ,1,,  1Q7~ 
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Nm ~- Nm "+ 1) 

: i I  m times 
N ~ - - N m  + 

Function procedures are t reated as "macros ."  Tha t  is, whenever an f-assignment 
s tatement ,  v ~ f ( v l ,  • • • , v n ) ,  is encountered in a program 4~ is replaced by the se- 
quence of s tatements  

(3) ~f  
V <--- W 

B~ 

The code ~ f  is obtained from the function definition o f f ,  f ( x : ,  . - .  , x , )  = [ii, 
as follows. Delete the I / O  commands. I f  wl, " . . ,  wp are the variables of [Is, 
with I N  wq ,  • • • , wi, ,  and Vl, • • ", v, are the arguments  of f in the f-assignment 
s ta tement  (in 4~), then put  the n s ta tement  wij ~-  vj., j = 1, • • • ,  n, at  the beginning 
of IIs ,  and make all other variables of IIs disjoint from those of ¢. Let  w be the out- 
put  variable of Hi .  Move the label of v t - - - f  ( v : ,  • • • , v , )  in 4~ to the first statement 
of HI .  

Since we are assuming tha t  all work variables of function programs are initialized 
to zero from outside the program (see Footnote 4), we must  restore the work vari-- 
ables of II1 before we leave it. Tha t  is what  the instructions of Bs do. 

Now when control reaches v e -  f (v~, • • • , v~) in ~, the computat ion Hi (Vx, • • • , vp) 
occurs and its value is placed in v. No other variables of 4~ are changed. In  the new 
program, when control reaches the first s ta tement  of ~ i  it causes the computation 
of n j .  This computat ion does not affect any values of 4, other than v and before any 
s ta tement  of 4~ can cause a return to HI ,  all work variables are initialized so that 
Hf(Xx, " ' ' , X n )  = IIs(x: ,  . . . , x ~ ) f o r a l l x l ,  . . ' , x ~ .  

This argument  can be made precise by appealing to formal semantics for G~ 
and proceeding as in Elgot and Robinson [9]. However, we feel tha t  this informal 
t rea tment  does not omit  the essential ideas. 

Phase I I I .  Our goal is to remove all go to's and conditionals. I t  is by  no means 
obvious how this can be done, but  we can simplify the mat te r  by concentrating on 
one type, conditionals. Notice tha t  by using a variable like N: (recall N 1  - -  1 ) we 
can replace go to + c  by  " i f  N :  # 0 then + c" (abbreviate this by ~+~); further- 
more, we can restrict consideration to conditionals with the predicate v # 0. Simply 
replace 

l i f v  = 0 t h e n + c  by l i l y  # 0 t h e n + d  

go to -k-c 

where + d  refers to the s ta tement  after go to +c .  
DO 

We are now concerned with showing tha t  Loop + = [ +  1, 0, ~ + : ,  END]  is equiva- 
DO 

lent to [+1,  0, END] = Loop,,,:n. Given II in Loop +, suppose there are m con- 
ditionals. For each of them pick a variable, H i ,  not in II. We form a switch, SW (Hi), 
to put  around certain statements of II. The switch around s ta tement  s, 
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[sw (u) 

is defined by  

S ~ O  
DO H 
S ~ O  
S ~ S +  I 
END 
DO S 
8 

END 

The operation of the switch is simple; if H = 0, then s is not executed because 
S is 0. If  H > 0 then S = 1 and s is executed exactly once. 

The conditionals of II are removed in steps. Let  their order of occurrence in II be 

l t : i f  v t ¢  0 then + cl 
12 : if v~ ¢ 0 then -t- cz 

lm :if v m ¢  0 then + cm 

Replace ll by 

DO vl 
H1 ~---- 0 

END 

If statement ~1 is a t  location + ci, then replace ~ by the pair H~ ~ H1 -t- 1 ; ~ ,  
and move the label of S~ to H1 ~-- H1 -I- 1. 

Now put the switch SW (H~) around every s ta tement  of II and every s ta tement  
in the scope of all DO-loops in II except the two just modified. Move  labels of state- 
ments to first s ta tement  of SW (Hx). Call the resulting program II~. 

Now treat  IIi as II and repeat  the process for 12. Call the resulting program II2. 
Notice that  all original s tatements of II except l~ and ~1 have around them a double 
switch, 

SW (H2) 

The statements ~ and DO vx ; H i  ~ 0; E N D  only have the single switch SW(H2). 
Continue in this manner  producing II~, II2, . . .  , I Im .  Non" prefix to each II~ 2m 

statements which initialize the switches: 

H i ~ - - 0 ;  H t ~ - - H i + I ;  H 2 ~ - - 0 ; " "  ; H m ~ - - H m + l .  

Still call the resulting programs II~. Notice tha t  IIm belongs to Loop. We claim tha t  
the II~ are all equivalent. The intuition behind the equivalence is tha t  when a 
conditional causes control to "branch"  or " jump,"  the switches are all turned off 
(set to 0) and no s ta tement  of II is executed until they are turned on again. This 
happens only at the location to which control branched. I t  is important  that  this 
location be accessible from the conditional without the use of further branches 
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because they are all turned off. Because the branch point lies below the conditional, 
it is so accessible. 

Notice that  the theorem cannot be true for the language GR which differs from 
SR only by the inclusion of backwards branches, 1" and (1"). We see from the 
above intuitive argument why this translation would fail for GR, namely there is 
no way to reach the location which turns the switches back on again. 

We now offer a more precise proof that  Phase I I I  is correct. We prove for all n 
that  II,  is equivalent to IIn+~. Let  "if v ~ 0 then + c "  be the first conditional of II, 
(if there is none, then IIn = II~+~ and we are finished). Call it s. Let  ~ be the state- 
ment referred to by + c. 

The two statements, s and ~, can be separated by 0 or m > 0 E N D  statements 
not matched with DO's (m indicates the depth from which l is branching). We prove 
the result by induction on m. 

For m = 0 the program II, has the form 

[] 

[ ]  

where A, B, C are blocks of statements and where the box around s, ~ indicates the 
outer boundary of any loops containing them (this description is not vital to the 
proof, but hopefully it is helpful). 

The program II~+~ has the form 

[] 

H * - H + I  

enlargement of 
switch portion 

where fi~, B, C are the blocks A, B, C with the switch, SW(H) ,  installed. 
Before control in IIn reaches s, the programs IIn and IIn+l behave identically 

since H > 0 and the switches have no effect. When IIn reaches s, if the branch is not 
taken, then H remains 1 and the programs operate identically. If the branch is taken, 
then IIn jumps to ~ skipping over B. Control in I]~+1 proceeds through B downward 
to H ~ H + 1. But  no statements of B are executed since they are all protected by 
switches which are set to 0. Once H ~-- H -/- 1 is executed, the switches are restored 
and ~ is executed. So IIn and IIn+l are operating identically again and the result of 
each computation on the variables of II~ between s and ~ is the same. Thus the com- 
putations produce identical results on outputs (on all variables of II,), and the case 
m = 0 is proved. 

Assume the theorem is true up to m. We prove it for m + 1. We actually assume 
the stronger statement that  the computation is identical on the (explicit) variables 
of IIn (but not necessarily on the loop control variables of II~). 
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The critical piece of II~ has the form 

[ D O  vt 

!--I--E,  E,A 
', B 
1 

and lII~+~ has the form 

--SW(H) 

i ~iW(H) 

L 
B 

. . . . . . . . . . .  H ~ - - H + I  

As in the m = 0 ease, as long as H > 0 the computations run identically. Suppose 
the branch is taken at s. Then in II~, control skips to g leaving all the loop control 
variables and explicit variables of IIn unchanged. In  II,,+l, H is set to 0 but  control 
continues in the loops until it eventually exits to the outermost loop whose E N D -  
statement separates s and ~. At this point, the variables of lII~ and IIn+l have the 
same values (by the induction assumption).  

When control reaches DO vl (the test, if ~1 = 0 then ____ in the implementat ion of 
the DO-loop),  no s tatements  in the scope of the DO vl are executed because they 
are all protected by the switch, S W ( H ) .  Thus after a t  most v~ iterations control 
passes to ~ and then to H +- H + 1 without changing any (explicit) variables of 
I I , .  At location ~ the H is restored to 1 and the programs IIn and lII~+~ have had the 
same effect on the variables of II~. The only difference is tha t  all loop control 
variables of IIn+~ in the scope of DO vl are at  zero but  those of lII~ have positive 
values. 

This difference can have no effect because if control ever returns to DO vl in 
either II ,  or IIn+l, all loop control variables in its scope will be reinitialized to values 
of the (explicit) variables of IIn.  If  control does not return to DO Vl, then those 
loop control variables cannot affect the (explicit) variables. Hence, in either case, 
the (explicit) variables of IIn and IIn+~ remain identical throughout  the computa- 
tion. Hence, 1In and lrln+~ are equivalent. Q.E.D. 

This concludes the proof tha t  Phase I I I  is correct. The entire translation of 
II C SR to T ( I I )  ~ Loop has been broken down into phases; 

T ( I I )  = T3(T2(T~(H))), SR ) II ~ T~(H) ~ T2(II) --~ T3(H) ~ Loop, 

and each phase has been shown to preserve equivalence. 
Thus HI (xl, • " , x~) = T (II) (xl, • • • , x~) for all xi .  Q.E.D. (Theorem 3.2) 
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4. Preliminary Theory 

In  this section we prove a set of theorems which leads to a deeper understanding of 
the main results on efficiency in Section 5. The ideas and proof techniques used here 
are essential in Section 5, and the main purpose of this section is to present those 
ideas systematically. The final subsection, Subsection 4.5, connects our results to 
well-known facts about  subrecursive hierarchies. 

Central to the pertinent set of results is a simulation theorem. I t  has the flavor of 
those theorems which locate small universal Turing machines in the sense that  it 
describes a simple structure for universality. The theorem is due to Meyer and 
Ritchie [19]. 

4.1. DEPTH OF NESTING IN LOOP PROaRAMS. Let L~ be the class of Loop programs 
having DO-loops nested to a depth of at most n. More precisely, L0 has no DO- 
loops and for II C Loop, II C L~+i iff II C Ln or the  only programs in the scope of 
i teratives are programs in Ln. 

Thus if II represents a program of L0, B i a  program of L1, and A~ a program of 
L2, we see tha t  any program in L2 has the form A1 ; • • • ; Am where A~ is of the form 
DO v; B1, • ..  ,Bm ; E N D  or of the form B~ or II, and B~ has the form DO v; II; 
E N D  or the form lI. 

The same rules can be used to define the classes SRn and GRn.  
The class of functions computed by programs in Ln is denoted by  ~ , .  

4.2 SIMULATION. I f  a~ is an Algol-R program, then we know tha t  it has an 
equivalent G3 image under translation, say ~b,(i~. Therefore the simulation theorem 
we state is applicable to Algol-R (hence G R )  as well as G3. 

THEOREM 4.1. I f  ¢~ C G~ , then there is a ck~* C L1 such that ~(~) as defined by (the 
translation of the GR# program) 

H ~ - i  
DO W H I L E H  # 0  

¢i* 
E N D  

is equivalent to ~i, i.e. ¢i ( ) = ¢~(~) ( ) .  
Discuss ion  OF THE PROOF. Our proof is based on the ideas of Theorem 3.2. 

Because of the DO W H I L E  loop, tile backward conditionals can be eliminated in 
the same manner  as the forward conditionals. The variable H remains 1 until 4~i 
halts (if ever), so essentially the DO W H I L E  loop "runs a simulation of ¢i until it 
halts." 

The only technical details are showing tha t  all of the steps of Theorem 3.2 can be 
done with only one level of nesting. The switches and subtraction are the only steps 
tha t  need to be modified from the approach of Section 3. 

PROOF. Recall tha t  the program ,0~ halts by executing an output  s ta tement  (or 
by  branching to a nonexistent s ta tement  immediately after executing an output 
s ta tement) .  Replace OUT w by  the pair of s tatements  H ~ 0; OUT w and move the 
label of OUT w to H ~-- 0 (then relabel the entire program to keep it in standard 
form).  

Now apply the Phase I I I  translation of Theorem 3.2 to the modified ¢~ and call the 
result ~+.  Observe tha t  H *-  1; DO W H I L E  H # 0; 4~+; E N D  is equivalent to ¢~ 
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for the reasons given in the correctness proof for Phase I I I .  In  particular, for the 
case of a backward conditional, if v ~ 0 then - c ,  after setting the switch correspond- 
ing to this conditional, control will proceed downward to the E N D  statement  and 
then will return to the beginning of 4~i and flow down to the label c without changing 
the explicit variables of ¢i nor H. 

To put ~b~ + into L1 we need to modify the use of switches. The nested switches 

SW (H1) 

can be replaced by  the single switch, 

S W  ( H 1 ,  ' " " , H , )  
Is 

defined by  

P~--  V ( H 1 , H 2 ,  . " , H n )  
S ~ - 0  
DO P 
S ~ 0  
S~--S + i 
E N D  
DO S 
S 

END 

where V (H1, • • • , Hn) is 0 if any Hi  is 0, and is positive otherwise. The code for 
one such function is: 

Pc--H1 
DO P 
Pc--H2 
END 

DO P 
P~--H~ 
END 

Thus the whole multiple switch, SW (Hi,  . . .  , Hn), belongs to L1. If  the state- 
m e n t s i s v ~ - - v  + 1, then SW(H~,  . - - , H n )  is in L~. But  if it is v ~-- v --" l o r i f  
v ¢ 0 then c, then the previously given Loop replacements cannot be used with this 
switch mechanism. Ins tead use the following. For 

I SW (H1, "'" , H,~) 
X ~ - X  = 1 
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use 

X ~ - 0  

I SW (H1, . . . ,  H~) 
2 ~ X  
Z ~ - - O  

DO .~ 
X ~ - - Z  

Z ~ - - Z + I  

END 

and for 

I SW(H1, . . .  , H , )  
lx = i f X  ~ 0 t h e n c  

notice tha t  it would, according to Theorem 3.2, become 

ll : [ ' S W ( H a ,  . . .  , H . )  
] D O  X 
|H1  ~ 0 
LEND 

It now becomes 

11: .,g~O 

[ SW(Hi ,  . - . ,  H~) 
2 ~ X  
DO .,~ 
H ~ - - 0  
END 

These are easily seen to have the same effect, and they are in L1. Let ~b~* be the 
program ¢i + with the above replacements. Then, since 4'i* and 4,~ + are equivalent, 
the result follows. Q.E.D. 

An interesting corollary follows from this theorem. Suppose t4~ (x~, . . .  , xn) _< 
f ( x l ,  • • • , x n )  f o r f  C L~, where n _> 2. Then the DO W H I L E  iterative in Theorem 
4.1 can be replaced by a simple DO S, where S is larger than the time needed for 
4,~* to simulate ¢~. This simulation time is no more than the maximum of the input 
variables times a multiple of the length of ¢~, denoted ] ~i [, plus a constant. 9 Thus 
for d = a.l~bi I + b, the time to simulate is bounded by d-max{x~, . . . ,  x,} 
• f ( x l ,  . . "  , x , , )  which is bounded by b ( x l ,  . . .  , x n )  = d .  ~ = 1  x i ' f ( x l ,  " "  , x n ) .  If 

f (  ) is in L~ then so is b ( ) .  Suppose it is computed by Bi E L~. 
The idea now is to use a program like 

Bf 

H ~ - -  
D O  ,S 

END 

g The length of 4,4 is simply the number of statements in 4,~ • 
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to simulate ¢~. The only difficulty is that  S is only an upper bound on t¢~ (Xl, • • • , x~ ) 
and ¢~* may "run  too long and damage the simulation." We correct this problem by 
setting a switch based on H. Then when H = 0, no statements of ¢~* will be executed. 

So let ¢~* be ¢~* with H as part  of all switches, i.e. replace SW (H1, .. • , Hp) by 
SW (H, H~, • • • , H~). By the same reasoning as given in detail before, the following 
program is equivalent to ¢~. 

B/ 
S~- - -F  
H~--1 
DO S 
¢~* 
E N D  

But also the program belongs to Ln if n k 2 because the maximum nesting occurs in 
computing f ( x~ ,  . . .  , xn).  Thus the following result. 

COROLLARY 4.1. There is a p ( ) C (R2 such that i f  ¢i ~ G3 and tel ( X l ,  " " " , Xn) 
¢i(xl ,  " '" , xn) and ¢~ C L n f o r  n > 2, then there is a program ¢~(i.j) in L ,  which is 
equivalent to ¢i .  

This corollary was first proved by Meyer  and Ritchie [19]. For the language SR, 
the bound can be made tighter because the switches and the simulation of -" 1 are 
unnecessary. Thus by the same reasoning as above. 

THEOREM 4.2. There is a p(  ) C ~2 such that i f  ¢i C G3 and ~ ( x t  , . . .  , xn) < 
¢~'(xl, " "  , x~) a n d C j  C S R ~ f o r  n > 1, thenCp(~.j) C SR~ andCp(id)( ) = ~i( ). 

PROOF. We describe the construction of a function ¢i + ~ SR0 for which 

IN X 
H ~ - - 1  
DO W H I L E  H # 0  
qbl + 

END 
OUT Y 

is equivalent to ¢~. From the construction and the arguments of the previous 
theorem, it will be clear how to prove this equivalence and complete the theorem. 
We now give the construction of ¢~+. 

(i) Place at the beginning of ¢~ a computed go to, go to + G, where G is not in 
¢i • This will be used in executing backwards go to's of ¢i • 

(ii) Assume Y is an output  variable of ¢~ and that  OUT Y is the last s tatement 
of ¢i ,  and I 4i ] = l, then replace OUT Y by the pair, H ~-- 0; G ~-- l + 2. These 
statements have labels l + 1, l + 2. The statement G ~-- 1 + 2 forces all subsequent 
executions of "go to + G" to branch back to G ~-- l + 2, thus setting up a loop 
which bypasses ¢~. 

(iii) Replace every backwards go to, say "go to - C," by the pair G ~-- m; 
go to + (l + 3), where m is the value needed to jump from go to + G to the state- 
ment - C  (and l + 3 refers to the location beyond the last statement of the pro- 
gram ¢ modified by (i) and (i i)) .  
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This is the best possible n for a result of this type because we can easily find 4~i 
for which t¢i is bounded in SR0, but there is no equivalent SR0 program. 

4.3. STRUCTURAL COMPLEXITY CLASSES. The relationship between' Theorems 
4.1 and 4.2 is explained by the fact that  SR1 and L2 compute the same class of 
functions. We say that  two languages, ~£, ~, are equivalent, ~ ~ ~,  whenever they 
compute the same class functions. Thus we prove SR.  ~ L.+~. 

THEOREM 4.3. S R ,  ~- L~+i. 
DISCUSSION OF THE PROOF. This result depends on two critical bounding 

lemmas which estimate the growth rates of functions in terms of their depth of 
nesting and length. We shall state these lemmas here and prove them in the Ap- 
pendix. To state them we need two recursive sequences of programs. 1° 

(1) L e t f o b e X + - X +  l a n d f n + ~ b e D O X ; f ,  ;END.  
(2) Let  go be X <--- X .  X and g,~+i be DO X ; g,, ;END.  
Let f n ( ) ,  g~( ) be the functions computed by fn and g~ respectively. Notice that 

fo( X) = x + 1,fl(x) = 2. x, f~( x) = 2*.x and go(x) = x 2, gl(x) = x 2~. The standard 
mathematical definition of these functions is in terms of iteration. Namely, for any 
h( ) E 5:1 define h(°)(x) = x, h(n+l)(x) = h(h('~)(x) ). Then notice that  f ,+ l (x )  = 
f~') (x) and gn+l(X) = g~*)(x). (The notion of iteration is extended to vector valued 
functions in the Appendix.) 

Also notice that  gl( ) and f~2)( ) have the same order of growth (this will be 
made precise below). This is the essential reason that  SR1 = L~. Likewise g.( ) 
and*(~) / .1~+~ ) for some p have the same order of growth. 

Furthermore, f~ E L,  and g~ E S R , .  The following additional facts about f ,  and 
g, are needed and are easily established by routine inductive arguments. They 
simply say that  f~,  g, are monotone when x > 2. 

LEMMA 4.1. 

(a) f , , (x)  >_ x, gn(x) ~_ X for all n, all x. 
(b) f~(x)  > x, g , (x )  > x for all n, all x > 2. 
(c) .~(x )  < fro(x) for all n < m, a l l x  > 1, 

gn(x) ~_ gin(x) for all n < m, all x > 1. 
(d) f~(x)  < fro(X) for all n < m, all x > 2, 

g , (x )  < gm(x) for all n < m, all x ~_ 2. 
(e) f~(x) < f~(x --F 1) for  all n, all x, 

g,,(x) < g , ( x  + 1) for  all n, all x. 

We now state the critical bounding lemmas. 
LEMMA 4.2 (Bounding for Loop). I f  ¢i E L m  and Oi( ) : H '~ ~ 5T ~, then for all 

j = 1, . . .  ,p,¢~(~)~ _<.~(I,,I) ( m a x , )  i f m a x Z  > 2, 
where ~ E H '~, and max  ~ = max  {xl , • . .  , xn}. 

LEMMA 4.3 (Bounding for SR). I f  ¢~ E SRm and ¢~( ) : H '~ ~ ~ ,  then for all 
j = 1, . . .  , p, ¢~(x)s -< g,(I,~l) (max  ~) i f  max  ~ _> 2. 

These lemmas simply state the fairly obvious fact that  fn and g, are the fastest 
growing programs in L~ and SR~ for their size. The details, like using vector valued 
functions and requiring max .~ >_ 2, fall out of the proof technique. The first is a 

to S u c h  s e q u e n c e s  a re  e x a m p l e s  of  spines a n d  are  i m p o r t a n t  in s u b r e c u r s i v e  h i e r a r c h y  t heo ry .  
They are discussed in [8]. 
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convenience, the second is because when x = 0 the "loops do not work," and when 
x = l , x . x = x .  

One more lemma is required before we can prove Theorem 4.3. We must point 
out that  the classes L,  and SRn are "closed under the step counting operations." 
More precisely, given ~bi E L,, we must show that  t¢~ ~ L , .  As presently defined, 
tel does not have this property,  so we modify the definition for ~b~ E Loop. 

If ¢~ E Loop, then define tel as follows: 

(i) Pick a variable S not in 4~i and place S *-  0 before 4,i • 
(ii) P l a c e S ~ - - S  + 2 ( S ~ - - S  + 1; S ~ - - S  + 1) a f t e r S ~ 0 ( t h i s c o u n t s  

the steps needed to define the work variable of G3 programs used to translate go 
to's). 

(iii) After each assignment of ¢ i ,  place S ~-- S + 1. 
(iv) Before each DO v, place S ~-- S + 1 (to count the loop control variable 

initialization, ~ ~-- v). 
(v) After each DO v, place S ~-- S + 1 (to count the conditional, if ~ # 0 

then ) .  
(vi) Before each END,  a d d S ~ - S +  1 (to cover O~--v ~ l and the go to) .  

(vii) After each END,  add S ~- S + 1 (to cover the conditional branch, if 
v # 0 then , when exiting the loop). 

(viii) Replace OUT w by OUT S (thus S, the number of steps, is the outuput) .  

Call the resulting program ~ .  To be precise we should prove that  the new 
definition of t¢i agrees with the old, but this should be clear from the construction 
and we accept it as proven. 

LEMMA 4.4. I f  ¢~ E L~ then tCi E Ln 
PROOF. None of the steps ( i )-(vi i i )  increases the depth of nesting. 
An easier construction can be given to define t¢~ for ~ E SR such that  
LEMMA 4.5. I f  ¢i E SR,  then tCi E SR~ . 
PROOF. For  the reader. 
We are now ready to prove that  SR~ =-- L~+i. 
PROOF OF THEOREM 4.3 FOR n = 1. We prove the result in detail only for 

SR~ -= L2. The general case follows by similar argument (slightly more complex 
-(2) / treatment off,+1( ) _< g~( ) and g,+~( ) < J~ ~ )) .  

(1) SR1 ~ L2. According to Corollary 4.1 we need only show that  4~i E SR1 
implies tC~(x) _< f(~) for f E L2. But  ¢~ E SR1 implies tel E SRi by Lemma 4.5 
and/¢~(~) _< g~l~,t) (max ~). 

But notice tha t  gx(x) = x 2" < 22"'~2~.x = f22(x) if x > 2. Thus 

tO~(Y) < f2 (~'l*~') (max ~ + 2) < f2(21¢i[)(Xl + . . -  + Xn + 2) .  

The program for f2(~"*~l)(xa + . - .  + x,, + 2) is simply 

X * - - X i +  . . . + X ~ + 2  

where X ~-- X1 + . - .  + X ,  + 2 is implemented by 
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X~--0  
DO X1 
X ~ X + I  
END 
DO X~ 
X ~ - - X + I  
END 

DO X~ 
X ~ - - X + I  
END 
X ~ - - X + I  
X ~ - - X + I  

(2) So f= (Xx+ " "  + Xa+ 2) can be done inL2.  
(2) L2 ~ SR1. We argue in an exactly parallel manner as for (1). In brief 

¢i C L2 implies tel C L= implies t~i(£) _< f~l,,o (max £ + 2) but f=(x) < gl(z) 
for all x _> 2. So 

t4~(5) _< g~l*'l>(xl + . ." + zn + 2 ) ,  

and the rhs is clearly in SR1. Q.E.D. 
This theorem suggests that the class of functions computed by SR1 and L2 might 

be fundamental. The class turns out to be one which is important in logic and which 
has been extensively studied, namely the elementary functions, 5. 

4.4 THE ELEMENTARY FUNCTIONS, 5. This class is defined algebraically as 
follows. Introduce the operators for 5 E N ~. 

(1) ~ :  partial summation: s(~, y) = ~ = 0 f ( i ,  5). 
= v i (2) I I :  partial product: p(5, y) IXi=0f( , 5). 

_< v (z, 5) = o], 
(3) U_< : bounded least number: b(~, y) = (0  if no such z exists. 

The functions s ( ) ,  p ( ) ,  b( ) are said to be obtained from f( ) by ~ ,  IX, v_< 
respectively. 

Let x**y denote x ~ and then in the notation of Subsection 2.3, item (6), define 
8 = [+ 1, "--1,0,+,--" ,. ,+,**;Os,~<]. 

It is proved in Grzegorczyk [11] that: 
THEOREM 4.4. 8 = [+1,--" 1,0,+,--" , + ; O s , ~ , I I ] .  
We can easily show: 
THEOREM 4.5. 8 C $~tl. 
PROOF. The base functions except for ** are in $~1 since there is a basic SR~ 

instruction for each. For Z ~- X * * Y  use Z ~-- 1; DO Y; Z ~ Z . X ;  END. The 
closure under 0.~ is contained in $~1 because the operations of substitution corre- 
spond to composition of programs. The only remaining task is showing closure of 
$~x under ~< .  This cannot be done directly by simulating, ~_<, with a DO-loop, 
because the loops cannot be nested. The strategy is to write G3-programs for ~_< 

b ( ">:x and show that the run time can be estimated y g~ ~ + q) for some p, q. Then ap- 
ply the simulation theorem, Theorem 4.3. 

Suppose for induction on the number of applications of t~_~ that 0:( ) computes 
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f ( )  and t¢ : (x )  < g[~)(x+ q) for a l lx .  Let¢~(2, y) = tLz _~ y[f(2, z) = 0]. Let 
~: have inputs x l ,  • • • , x~ Z and output  W, then let ~b~ be the G3 program for 

I N X : ,  . . .  , X , ,  Y 
Z ~ - - 0  
D O Y +  1 
¢: 
i f W  = 0 t h e n 1  
Z ~ - - Z + I  
E N D  
Z ~ - 0  
Y ~ - - Z  
OUT Y 

The run time, t ¢ i ( ) ,  is bounded by ~ = o a . t ¢ : ( 2 ,  i) + b, thus by 

~ = o  a'g~ p) (max {2, i}) + b _~ (y + 1).a.g~ p) (max {2, y}) + b. 

Now (y + 1) .a < g~p+a) (max {2, y}), so clearly there exist p:, q: such that  

(y -~- 1).a.g~ p) (max {2, y}) + b < g~P:) (max {2, y} -~- qi). 

Thus by induction, the run time of any 4~i computing a function in ~ is bounded 
in $(~1, so Oi( ) C $(~ • Q.E.D. 

The inverse inclusion, $(~ c 5, can easily be proved from ~ general principle 
well known in the literature. We summarize in the next section the t reatment  of 
these principles given in [8], which is a synthesis of Kleene [14], Cobham [6], and 
Ritchie [22], from the viewpoint of functionals (or relative subrecursion). 

4.5. ELEMENTARY INDEXINGS AND MEASURES. The programming languages 
considered here can all be relativized to an arbitrary function f(  ) E ~:. We simply 
allow f as a new basic operation and interpret the assignment w ~ f (v l ,  • • • , v,,) 
as: w receives the value of f (  ) applied to the values of v~, • • • , v~. This simple 
mechanism for relative computabili ty is one of the salient advantages of the lan- 
guage approach to computability. ~: 

The concept of an acceptable indexing directly generalizes to relative com- 
putability, and the time measure, {t0i( ) }, generalizes directly by counting the 
assignment as a single step. We denote the relative indexing of a measure by 
{~if( )} and {tCJ( )}. General relativized {~if(  )} = (I)f measures are defined by 
requiring ~ relativized measure function, M f ( ) ,  in the axioms of Subsection 2.7. ~'~ 

We will now outline the approach to elementary measures given in [8]. First we 
define the (relativized) computation predicate, T ( ) .  This is also known as the 
Kleene T-predicate (see [14]). 

(1) Tf~+2 (i, 2, y) iff y is the number of ~ terminating computation of program 
o~f with 2 E N ~ as inputs. Also write comp f (i, 2) = t~zT(i, 2, z), called the compu- 
tation function. 

n Notice that relative computability is of interest even in a constructive theory if one is not 
willing to accept Church's thesis. In the constructive setting, Church's thesis has the character 
of a reduction axiom. 
1~ There is a good deal of interesting work to be done in generalizing the notion {m¢,i:( ) } 
correctly. 
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(2) Define ~(f( ) ) = [ + l , ' - l , 0 , + , - ' , . , ÷ , * * , f (  );0s,~_~], the functions 
elementary in f( ) (or elementary relative to f ( ) ) .  A predicate P(  ) is elementary in 
f(  ) iff its characteristic function chp(x) = if P(x) then 1 else 0, belongs to ~(f( ) ). 

(3) The Klecne normal form theorem asserts that  3 U (  ) E ~ and T~+~( ) E 
8 ( f ( ) )  such that  ~i:(~) = U(~yT~+~(i, ~, y) ). 

(4) An acceptable relativized indexing will be called elementary iff (3) holds 
for ¢ i : ( ) .  A measure, {mCi:( )}, is elementary iff 

(a) 3h(  ) E ~ ( f ( ) )  such that comp: (i, x) < h(mC~:(x)) and 
(b) 4~,:( ) E g ( f ( ) )  implies me,:( ) E ~( f ( ) ) .  

(A third condition which is natural but  unnecessary here is 
(c) M : ( ) ,  the measure function, belongs to ~ ( f ( ) ) . )  

I t  is now easy to verify the following critical principle. By way of abbreviation 
we use~(  ) < ~b( ) iff~b(x) < ~b(x) for a l l x ; a n d i f  C ~ f f t h e n w r i t e ~ (  ) < C 
i f f3g (  ) E Gand~b( ) < g ( ) .  

THEOREM 4.6 13 (Ritchie-Cobham). I f  {4~J( )} and {m¢~:( )} are elementary, 
then 

m~,/( ) < ~(S()) i# C s( ) E ~(S()). 

PROOF. For simplicity, consider only 4~( ) E ~ 1  • The "if condition" is imme- 
diate from the definition. For the "only if" part, note that  from (3): ~i:(x) = 
U(~yT:(i, x, y)), and since {~bi:( )} is elementary, U() ,  T:( ) E 8 ( f ( ) ) .  Since 
{mCi:( )} is elementary, the y above satisfies y _< h(mCi:(x)) for h( ) E g ( f ( ) ) .  
Define IX(x) = ~ = 0 h ( i )  W 1; then h( ) < h( ) and ]~( ) is increasing. Also, 
]~( ) E ~ ( f ( ) )  (recall Theorem 4.4). Since m~bJ( ) < 8 ( f ( ) ) ,  3g( ) E ~ ( f ( ) )  
such that mCi:(x) ~_ g(x) for all x. So y <_ h(mCi:(x)) < h(mchJ(x)) _< h(g(x) ) and 
h ( g ( ) )  E ~ ( f ( ) ) . D e f i n e s ( i ,  x, y) = U (#z < yT:(i, x, z ) ) ; t h e n s (  ) E g ( f ( ) )  
and s( - ,  - ,  IX(g())) E ~ ( f ( ) ) .  Since ¢~:(x) = s(i, x, h(g(x) )), ~:(  ) E g ( f ( ) ) .  
Q.E.D. 

Remark. A class ~ satisfying the condition that  m4~J( ) _~ a implies ~b~:( ) E 

is called full wrt ~:. If also ¢~:( ) E ~ implies ~ J (  ) = 4~:( ) and m~J( ) _~ ~, 
then ~ is called closed wrt ¢:. 

The statement of Theorem 4.6 is now that "the classes g ( f ( ) )  are full and 
closed wrt to any elementary measure ~:." It  is an interesting open problem to 
find the least closed and full class wrt {t¢~:( )}. 

I t  is well known that all reasonable or natural formulations of abstract machine 
and language models (e.g. Turing machines, G,~-programs, etc.) are elementary as 
are the usual measures of computational complexity (time and tape, for instance) 
on them. Cobham [6] argues this explicitly for a subset g~ of 5. ~ are called the 
primary functions. 

The reason for this is that  the elementary functions allow most all functions and 
predicates which are used in combinatorial description. Furthermore, machine and 
language models are intentionally constructed by simple means from simple bases. 
We summarize this information as 

THEOREM 4.7. The relativized G3 indexing and time measure, {¢J( )} and {tCJ( )}, 
are elementary. 

~ The historical origins of this theorem can be found in Kleene's treatment of primitive recur- 
sive functions. N. A. Routledge called the theorem "Kleene's principle." The exact version 
given here was first due to Ritchie [22] and later explicitly discussed by Cobham [6]. 
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PROOF. See Minsky [21] or Shepherdson and Sturgis [26]. 
This fact means that  all the specific languages and measures considered here are 

elementary. From this we can easily prove: 
THEOREM 4.8. 8 = 801 • 
PROOF. Again consider only one argument functions for simplicity. By Theorem 

4.5 we need only show that  $6t, C 5. But if ¢i( ) C $~1, then tCi( ) C 86h and in 
fact t tdx)  _< g~'t*~'l(x + q). But g,( ) is defined in 8 by the expression x**(2**x) 
(i.e. x2~), which is clearly elementary. Thus we have shown ¢i E $6t implies tel( ) _< 
8. So by Theorems 4.6 and 4.7, ~b~( ) ~ 8. Q.E.D. 

It is most natural to inquire about generalizing the equalities 8 = $5~, = 22 to 
8(f( ) , $6h(f()) and 22 ( f ( ) ) .  The classes are all well defined. Unfortunately the 
classes are not equal. This points up a deficiency in the L2 and SR1 definitions of 8. 
They do not provide a definition of the relativized classes. 

The classes $611(f()) and £ 2 ( f ( ) )  are not as interesting mathematically as 
8 ( f ( ) )  because they are not as stable; they are not functionally closed, i.e. if 
g( ) E $6h, it is not necessarily the case that  $6{,(g()) ~ $6~1. 

We now verify the class inequalities. 
FACT4.1. 22 ( f ( ) )  ~ $(Rl(f()) ~ E(f( ) ) f o ra l l f (  ) E 5:,. 
Take f( ) =f2( ) , t hen  f4( ) C 22(f2()) but f4( ) ~ 8(f2( )),f4( ) ~ 86t1(f2()). 

Alsofi( ) C 8~1(f2()) but f3( ) ~ 8( f2( ) ) .  These observations all follow directly 
from the bounding theorems for L and SR and from the fact that  8(f~())  = 
8 = $6t = 22 • The same observations yield: 

THEOREM 4.9. (Grzegorczyk hierarchy). 
(i) 8 ( f~( ) )  C 8(f~+~()) for all u _> 2, 

(ii) [.J:=08(f~()) = 8~ = (R'. 
It can also be shown by arguments similar to those in Theorem 4.3 that :  
THEOREM 4.10. For all n _> 1, 8(f~+1()) = ~ = ~ + , .  

5. Computational E~ciency and Program Structure 

5.1. RELATIVE EFFICIENCY. We know from the work of Blum that  the avail- 
ability of the "negative go to" allows a programmer to "compress his code." That  
is, GR programs can be much shorter than the shortest SR programs for some 60 
functions. How does the "negative go to" effect computational efficiency measured 
in terms of running time? 

The best result previously known (Meyer and Ritchie [19]) is that  if ¢i denote 
G3 programs and ¢~i denote Loop programs, then if tCi( ) < f(,~) ( ) there is a/3i( ) = 
~( ) and t/3~( ) < f~,P)(). 

There is, however, considerable latitude among run times bounded by f(,~)(), 
and the previous best result leaves open the possibility that  for every (increasing) 
primitive recursive function, h( ) C ~ ,  there exists some 4~i( ) ~ 6t ~ such that  
every Loop program /3~ for ¢~( ) satisfies h ( ~ ( x ) )  < t~(x) for all x > m for 
some m. That  is, some G3 programs may be arbitrarily more efficient than the best 
Loop programs for the same function, because there might be arbitrarily large 
primitive recursive gaps between G3 and Loop run times for the same function. The 
main result of Theorem 5.1 shows that  there are no such gaps. 

To facilitate stating the results of this section, let {ai( )} be an indexing of SR 
and {/3i( )} be an indexing of Loop, and {¢~( )} an indexing of G3. As before, ai,  
~ will actually be the G~ images of SR and Loop programs, so {a~( )} and {fli( )} 
are sublists of {4,i( )}. 
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For simplicity, we state the main theorem only for one argument functions. 
The extension to multiple arguments is straightforward from the principles of the 
Loop and SR bounding theorems (Lemmas 4.2 and 4.3). 

THEOREM 5.1 (Relative efficiency). I f  ~i C G3 and 4~( ) C ~1 and tCi(x) > x, 
then there exist nil E SR, ~is C Loop and constants ci~ , ci2 such that 

(a) tai,(x) < c~l.tCi(x ) and 
nil(x) = ¢i(x) for all x, 

(b) t~i~(x) <_ ci~.(ti(x))~ and 
f~s(x) = ¢i(x) for all x. 

The all and ill2 can be found effectively. More precisely, there exist pj( ) and qj( ), 
j = 1, 2, such that i f  tC~(x) < f~m)(x) for all x, then 

(a') tap,(~ . . . .  )(x) < q,(i, n, u ) . H i ( x )  and 
ap~(i . . . .  )(x) = ~i(x) for all x and 

(b') t~(~  . . . .  )(x) _< q2(i, n, m).tC~(x) and 
fl~,2(i . . . .  )(x) = @i(x) for all x and 
l~ps(~ . . . .  ) C L,+~. 

COROLLARY 5.1. The list {a~( )} can also be taken to be an indexing of [+1,-"  1,0, 

DO 
( ) ,  END] and the results (a) and (a') hold with a~(~ . . . .  ) having depth of nesting 
n W 1 .  

DiscussioN OF THE THEOREM. The results say that  restrictions on program 
structures in going from G~ to SR cost only a multiplicative efficiency factor, and 
in going from Ga to Loop the restrictions cost at most a square. Corollary 5.1 says 
that  the nonlinearity results only from the cost of simulating subtraction. 

DISCUSSION OF THE PROOF. The idea of the proof is simple. We will use a 
Loop program, 

DO S 
~* 
END 

or an SRprogram,  

DO S 
~bi + 
END 

(just as in Section 4), to simulate ¢,i • 
The key factor in controlling the efficiency of the simulation is calculation of the 

bound S "in parallel" with the simulation. That  is, we construct a "clocklike 
mechanism"; the clock will run for exactly f ~ ) ( x )  steps unless it is shut off. 14 The 
simulation continues as long as the clock is running. If the simulation finishes 
before the clock, then it sends a signal to stop the clock. In the Loop language the 
clock cannot stop immediately, there is an overrun factor. Estimation of this 
factor is a critical step in the proof (Lemmas 5.3 and 5.4). 

~ T h e  f ac t  t h a t  t h e r e  is a c lock for  f,,~( ) d e p e n d s  on  t h e  " h o n e s t y "  of  t h e  f u n c t i o n  f ~ ( ) ,  i.e. 
i t s  v a l u e s  a re  close to  i t s  r u n  t i mes .  
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The "clock-simulation" argument used here is typical of a certain class of di- 
agonalization arguments in complexity theory (called downward diagonalization in 
[7] and discussed at length in [13]), but  it is used for a different purpose here. 

PROOF. In the first part  of the proof we construct one part  of the parallel pro- 
cedure, the simulation of ~b4(), and show that  it works correctly. In the second part  
we build the clock mechanism into the simulation and show why it works correctly. 

Part  I: 
(1) Given ¢4, construct ~ '*  ~ L1 just as in Corollary 4.1 of Subsection 4.2. 

Again assume that  H does not appear in ~4 • The correctness of ~b~* will follow from 
the arguments of Subsection 4.2. This finishes the simulation part  for Loop. 

(2) Construct an SR0 program, ~b4 +, to simulate ¢4 just as in Theorem 4.2, Sub- 
section 4.2 (assume G does not occur in ~b4). The correctness of 4~ + will follow from 
the arguments of Subsection 4.2. 

Notice ¢4 + C SR0 and ~b~* C L1. Now let ¢i denote either ¢4 + ** or 4,~ • Then 

IN X 
H+- -1  
DO W H I L E  H # 0 
5, 
END 
OUT Y 

is equivalent to ¢4 • Our task in the next par t  is to simulate the DO W H I L E  itera- 
rive by a clocklike mechanism. 

If ¢4 C G3 and ¢4( ) C R ~, then for purposes of the theorem we can assume that  
- -  ~ ( P i ) /  \ there exist n i ,  pi such that  t~h4(x) < tn~ (x) for all x. This is because there must be 

some aj which computes ¢4( ) ,  i.e. a i(x)  = ¢4(x) for all x, and the Ga program, tk, 
which simulates the execution of ai and 4~i in parallel and stops as soon as one of 
them stops, has a run time which is less than c.min(tCdx),  ta i(x))  for some 
constant c. So tea(x) < c.tCi(x) and 3n~, pi ttk(x) < +(P~)" " _ _ j ~  ( x ) .  

Part  II :  
(1) Suppose now that  tCi(x) < ~c~)+ , _ j ~  kx) for all x. The goal of this step is to 

describe a way to compute the clock in parallel with $~ and shut it off (without 
much "overrun")  when ¢i halts. ~5 The asterisk' will indicate the critical statement 
needed. 

• if H # 0 then X ~-- Z else X +-- 0 

In SR, • becomes 

l i f H  # 0 t h e n +  ( l +  3) so we get l i f H # 0 t h e n +  ( 1 + 3 )  
l + l  X+---0 / + 1  X~---0 
1 + 2  g o t o + ( / + 4 )  / + 2  g o t o + ( / + 4 )  
/ + 3  X + - - Z  / + 3  X+---Z 

In Loop • becomes 

X+- -0  
DO H 
X ~ Z  
END 

ti We need not make the concept of a clock precise here. It is done in [13l and [8]. 
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Now form a program ~/1 

DO X 

DO X 
DO X 

DO X 
& 

In /  

Z ~ - - Z + I  

E N D  

END 

END 

(if$~ = ¢i +) or ~i~ (if$i = ~b~*) or ~ for short. 

END 

Looking at the innermost loops we see the mechanism in more detail. 

DO X 
DO X 

Z ~ - - Z + I  
END 
if H # 0 then X ~-- Z else X ~-- 0 

END 

Observe that  as long as H # 0 this program will compute fn(x) in variable Z, since 
the program is essentially 

DO X ln i  times 

J DO X 
DO X 
Z * - Z +  1 
END 

X,~--Z 
END 

n/ 

X 4:--Z 
END 

times 
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Furthermore, while H ~ 0 the program is simulating at least one-half step of 
4,~ every t ime Z ~-- Z + 1 is executed. Thus while H # 0 the value of Z indicates 
a lower bound on the number  of steps of ¢ /which  $~ has "simulated."  

I Pl  times I 

To compute the final result, 4~ (x),  form I N  X;  H ~ 1; ~; . ;  ~; . ;  • • • ; ~; OUT Y. 
The result is either a~ 1 or/311 depending on ~. 

Now Z will potentially have the value of jn¢¢~)~ (x).  I t s  actual value will depend 
on the value it has when H becomes zero, i.e. when q~i shuts off, i.e. when ¢i(x) 
halts. In  the next step we determine how long a~, or/~i2 will run compared to tO;. 

(2) To calculate tail(x), tel2 (x),  four facts are needed about  ~1 and/~i2. Let 
D~, • • • , D ~  be the loop control registers in ~ (listed in order with the innermost 
loop first). The following hold for all inputs x. 

LEMMA 5.1. After executing the innermost DO, at every step of the computation, 
Z > D i f o r i  = 1, . - .  , n l .  

LEMMA 5.2. After the first execution of the innermost loop, D1 _< Z < number 
of times instructions of 45i have been executed. Also, C.Z < number of steps of qJi 
already simulated, for some constant C. 

LEMMA 5.3. If H = O, then at most 3. (D1 + D2 + .. • + D~) + ni + D1 
steps can be executed before ~ halts. 

LEMMA 5.4. I f  H = O, then the maximum value of X is Z. 
Using these lemmas, conditions (a ' )  and (b ' )  of the theorem are easily es- 

tablished as follows. 
(a) First  consider ¢~+. When ¢i + halts (i.e. H = 0), ~bl + has been executed 

no more than  C.tq~(x) steps ("on  the average"  ¢i + is probably executing nearly 
one for one). 18 Thus, when ~bi + halts, H = 0, and D1 _< X _< Z _< C.tCi(x), by 
Lemmas 5.1, 5.2, and 5.4. The total  number  of steps taken outside 4~ + is no more 
than (4n i ) .Z ,  'thus no more than 4.ni.C.tOdx). When ~i + halts, control is in 
some ~ and will not go into another ~. By  Lemma 5.3, ~ can execute at 
most 4. ~j~2~ Dj  + n~ more steps. So tha t  by Lemmas 5.1 and 5.2, at most 
4.Z + nl _< 4 . (C . tOdx)  + n~) more steps. Therefore to complete the program 
we add at most  2.p~ more steps in slipping over unused ~'s to complete ap~(~.~,~ 0. 
Hence at least 

ta~,(x) _< (4 .C) . (n~  + 1) . tCdx) ,  

where i~ = p~ (i, n~, p~). 
(b) Now consider the case of ~b~**. Several steps must  be executed for each 

step of ¢~ because the switches must  be computed (a t  a maximum cost of Cl.p 
statements for SW(H1,  . . .  , H~)) ,  and subtraction must  be simulated (at  a maxi- 
mum cost of C~.v steps where v is the values of the variable being decremented).  
In the worst case this added cost is g(x) = ]¢~ I" C3. (maximum value of variables 
in ~b~ in input x) as a multiplicative factor. Clearly the maximum value of variables 
in 4~ on x is x + tel(x).  Thus g(x) _< C3.14~i [" (x + ~ ( x ) ) .  Recall tC~(x) > x 
for all x, thus g(x) < C4.tCdx). 

Now by  the same reasoning as in case (a) above, we can conclude 

tibia(x) < (4. (n~ -4- 1 ) . C 4 . ~ ( x ) ) . t C , ( x ) ,  
so t~2(x) < C. ( t¢dx) )  ~, where/2 = p~(i, n~, p~). 

tt If we could count assignments of the type w ~ n as a single step, then the simulation is 
close to 2.t¢~(x). 
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To complete each of (a) and (b) we need only prove the lemmas. 
(3) The proofs of the lemmas are as follows. 
PROOF OF LEMMA 5.1. 
(1) After the first time through innermost loop, Z = X and no Di has been 

increased. 
(2) Assume the result true after m steps, to prove that  it is true after m + 1 

steps. At each step only three instruction types can change values. They are 

(i) Di ~- X 
(ii) Z ~ - - Z +  1 

(iii) D ~ - - D ~ - -  1 
(iv) X ~-- Z 

Therefore, if Di _~ Z at m, then (i) can at worst bring some Di = X which by 
(iv) is < Z. The other two instructions can only cause Dj < Z. for some j. 
Q.E.D. 

PROOF OF LEMMA 5.2.  

(1) Z cannot be increased unless an instruction of $i is executed. Therefore 
Z < number of steps taken in 5~. 

(2) Every step of 4~ + either directly carries out a step of ~ or else carries out 
the step of ~b~ after one loop and C extra steps, thus after increasing Z. Thus C. Z < 
number of steps of 4~i already simulated. 

(3) The argument for ~ *  is similar to 2. Q.E.D. 
PROOF O f  LEMMA 5.3.  

(1) If H = 0 then by the * statement, the only value that  can be assigned 
to D~ is 0. Also when D~ = 0 then the only statements executed in the D~+I loop 
are "D~+I ~ D~+i -" 1", "go to _ _ "  and "if D~ # 0 then _ _ "  so that  after 
3.D~+1 steps, D~÷~ = 0. 

(2) After D1 = 0, then 3D2 + 1 + 3D3 + 1 + . . .  + 3Dn steps are executed. 
D~ may execute 4D~ steps before being set to 0 (the "go to G" is also executed). 
Q.E.D. 

PROOF OF LEMMA 5.4. Trivial by examining *. Q.E.D. (Theorem 5.1) 
Discussion. The estimate produced in the proof is very crude. There are two 

basic factors influencing the cost of a ~ ,  ~2: 
(A) simulation time, the cost of 

2o-- w- 
END 

and (B) clock time. The clock time, (B), has two subeosts: (i) computation time 
while the clock is still needed, and (ii) overrun time, the time the clock keeps 
running after it is no longer needed (after $~ halts). The cost of (i) is inescapable 
but is minimized by computing it in parallel. This cost is reflected in the factor 
4hi.Z,  the time spent outside of $i .  Notice that  the (B) cost depends on hi ,  an 
index reflecting the complexity of the clock. The cost (ii) can be eliminated in 
the case of SR and it will allow us to reduce the value of the constant C,: in (a). 
This is done by placing "if H = 0 then + d" immediately after "H ~ 0" in 
~+,  where + d  refers to the output statement which is outside of all loops. 
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The simulation cost (A) depends on the "structural  complexity" of ~bl measured 
in terms of the number and distribution of negative go to's. The value of Z, which 
determines the nondirect simulation cost as well as the clock cost, actually measures 
the number of times that  negative go to's are executed. Thus if there are few 
negative go to's, then t~b~+( ) and t4~i( ) may be very close. The topic of structural 
complexity and efficiency will be discussed further in Subsection 5.3. 

In comparing the structure restrictions on a~l and/~i2 we see that/3i2 has a larger 
nesting complexity than a ~ .  Furthermore,  if tO~(x) _< f~cP)(x) for all x and n _> 2, 
we know that  there is a ~ C L.  for ¢ i ( ) .  How does the efficiency of ~i compare 
with that  of/~2 ? We can say the following. 

THEOREM 5.2. I f  qbi( ) C 6t ~ and ~ i ( x )  _< f,,(P)(x) for all x and for n > 2, then 
3l~i ~ L~ such that ~ (  ) ~- ~ (  ) and 

t~j(x) < s(max{x, ~i(x)})  for all x, 

where s(x) = 2~.x. 
PROOF. Replace the two innermost nested loops of the program/~i of Theorem 

5.1 with 

DO X 

DO Z 
Z ~ Z + i  
END 
¢~* 

END 

The resulting program has nesting n as desired, and its run time behaves as claimed 
for reasons similar to those detailed in Theorem 5.1. Q.E.D. 

This theorem illustrates another aspect of the trade-off between structural and 
computational complexity. In summary, the theorems of this section have de- 
termined the cost of putt ing programs into certain normal forms or restricted forms. 

5.2. Min imum Growth Rates. The main theorem was proved with the restriction 
that ~i(x)  > x for all x. This restriction is necessary because Loop programs con- 
structed as in the proof cannot run in less than x steps. For GR functions, running 
times below x are possible if the base functions, A8, are all assigned a cost of one 
step. However, all languages mentioned, G3, GR, SR, Algol-R01, and Loop, have a 
strong minimum growth rale in the following sense: there is a recursive monotonic 
increasing function ~( ) such that  if l i m ~ ,  inf ¢i(x) = oo, then tCi(x) _> X(x) for 
all x except possiblythose in a finite set F (write e.f.s, for except on a finite set). Tha t  
is, if the run times grow, they must grow at least at the rate of ~ ( ) .  Given a strong 
min growth rate ~( ) for the general recursive language GR and the time measure, 
we know: 

COROLLARY 5.2. There is a recursive function ~-1 such that for all Oi( ) E (R 1 
there is an ai( ) = 4~i( ) such that taj(x) _< ~-l(max{x, tCi(x)}) for all x. 

THEOREM 5.3. GR and G3 have strong minimum growth tales. 
PROOF. We prove first that  G3 has a strong min growth rate ~ (  ) and then show 

that growth rate in GR can be bounded in terms of ha • 
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(1) The strong minimum growth rate for G3 is ~3(x) = x. To prove this, con- 
sider any one argument G3 program ¢4 (suppose input is X, output  is Y). To de- 
termine the minimum growth rate  we ask how few steps q)~ can take on input x and 
still have a growing run time. This can be estimated by working backward; given a 
run time value, ~ i ( x )  = k, how large can x be? 

I f  tq~(x) = k, then we can write down a finite tree of all possible paths of execu- 
tion of length k (if there are no conditionals, then the tree has only one branch).  

On the edges after each decision node, the condition on the variable being tested 
is written down. Since we are estimating x, we need to record only the condition on 
x. These are always of the form X - n = 0 or X - n > 0 since the conditional is, if 
X re 0 then . We now consider two possible types of terminating branches in the 
execution tree ( the branch is terminating if it causes OUT Y as the last node).  

(A) The last decision on this pa th  was X - n = 0. In  this case n _< k because 
at  most k operations can be performed on X. Therefore, the maximum value of X is 
k and we conclude tha t  x < k; so the growth rate is tel(k) > k, and the growth func- 
tion is ~3(x) = x. 

(B) The last decision on the pa th  was X - n > 0. In  this case, for all x > n the 
program terminates  in k steps. Therefore lim inf ~ ( x )  < ~ which violates the 
hypothesis. So no such pa th  exists. 

Since only case A can hold, the growth rate is X~(x) = x. 
(2) To establish a growth rate  for GR, notice tha t  since G R  can be translated 

uniformly into G~, there is for each G R  arithmetic function (say x -" y) a cost 
si(x, y) in terms of G3 • If  tCi(x) = y, then the simulation cost using G3 can be de- 
termined. Let S(x ,  y) = ~ = 1  si(x, y) for p the number  of ari thmetic instructions 
of GR. Then S( ) bounds the cost of simulating any G R  arithmetic operation. Thus 
since S(x ,  y) is monotone in x, y, the simulation cost will be at  most S(v l ,  v~) A- 
S(v2, v2) + " • -4- S(v~,  v~), where v~ is the maximum value in any variable at 
step i. 

This maximum value v~ can be determined as a function of v0, the maximum initial 
value, and y the number  of steps. The t ime measure { ~ (  ) } has a speed limit, sl, that  
is, in y steps a program with maximum initial value v0 cannot produce a value larger 
than sl(vo, y) .  Thus after y steps, v~ _< sl(vo, y) .  Since S( ) is monotone the value 
y. S(sl(vo, y), sl( vo , y) ) = t( vo , y) will be the maximum number  of simulation steps 
required. The function t( ) is increasing in v and y, and because of the e.f.s, condi- 
tions on min growth rate we need only consider T(y )  = t(y, y) .  Since T is increas- 
ing, T -1 is defined. 

The minimum growth rate in GR, say ~, must satisfy X(x) > T-~(h~(x) ) e.f.s. 
Q.E.D. 

The idea of a speed limit which appears in this proof will be of interest to us in 
Section 6, on abstract  subrecursive complexity measures. 

To finish this section we note tha t  Theorem 5.1 is not constructive in the sense 
that  given ~ we cannot determine n~ and p~ effectively. 

THEOREM 5.4. (a) There is no algorithm to determine for any GR program ¢i 
whether Ok( ) ~ (R 1. I f 4~i( ) C ~ ,  then there is an n such that 3 p  and * tCi( x ) < f~P) ( x ) 
for all x. (b) However, given the information that OOi( ) C (R ~, there is no algorithm to 
determi~e an n satisfying . .  ( c) Moreover, given the information that Oi( ) C ~ , there 
is no algorithm to find the least p satisfying *. 

PROOf. Case (a) :  This is a well-known fact. I t  is proved by embedding the 
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halting problem in the decision. Namely design ¢~(i.n) such that  on input x it runs 
O,,(n) for x steps. If this halts, it then computes a nonprimitive recursive function. 
If it does not, halt, it computes the successor function X ~ X -~- 1. Knowing whether 
0,(i0..~/ ~ 611 is equivalent to knowing whether 0~(n) J,. 

Cases (b) and (c) are similar. 

5.3. Speed- Up Theorem for 611. One of the most interesting theorems in the theory 
of computational complexity is Blum's "speed-up" theorem. 

THEOREM5.5. Foral lr(  ) ,a(  ) i n61 there i san f (  ) ~ 61suchthat 
(i) f (x)  > a(x) e.f.s., 

(ii) for all OOii( ) = f ( ) ,  there is a 4)ii+,( ) = f(  ) such that r(x, t41i+~(x) ) > 
t4~j(x) e.f.s. 

This theorem is proved in Blum [1] and Hartmanis and Hopcroft [13]. 
This says that  there are peculiar functions whose computation time can be "sped 

up" by an arbitrary amount r( ) almost everywhere. However, Blum has shown 
that the speed-up cannot be effective in the following sense. 

THEOREM 5.6. Let r( ) C 6l be any su.l~ciently large funnction. Let f (  ) C 61; then 
there does not exist a program 7r such that i f  ¢ i ( )  = f ( ) ,  then 7r(i) halts 
and r(x, t¢~(i)(x)) < t4~i(x) e.f.s, andrh,(i)( ) = f ( ) .  

In the case of GR programs and the time measure, {tCi( )}, "sufficiently large r"  
means r(x, y) > y2 e.f.s. Thus there is no way to go effectively from ~bii to 4~i~+. for 
all n. 

The noneffectiveness of the speed-up means that  it is impossible to exhibit ex- 
amples of square speed-up in GR. For the purpose of illustrating the speed-up 
theorem, this is disappointing. (In fact from a constructive point of view, the result 
is a "non-speed-up" theorem.) One might thus ask whether square speed-ups could 
be illustrated in the Loop language or some subrecursive language where the struc- 
ture is simple. This question has occurred to several people. The first step in answer- 
ing it is to prove an 611-speed-up theorem using a simple language like Loop. One 
would aim to prove: 

THEOREM 5.7. For all r( ) , a (  ) C 611 there is an f (  ) C 611 such that f(  ) > a( ) 
e.f.s., and for all ai~( ) = f (  ) there is an aii+~( ) = f ( ) such that r(x, taii+~(x) ) < 
taij(x) e.f.s. 

This theorem cannot be proved by carrying out the Blum [1] proof directly to 
6t ~. It can, however, be proved using different methods, for example, those in [12] 
and [17]. However, it has not been shown tha t  this 61a-speed-up is noneffective. 

From Theorem 5.1 it is possible to easily prove the above Theorem 5.7 and to 
prove directly that  for sufficiently large r the speed-up cannot be effective. Namely, 
the proof is to apply Blum's proof for a given r( ) C 611 to yield an f(  ) C 611 func- 
tion with r( ) speed-up in GR. Then by Theorem 5.1 the SR programs also have r 
speed-up for r(x, y) > y2 e.f.s. Finally the speed-up cannot be effective in SR be- 
cause it would lead to an effective GR speed-up by the following argument. 

In more detail, suppose 7r speeds up SR programs in the sense that  if ai( ) = f( ) ; 
then 7r(i) halts and r(x, ta~(i)(x)) < tai(X) e.f.s. Then define a program ~ in GR 
which uses a fixed SR way to c o m p u t e r ( ) ,  say al • Given ~ ,  ~ assumes that  4~( ) = 
f( ) and that  tqSi(x) < tai(x) e.f.s. Therefore, using a boundf~ p) such that  ray(X) < 
f~P)(x) for all x, it produces the image program $~ and the simulation program 
ap,(~,~.p) according to the method of Theorem 5.1. Now if 4~i( ) = f ( ) ,  and 4~i is 
reasonably fast, i.e. tCi(x) < f~P)(x), then r(x, tc~,(~(~,~,~))(x)) < ta~(i,~.~)(x) 
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e.f.s. To handle the case when ¢i( ) = f(  ) but ~bi( ) is slow (large), we modify 
a~l(~.~,~) so that  if time f~P) is exceeded, then a,(i)(x) is computed. Call the new 
image a~,~(i,,,~) . Now the program a ,  is an r speed-up of any ~b~( ) = f ( ) .  

The same arguments will work for pure Loop, but now the "sufficiently large r '~ 
must be increased to compensate for the simulation of x "- 1. 

SR k GR 
0~--- 0 

1 

i 

0 , 0  id 

diagram commutes 

The situation is summarized by the above diagram. The map k is the translation 
into SR given by Theorem 5.1. The downward maps, ~r, ~ represent the hypothetical 
"acceleration functions" (i.e. functions which produce speed-up). 

5.4. RELEVANCE TO THE " G o  T o "  CONTROVERSY. W e  have studied certain 
facets of program structure found in high-level languages like Fortran, Algol, and 
PL/ I .  The use of the more sophisticated languages like Algol and P L / I  has caused 
a certain controversy over the need for "go to's." The motivation for the contro- 
versial discussions is the fact that  the use of "go to 's" in Algol destroys the logical 
simplicity of programs and makes description of the computation difficult. There- 
fore, it is desirable to minimize their use. The question arises of whether they 
can be eliminated entirely without unbearable sacrifice [15]. 

The answer to the simple question of whether they can be eliminated at all is a 
trivial yes. Using the Kleene normal form we can express every number theoretic 
computation ¢~ as Ck(i) = 

IN I,  X 
DO W H I L E S  = 0 
Y ~ - - Y + I  
S ~-- T(1, X,  Y) 
END 
Z ~-- U ( Y )  

OUT Z 

where T( ) is the computation predicate. The T-predicate can be computed in Loop, 
and we know that  Loop does not need any conditionals. But this answer is unin- 
teresting. 

We can offer more enlightening comments on the situation. Consider the follow- 
ing "go-to-free" languages 

General recursive: 

DO DOWH 
(1) [As, P4, ( ~ ) ,  END, END, 

DOWH 
(2) [+1,  - 1 ,  ~0 ,  ( ~ ) ,  END] 

Subrecursive: 
DO 

(3) [As, P4, ( ~ ) ,  END, E] 

E, R] Algol-gf 

G~-gf 

SR-gf 
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DO 
(4) i + l ,  - 1 ,  #0 ,  ( ~ ) ,  END] Loop~-gf 

DO 
(5) [ + l ,  0, ( ) ,  #0 ,  ( ~ ) ,  END] Loop-gf 

To study the effects of the go to on efficiency, one might investigate the relative 
efficiency of these languages and their counterparts with go to's. 

For example, we can immediately see that  using the Kleene normal form, a pro- 
gram in G~-gf can mimic a G3 program within a fixed cost, C, in size and h ( ) in 
efficiency. 

An interesting question is whether a more reasonable simulation works in this 
context to give a small efficiency factor h ( ) ,  like h(x) = 2x or log (x) + x. 

To prevent simple answers to the simulation problem, such as we have given 
here in Section 5 (by using only the Loop part  of the language and appealing to 
Theorem 5.1), one could investigate the efficiency of the program which uses a mini- 
mal ~umber of DO-loops. This will force use of the nested conditional as much as 
possible. 

For the subrecursive languages, the comparison between go to and go-to-free ver- 
sions is decisive. Using the methods of Section 5 we can simulate forward go to's with 
nested conditionals without decreasing efficiency by more than a constant factor. 
The cost ill terms of size between SR and SR-gf is at most (l 2 + 5 . l ) / 2  where 1 = 
I a~ [. The method of translation, in brief informal terms, is as follows. Move all go to's 
from inside loops by using a statement like * in Theorem 5.1 to get control outside 
the loop. Then put  the conditional after the E N D  of the loop. Now given the con- 
ditional, "if v # 0 then + C " ,  followed by statement s, where + C  refers to state- 
ment ~, replace the conditional by, "if v # 0 then [~,end] else [s,end]", where 
It,end] refers to the segment from statement t to the end of the program. 
Such a translation does not increase the number of loops, only the length of the pro- 
gram and the number of conditionals (their number at most doubles). 

This result is not at all practical, but  it allows us to roughly quantify the value of 
go to statements in a subrecursive language. 

6. Conclusion 

Although many of the results here are interesting or difficult only because of the 
special nature of the languages involved, e.g. Theorem 5.1 for Loop, the general 
principles (relative efficiency, simulation, parallelism, clock mechanisms, etc.) apply 
to a wide class of computing systems (machines and//or languages). 

A more abstract theory of subrecursive computing systems would not only clarify 
the extent of this generality, it would render the whole approach to subrecursive 
phenomena more palatable. I t  would also help isolate the critical features of the 
proofs and constructions. 

For these and numerous other reasons, we would propose an abstract t reatment  
of certain aspects of concrete subrecursive complexity theory. This is a difficult 
matter to handle, and we hope eventually to contribute to an adequate treatment.  
For the moment we speculate on one approach to the area and suggest some prob- 
lems. These comments should also shed a more general light on Sections 2-5. 

Let £ be the subrecursive class of functions which we intend to characterize, say 
is an r.e. subset of ~. We might begin with an indexing 
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: ~" ~ £ C (R obtained from ~b: ~r ~ (p~, 

obtained by selecting a subset of {0i( )} by a function of r. Thus a~ = a(n)  = 
O(r(n)) = O,(n), so a: 2~ -+£ .  Let  mai(x) = mC,<i>(x) for all x. This defines a 
measure A = { m a i (  )}. 

There are certain obvious restrictions that  must be placed on Imam} for it to 
qualify as a subrecursive measure. Among the desirable attributes would be 

(a) 3 m( ) E £ such that  ma~ = a,~(~). Thus the measure is syntactically de- 
finable within the class 2. 

(b) ti ,  x, y M(r( i) ,  x, y) E £. The measure function restricted to ai belongs to 
£. 

(c) 3 s( ) E £ such that  ai(x) < s (ma~(x)) for all x. Thus the measure has a 
speed limit in £.  

(d) 3 h( ) E 2 such that  ma,~(i)(x) _< h(ma~(x), x) for all x. Thus the com- 
plexity functions are h( ) honest for some h( ) in £. 

These properties are analogues of the Blum axioms. Blum's Axiom 1 forces the 
measure to have arbitrarily large complexity functions, e.g. it prevents O~(x) = 0 
for all x from being a measure. This is accomplished here by (c).  

Among the consequences desired for the subrecursive measures are those theorems 
of the general theory which hold in the class 2. For example, when 2 = (R 1 we want 

(1) speed-up theorem, 
(2) compression theorem (upward diagonalization theorem or jump theorem 

when stated in terms of classes), 
(3) gap theorem, 
(4) honesty theorem, 
(5) union theorem. 
Many important  abstract properties can be established using the recursive rela- 

tionship [1, Th. 2] in the following manner. Prove the result for T a specific meas- 
ure like time, then show that  the result is measure independent, and finally use the 
recursive relationship to carry over the result to any other measure, i.e. speed-up 
theorem [2 and 13]. 

Using the same technique with abstract subrecursive measures requires an £-re- 
cursive relationship. £-recursive relationships are defined as follows: If A = {mai} 
and B = {m~i} are £-measures, then there is an r in £ such that  

(i) mat(x) _~ r(mfli(x), x) e.f.s., 
(it) m~(x)  < r(mai(x), x) e.f.s. 

This at tr ibute does not follow from (a ) - ( c )  because it involves two formalisms 
while the others are all " internal"  or "coordinate-free" properties. In the Blum 
case, recursive relationship holds because the indexings are acceptable. The satis- 
fying fact is tha t  acceptable indexings are given an intrinsic or coordinate-free 
definition. A satisfactory definition of 2-acceptable indexing would presumably 
lead to the £-relationship among measures. 

Some interesting observations can already be made about (a),  (b),  and (c) as 
possible axioms. First, they are independent but  insufficient to guarantee either the 
compression theorem or a recursive relationship between measures. Even (a),  (b),  
and (c) plus compression do not guarantee a recursive relationship. However, if £ 
is closed under t~_< and iteration, then (a) implies the gap theorem. In [16] Lewis 
shows that  (a) ,  (b) ,  and (c) allow non-r.e, complexity classes. 
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Results like Theorem 5.1 would follow from the existence of the function T~(i, x, y) 
of Section 4 in ~ and from a parallel cost axiom of the form 

(d) 3 p  C ~ V i V j ,  ma~(a~) _< p(mai(  ) , m a j (  ) ) .  

The function p( ) represents the cost of parallelism in the formalism. For general 
recursive formalisms and measures such as {t~i( )}, p( ) Mways exists because of a 
recursive relationship with models like multitape Turing machines. However, there 
are subrecursive formalisms without tha t  property (at first sight Loop might appear 
to be one). 

Appendix 

Here we prove the bounding lemma for Loop. The  bounding lemma for SR follows 
the same plan, so it is omitted. 

BOUNDING LEMMA FOR LOOP. I f  ~i( ): ~V "~ ~ 2~ p, ~i C L,~, then Hi(x1 , "" ", 
xn)~ < f~l~il) (max {Xl, . . . ,  xn} + 2). 

PROOF. We prove the theorem by double induction, on depth, n, and within 
depth on length, I 2i I. 

(1) Assume that  depth is 0, /~i C L0. 
(a) Let I ~i I = 1. Then ~i is either X ~-- X + 1, Y ~-- X, or X ~-- 0. Clearly 

the maximum value is/3i(x) = x + 1 and fli(x) ~ fo(x) = x + 1 for all x. 
(b) Assume the result for I ~i ] = n, to prove it for ] ~i [ = n + 1. Since ~ ~ L0, 

it has the form s~ ; s2 ; • • • ; sn ; sn+l, where each si is an assignment. By induction, the 
maxinmm value in any register in Sl ; " . ;  sn is f in)(max {Xl, . . . ,  xn} + 2). If 
Sn+l does not increase any output  variables, say y~, then clearly the result holds. If 

- - - ( n )  not, thens~+~is Y~- -  Y i +  1. So Yi is bounded by J~(J~ (max {Xl, . . . ,x~} + 2)) .  
Q.E.D. (step (1)) 

(2) Assume the result for H~ C Ln. To show it for ~i C L~+i : 
(a) Suppose Hi C L~+i and I/3i[ = 2(n + 1) + 1 (this is the minimum 

possible length for depth n + 1). Then Hi has the form 

DO X1 
B 
END 

where B is a program in L , .  Hence by assumption, 

B < f~l"l) (max {Xl ,  " ' ' ,  Xa} + ~). 

The program B computes a vector valued function, say 

(B(Z1, . . . ,  Zk)l , B (Z i  , . . . ,  Zk)2, " . ,  B (Z1 ,  . . . ,  Zk)q) = (Y1, "" ", Yq) 

0nly the outputs among Y1, "" ", Yq which are also inputs (i.e. occur among 
Z1, • •., Zk, call them feedback variables) can effect the output  of Hi as a function of 
X~. If there are no such outputs, then 

is equivalent to B and the result follows immediately. 
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Thus  assume some Y~ are also Z / s .  B y  including all input  var iables  among  the 
outputs ,  it is easy to describe the  t y p e  of i tera t ion specified by  DO X~ ; B; END.  
To  t h a t  end, form a new vec tor  va lued  func t ion /~  hav ing  the  same inputs  as B but 
including all Z~ and Yj among  its outputs .  S a y / ~  is 

( ~ ( z ~ ,  . . . ,  Z ~ ) l ,  . . . ,  ~ ( z ~ ,  . . . ,  z ~ ) ~ )  = (71, . . . ,  ?~) 

where  p > k, p > q. For  simplicity,  assume t h a t  Z~ = Y~ for i = 1, . . . ,  k. Then 
B is ob ta ined  f r o m / ~  by  selecting a subset  of ou tpu t s  and pe rmu t ing  them.  Clearly 
DO X~ ;/~; E N D  is no smaller  t h a n  D O  X~ ; B; E N D  in the  sense t h a t  for every Y~ 
the re  is a Ys such t ha t  Y~ = Y i .  

We  now presen t  a succinct no ta t ion  for DO X~ ; B;  E N D .  This  is nota t ion  for 
vec tor  i tera t ion of a s imple type .  

(i) /~(°)(Zx, . - . ,  Z~,)~ -- Z i ,  i = 1 , . . . ,  p. 
(it) 

(/~<" +" (Z~ • , - .  , Z ~ ) )  = 

(~(~(">(Z ) (Z )~1 1,  , Z p  i ,  ,B (~ )  . . .  Z . . .  . . . . . .  1 ,  ) p / , , 

B ( ~ < " ) ( z ~ ,  . . . ,  z ~ ) ~ ,  . . . ,  ~ < " ) ( z , ,  . . .  , z ~ ) ~ ) ) .  

Now we know by  definition of the  i te ra t ive  t h a t  

DO Xl 

E N D  

is (/~(x~)(Z~, . - .  , Z~) ). 

B y  the induct ion hypothesis ,  

/~(Z~, . . .  ,Z~) < f(n I~1) (max  {Zl,  . . .  , Z~} + 2) ~ h ( y ) ,  

where  h(y )  = f}l~l)(y) and y = max  {Zx, . . .  , Z~} + 2. So 

t}(x~)(Z~, . . .  , Z~) < h(X~)(y). 

B u t  

and  not ice 

Also 

h(Xl)(y) = f~Xl ' l~p(y)  

f~x~.l~p(y) _< fn+l(Y) if y > X i " I / ~  I- 

f~xl . l~p(y)  < ~(q~k)<o ~ _ j n + l ~ y j  if y > X 1 ,  

but  indeed y = max  {x l ,  . . .  , x~} -t- 2 > x~ for any  xi and the  loop var iable  X1 
has the  va lue  x~ for some i = 1, • • • , p. Hence  

• " _ ~((~l ) /max { x l ,  • , xn} -t- 2) J B ( x I ) ( Z ~ ,  • , Z p )  < > , , ÷ 1 ~  "" 

because y < m a x  {xl,  . . .  , xn} + 2. So the  result  for I ~i l  = 2 (n  -t- 1) + 1 holds 
with room to spare  ( I /~  [ is m u c h  larger  t h a n  necessary) .  

(b)  Assume the  result  for ]~ i l  _< re. To  show it for I fli t = m + 1: Either  
fl~ has  the  fo rm A;  B for I A [ > 0, I B [ > 0, A, B C Ln+i, or it has  the  form 
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DO X~ ; B; E N D  for B C L~. The latter case proceeds exactly as case (a) .  So we 
assume ~ has the form A; B. Then by the induction hypothesis on length we know 

A < ¢(la() ~(!st)ro _ j ~ + l  ( Y l ) ,  B _< j n + l  ~ v w ,  

where y l ,  y2 are the maxima of the inputs plus 2; so y2 _< max {xl, . . -  , x~} -t- 2, 
i = 1, 2. Notice, A; B is bounded by 

f(IBI)[~(IAI)[,, ~ ~(IAt+lBI) n+l \3n+1 \ylJ ) -- < J~+l (Yl) 

So the result holds. Q.E.D. 
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