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Announcements

The second assignment A2 is now complete and due March 16 at
2:59 PM.

This week, lectures today and Wednesday; single tutorial on Friday in
GB 248. In tutorial, solutions for questions in the term test can be
dicsussed.
So far, I only have 10 proposals for the critical review assignment. I
repeat what you need to do.

I Due date: March 30
I You need to find a conference or journal article that has appeared in the

last 3 years; to be precise lets say, has appeared since January 1, 2017.
I The article can be about any topic in the coursei but I must approve

your choice.
I You are to provide a critical review of the article as if you were on

program committee or a reviewer for a journal. I have elaborated on
this assignment in the Monday, February 26 lecture. I will discuss it
again today.

I Please send me your suggestion for the paper you will critically review.
If you sent me a suggestion and I did not reply then please resend.
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This weeks agenda

Finishing Chapter 19: Influence spread in a social network

Choosing a set of initial adopters. An experimental study of some
methods for chooing an initial set of adopters.

Further considerations:

1 Common knowledge vs local knowledge
2 Competitive influence spread
3 Adoping both techologies

Chapter 21: Epedemics and the spread of infection in a contact
network
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Choosing influential adopters

Suppose we wish to spread a new technology and to do so we have
money to influence some “small” set of initial adopters (e.g. by giving
away the product or even paying people to adopt it).

Even in this simple model of (non-competitive) influence spread, and
even if we have complete knowledge of the social network, it is not at
all clear how to chose an initial set of adopters so as to achieve the
largest spread.

Furthermore the spread process could be much more sophisticated.
I For example, adoption by a node might be a more random process (say

adopting with some probability relative to the nodes threshold) and
maybe the influence of neighbors first increases and then decreases
over time. And maybe u can have a negative influence on v in say
signed networks.
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Choosing influential adopters continued

Suppose we have funds/ability to influence k nodes to become initial
adopters.

I We can try all possible subsets of the entire n = |V | nodes and for
each such subset simulate the spread process.

I But clearly as k gets larger, this “brute force” becomes prohibitive for
large (and not even massive) networks.

It turns out that the problem of the optimum set of initial adopters in
many settings is an NP-hard problem.
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Can we determine a “good” set of initial adopters?

For even simple models of information spread as being discussed here,
complexity theory (the P vs NP conjecture) argues that we cannot
efficiently choose the best set of initial adopters. There is a class of
networks for which (assuming the P 6= NP conjecture) it is not
possible to obtain an approximation within a factor nc for any c < 1.

Instead we will identify properties of a spread process that will allow a
good approximation: a good set of initial adopters that will do
“almost as well” as the best set.

Note: What follows is a discussion as to how to choose a set of initial
adopters by a relatively efficient approximation algorithm when making
some assumptions on the spread process. However, as we discussed we
would need much more efficient methods for massive networks.
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Influence maximization models; monotone
submodular set functions

Some spread models have the following nice properties.

Let f (S) be size (or more generally a real value benefit since some nodes
may be more valuable) of the final set S of adopters satisfying:

1 Monotonicity: f (S) ≤ f (T ) if S is a subset of T

2 Submodularity: f (S + v)− f (S) ≥ f (T + v)− f (T ) if S is a subset of T

We also usally assume that f (∅) = 0. Such normalized, monotone,
submodular functions arise in many applications.

The simple threshold examples considered thus far are monotone
processes but are not submodular in general. Are these contrived
worst case network examples?

But some variants of the threshold model and related models do
satisfy these properties. We consider two such stochastic models.
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Linear threshold model

We have an edge weighted (undirected or directed) network where
weight w(u, v) represents the relative influence of node u on node v
(e.g., a quantitative version of weak and strong ties and possibly also
dependent on the “reputation” of node u).

Now each nodes threshold q(v) is chosen randomly in [0, 1] to model
lack of knowledge as to how easy it is to influence a given individual.

A node v adopts A if the sum of all edge weights into v exceeds the
randomly chosen q(v).

Goal: find an initial set of k adopters so as to maximize the expected
number (or benefit) of eventual adopters. (This is a stochasitic
process so that we are trying to optimize the expected value of the
process.) At time t = 0, only the initial adopters are influenced.

Aside: We often use the language of disease spread and say “infected
nodes” rather than “already influenced nodes”.
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The linear threshold model continued

Each node v chooses a threshold tv randomly from [0, 1].

Each edge (u, v) has assigned weight wuv from [0, 1] such that

∑

u→v

wuv ≤ 1.

In each step t, a node v is infected if the weighted sum of incident
edges coming from infected neighbors exceeds threshold.
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Independent cascade influence model

We again have an edge weighted network (as in threshold model) but
now the weights p(u, v) ≤ 1 represent the probability that node u will
influence node v given one and only one chance to do so.

That is, if node u adopts A at time t, then with probability p(u, v),
node v will adopt v at time t + 1.

After this, node u will not have another opportunity to influence v .

Goal for both threshold and cascade models: to find initial set of
adopters to maximize the expected number of eventual adopters.

Threshold and (especially) cascade processes are motivated by models
for the contagious spread of disease. Should disease spread and
influence spread should be governed by similar processes?

I See http://www.economist.com/blogs/babbage/2012/04/

social-contagion
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Comment from Economist article
Epidemiology-based models suggest that the most important factor in
determining whether an idea (in this case, to join Facebook) will spread to
a given individual is how many other people the individual knows who have
already been exposed to it. Just as someone is more likely to contract the
flu if lots of his friends have been infected, the theory was that the more
friends someone has that have signed up to Facebook, the more likely he
ought to be to join.
Instead, the researchers found that the best predictor of whether someone
would join Facebook was a subtly different factor: the number of distinct
groups that an individual could link up with through the site. Most people
have more than one social network: a group of one’s old school friends, for
instance, is likely to have little contact with one’s work colleagues, who in
turn won’t have much to do with one’s extended family. The more such
groups were present on Facebook, the greater the probability that an
individual would join. In fact, once they had controlled for this effect, the
researchers found that, if anything, users became slightly less likely to join
as the number of Facebooked kith and kin rose.
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The Independent Cascade Process

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors indepedently with probability puv .

a

b c

d e f

a

1
2

1
2

1
3

1
5

1
2

2
3

t = 0

12 / 52



The Independent Cascade Process

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors indepedently with probability puv .

a

b c

d e f

a

b c

1
2

1
2

1
3

1
5

1
2

2
3

t = 1

12 / 52



The Independent Cascade Process

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors indepedently with probability puv .

a

b c

d e f

a

b c

e

1
2

1
2

1
3

1
5

1
2

2
3

t = 2

12 / 52



The Independent Cascade Process

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors indepedently with probability puv .

a

b c

d e f

a

b c

e

1
2

1
2

1
3

1
5

1
2

2
3

t = 3

12 / 52



How to select a good set of initial adopters
For an initial set S of adopters, let f (S) be the expected number of
eventual adopters. While in general it is computationally hard to find
an optimal set S of initial adopters, for the stochastic linear threshold
and independent cascade models, f (S) is a nomalized, monotone,
submodular function.

This allows for a very simple “greedy” algorithm that (provably)
selects a set S such that f (S) is at least within a factor (1− 1

e ) ∼ .63
of optimality.

The greedy strategy is to iteratively add (to whatever nodes S have
already been selected) one new initial adopter v so as to maximize
the expected marginal gain f (S + v)− f (S).

We need to simulate the stochastic process for sufficiently many trials
to determine the next node to add. (When different nodes have
different utility values, accurate simulation requires that the ratio of
such values is reasonably bounded.)
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An experimental study comparing methods: Kempe,
Kleinberg, Tardos

To test the usefulness of the models being studied, Kempe et al.
compare the greedy by best expected marginal gain algorithm with
three other simple (all adding one initial node at a time) methods
that do not require simulating the process.

Namely, they compare against:
I Greedy by highest degree first
I Greedy by centrality, i.e. by best average path length
I Random choice of adopters

The experimental data set is an undirected multi-graph based on
jointly authored papers by physicists.

Here we have r edges between u and v if they have been co-authors
on r papers.

I In the threshold model, weights w(u, v) are chosen proportional to the
multiplicity of edges between u and v .

I In the weighted cascade model, probabilities are set proportionally.
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While processing the data, we corrected many common types of
mistakes automatically or manually. In order to deal with aliasing
problems at least partially, we abbreviated first names, and unified
spellings for foreign characters. We believe that the resulting graph
is a good approximation to the actual collaboration graph (the sheer
volume of data prohibits a complete manual cleaning pass).

The Influence Models. We compared the algorithms in three dif-
ferent models of influence. In the linear threshold model, we treated
the multiplicity of edges as weights. If nodes u, v have cu,v parallel
edges between them, and degrees du and dv , then the edge (u, v)
has weight cu,v

dv
, and the edge (v, u) has weight cu,v

du
.

In the independent cascade model, we assigned a uniform proba-
bility of p to each edge of the graph, choosing p to be 1% and 10%
in separate trials. If nodes u and v have cu,v parallel edges, then
we assume that for each of those cu,v edges, u has a chance of p
to activate v, i.e. u has a total probability of 1 − (1 − p)cu,v of
activating v once it becomes active.

The independent cascade model with uniform probabilities p on
the edges has the property that high-degree nodes not only have
a chance to influence many other nodes, but also to be influenced
by them. Whether or not this is a desirable interpretation of the
influence data is an application-specific issue. Motivated by this,
we chose to also consider an alternative interpretation, where edges
into high-degree nodes are assigned smaller probabilities. We study
a special case of the Independent Cascade Model that we term
“weighted cascade”, in which each edge from node u to v is as-
signed probability 1/dv of activating v. The weighted cascade
model resembles the linear threshold model in that the expected
number of neighbors who would succeed in activating a node v is
1 in both models.

The algorithms and implementation. We compare our greedy
algorithm with heuristics based on nodes’ degrees and centrality
within the network, as well as the crude baseline of choosing ran-
dom nodes to target. The degree and centrality-based heuristics are
commonly used in the sociology literature as estimates of a node’s
influence [30].

The high-degree heuristic chooses nodes v in order of decreasing
degrees dv . Considering high-degree nodes as influential has long
been a standard approach for social and other networks [30, 1], and
is known in the sociology literature as “degree centrality”.

“Distance centrality” is another commonly used influence mea-
sure in sociology, building on the assumption that a node with short
paths to other nodes in a network will have a higher chance of influ-
encing them. Hence, we select nodes in order of increasing average
distance to other nodes in the network. As the arXiv collaboration
graph is not connected, we assigned a distance of n — the number
of nodes in the graph — for any pair of unconnected nodes. This
value is significantly larger than any actual distance, and thus can
be considered to play the role of an infinite distance. In particu-
lar, nodes in the largest connected component will have smallest
average distance.

Finally, we consider, as a baseline, the result of choosing nodes
uniformly at random. Notice that because the optimization problem
is NP-hard, and the collaboration graph is prohibitively large, we
cannot compute the optimum value to verify the actual quality of
approximations.

Both in choosing the nodes to target with the greedy algorithm,
and in evaluating the performance of the algorithms, we need to
compute the value σ(A). It is an open question to compute this
quantity exactly by an efficient method, but very good estimates
can be obtained by simulating the random process. More specif-

ically, we simulate the process 10000 times for each targeted set,
re-choosing thresholds or edge outcomes pseudo-randomly from
[0, 1] every time. Previous runs indicate that the quality of approx-
imation after 10000 iterations is comparable to that after 300000 or
more iterations.

The results. Figure 1 shows the performance of the algorithms
in the linear threshold model. The greedy algorithm outperforms
the high-degree node heuristic by about 18%, and the central node
heuristic by over 40%. (As expected, choosing random nodes is
not a good idea.) This shows that significantly better marketing
results can be obtained by explicitly considering the dynamics of
information in a network, rather than relying solely on structural
properties of the graph.
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Figure 1: Results for the linear threshold model

When investigating the reason why the high-degree and central-
ity heuristics do not perform as well, one sees that they ignore such
network effects. In particular, neither of the heuristics incorporates
the fact that many of the most central (or highest-degree) nodes
may be clustered, so that targeting all of them is unnecessary. In
fact, the uneven nature of these curves suggests that the network
influence of many nodes is not accurately reflected by their degree
or centrality.

Figure 2 shows the results for the weighted cascade model. No-
tice the striking similarity to the linear threshold model. The scale
is slightly different (all values are about 25% smaller), but the
behavior is qualitatively the same, even with respect to the exact
nodes whose network influence is not reflected accurately by their
degree or centrality. The reason is that in expectation, each node is
influenced by the same number of other nodes in both models (see
Section 2), and the degrees are relatively concentrated around their
expectation of 1.

The graph for the independent cascade model with probability
1%, given in Figure 3, seems very similar to the previous two at
first glance. Notice, however, the very different scale: on average,
each targeted node only activates three additional nodes. Hence,
the network effects in the independent cascade model with very
small probabilities are much weaker than in the other models. Sev-
eral nodes have degrees well exceeding 100, so the probabilities
on their incoming edges are even smaller than 1% in the weighted
cascade model. This suggests that the network effects observed for
the linear threshold and weighted cascade models rely heavily on
low-degree nodes as multipliers, even though targeting high-degree
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nodes is a reasonable heuristic. Also notice that in the independent
cascade model, the heuristic of choosing random nodes performs
significantly better than in the previous two models.
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Figure 3: Independent cascade model with probability 1%

The improvement in performance of the “random nodes” heuris-
tic is even more pronounced for the independent cascade model
with probabilities equal to 10%, depicted in Figure 4. In that model,
it starts to outperform both the high-degree and the central nodes
heuristics when more than 12 nodes are targeted. It is initially sur-
prising that random targeting for this model should lead to more
activations than centrality-based targeting, but in fact there is a nat-
ural underlying reason that we explore now.

The first targeted node, if chosen somewhat judiciously, will ac-
tivate a large fraction of the network, in our case almost 25%.
However, any additional nodes will only reach a small additional
fraction of the network. In particular, other central or high-degree
nodes are very likely to be activated by the initially chosen one, and
thus have hardly any marginal gain. This explains the shapes of the
curves for the high-degree and centrality heuristics, which leap up
to about 2415 activated nodes, but make virtually no progress after-
wards. The greedy algorithm, on the other hand, takes the effect of
the first chosen node into account, and targets nodes with smaller
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Figure 4: Independent cascade model with probability 10%

marginal gain afterwards. Hence, its active set keeps growing, al-
though at a much smaller slope than in other models.

The random heuristic does not do as well initially as the other
heuristics, but with sufficiently many attempts, it eventually hits
some highly influential nodes and becomes competitive with the
centrality-based node choices. Because it does not focus exclu-
sively on central nodes, it eventually targets nodes with additional
marginal gain, and surpasses the two centrality-based heuristics.

4. A GENERAL FRAMEWORK FOR INFLU-
ENCE MAXIMIZATION

General Threshold and Cascade Models. We have thus far been
considering two specific, widely studied models for the diffusion
of influence. We now propose a broader framework that simulta-
neously generalizes these two models, and allows us to explore the
limits of models in which strong approximation guarantees can be
obtained. Our general framework has equivalent formulations in
terms of thresholds and cascades, thereby unifying these two views
of diffusion through a social network.

• A general threshold model. We would like to be able to
express the notion that a node v’s decision to become ac-
tive can be based on an arbitrary monotone function of the
set of neighbors of v that are already active. Thus, associ-
ated with v is a monotone threshold function fv that maps
subsets of v’s neighbor set to real numbers in [0, 1], sub-
ject to the condition that fv(∅) = 0. The diffusion pro-
cess follows the general structure of the Linear Threshold
Model. Each node v initially chooses θv uniformly at ran-
dom from the interval [0, 1]. Now, however, v becomes active
in step t if fv(S) ≥ θv , where S is the set of neighbors of v
that are active in step t − 1. Note that the Linear Threshold
Model is the special case in which each threshold function
has the form fv(S) =

∑
u∈S bv,u for parameters bv,u such

that
∑

u neighbor of v

bv,u ≤ 1.

• A general cascade model. We generalize the cascade model
to allow the probability that u succeeds in activating a neigh-
bor v to depend on the set of v’s neighbors that have already
tried. Thus, we define an incremental function pv(u, S) ∈
[0, 1], where S and {u} are disjoint subsets of v’s neighbor
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nodes is a reasonable heuristic. Also notice that in the independent
cascade model, the heuristic of choosing random nodes performs
significantly better than in the previous two models.
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marginal gain afterwards. Hence, its active set keeps growing, al-
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The random heuristic does not do as well initially as the other
heuristics, but with sufficiently many attempts, it eventually hits
some highly influential nodes and becomes competitive with the
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sively on central nodes, it eventually targets nodes with additional
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dom from the interval [0, 1]. Now, however, v becomes active
in step t if fv(S) ≥ θv , where S is the set of neighbors of v
that are active in step t − 1. Note that the Linear Threshold
Model is the special case in which each threshold function
has the form fv(S) =

∑
u∈S bv,u for parameters bv,u such

that
∑

u neighbor of v

bv,u ≤ 1.

• A general cascade model. We generalize the cascade model
to allow the probability that u succeeds in activating a neigh-
bor v to depend on the set of v’s neighbors that have already
tried. Thus, we define an incremental function pv(u, S) ∈
[0, 1], where S and {u} are disjoint subsets of v’s neighbor

Experimental Results from Kempe, Kleinberg, Tardos (2003): “Maximizing the spread
of influence through a social network,” KDD-03.
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Some lessons to be learned about influence in a
social network (Chapter 19)

In population-level effects, it can be relatively difficult for a new
technology/product/idea to get past a tipping point

In contrast in social networks, new products/ideas (rumours) can
spread extensively and quickly.

But tightly knit communities (clusters) can stall the spread.

We saw in the early part of the course that weak ties are often bridges
or local bridges between different communities.

Hence such weak ties may convey some degree of awareness to
another community but not likely to change behaviour especially if
that change has risks as in political movements and high stakes
economic decisions.
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Further considerations (collective action)

Section 19.6 almost seems to have been (but was not) written after
events in the mideast (the Arab Spring starting in late 2010), Hong
Kong (initial protests in 2014 and the more recent demonstratiions),
demonstrations taking place in Venezuela (March 4, 2019 and
February 29, 2020), etc. and even some demonstrations in the US
and Canada (although so far relatively non-violent).

The discussion here begins to combine aspects of social network
interaction (e.g. transmitting information) with direct benefit
population effects (being part of a large demonstration).

In particular, the organization for demonstrations against a regime
can begin with discussions within a community but for someone to
participate, it usually takes some knowledge that there will be a
sufficiently large population wide participation.

On a smaller scale, when challenging a mayor or a CEO, the same
phenomena may be operating.
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Knowledge and common knowledge

Our first example of a tightly knit community blocking a complete
cascade occurred even when everyone knew the common threshold q.

A uniform threshold is not realistic in any reasonable size social
network.

I We might have a sense of the thresholds for our friends but not of all
their friends (and their friends friends, etc.)

The 3 and 4 node examples in Figure 19.14 illustrate the impact of
limited knowledge even when everyone knows the entire network but
only knows their friends and their own absolute (i.e. not fractional in
this example) thresholds.

To make this toy example a little more applicable, think of a company
with 4 vice presidents who all wish the Board of Directors would
remove the CEO. But they do not want to appeal to the Board unless
they know at least 3 vice presidents are calling for the removal of the
CEO.
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The impact of limited knowledge continued

Here threshold k means that the node (being me) will participate if at
least k people (including myself) will do so. So in the case of the 4
vice presidents, when will an “uprising” (i.e., calling for the Board to
remove the CEO)? The reasoning why an uprising in Figure 19.14 (b)
does not occur is perhaps somewhat subtle.584 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS
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(a) An uprising will not occur
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(b) An uprising will not occur
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(c) An uprising can occur

Figure 19.14: Each node in the network has a threshold for participation, but only knows
the threshold of itself and its neighbors.

is a principle that applies widely, not just in settings where a central authority is actively

working to restrict information. For example, a survey conducted in the U.S. in 1970 (and

replicated several times in the surrounding years with similar results) showed that while

only a minority of white Americans at that point personally favored racial segregation,

significantly more than 50% believed that it was favored by a majority of white Americans

in their region of the country [331].

A Model for the Effect of Knowledge on Collective Action. Let’s consider how the

structure of the underlying social network can affect the way people make decisions about

collective action, following a model and a set of illustrative examples proposed by Michael

Chwe [109, 110]. Suppose that each person in a social network knows about a potential

upcoming protest against the government, and she has a personal threshold which encodes

her willingness to participate. A threshold of k means, “I will show up for the protest if I

am sure that at least k people in total (including myself) will show up.”

The links in the social network encode strong ties, where the two endpoints of each link

trust each other. Thus, we assume that each person in the network knows the thresholds

of all her neighbors in the network, but — due to the risky nature of communication about

dissent in this society — does not know the thresholds of anyone else. Now, given a network

with a set of thresholds, how should we reason about what is likely to happen?

Let’s consider the examples in Figure 19.14, which show some of the subtleties that arise

here. Scaling down our notion of “uprising” to a size commensurate with these 3-4 person

examples, suppose that each node represents one of the senior vice-presidents at a company,

each of whom must decide whether to actively confront the unpopular CEO at the next day’s

board meeting. It would be disastrous to do so without reasonable support from the others,

so each is willing to confront the CEO provided that at least a certain number of them do

[Fig 19.14, E&K]
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End of Monday, March 9 Lecture

We ended with an example (Fig 19-14 in the text) illustrating the impacxt
of limited knowledge. In particular in figure Fig 19.14(b), why isn’t there
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of all her neighbors in the network, but — due to the risky nature of communication about

dissent in this society — does not know the thresholds of anyone else. Now, given a network

with a set of thresholds, how should we reason about what is likely to happen?

Let’s consider the examples in Figure 19.14, which show some of the subtleties that arise

here. Scaling down our notion of “uprising” to a size commensurate with these 3-4 person

examples, suppose that each node represents one of the senior vice-presidents at a company,

each of whom must decide whether to actively confront the unpopular CEO at the next day’s

board meeting. It would be disastrous to do so without reasonable support from the others,

so each is willing to confront the CEO provided that at least a certain number of them do
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Further considerations: competitive influence spread

In many economic, social, and political settings the spread of
influence is a competitive process.

It may be that both technologies (political factions, etc.) A and B are
competing for new adopters in a social network by promotion via an
initial set of adopters (people with vested interests, etc.).

There are many models for how such competition is resolved.

One possibility is to use the stochastic independent cascade model
and then the first technology (political faction, etc.) to have a “path
of adoption” succeeds (breaking ties in some manner).

That is, after the edge probabilities are instantiated, we consider the
shortest paths to a node (if any exist) from the initial adopters (party
faithful, etc.) to the initially uncommitted.
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The Wave Propagation Process

Two technologies A and B with their sets of initial adopters IA and IB .

Technology spreads according to the Independent Cascade process.

If a node is successfully infected at the same step t by both
I set of nodes VA that adopt technology A
I set of nodes VB that adopt technology B

it will adopt technology A with probability
|VA|

|VA|+ |VB |

z

x

y v

b

a

1

1

1

.5
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1

Example

Pr [v adopts A | x , z reached v ] = 1
2

Pr [v adopts A | x , y , z reached v ] = 1
3

What is Pr [v adopts A]?
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Further considerations: the “bilingual option”
In the advanced material (Section 19.7C), the possibility of a third
option is considered.

Here the model allows an individual to maintain both technologies
(languages, ideologies, cultural practices) but at a cost c .

Every individual now can choose to be unilingual (adopting just A or
just B) or to be bilingual adopting both (denoted AB).

Ignoring the cost, the coordination benefit (for each edge) is
represented in Figure 19.18.

594 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

v

w
A B AB

A a, a 0, 0 a, a
B 0, 0 b, b b, b

AB a, a b, b (a, b)+, (a, b)+

Figure 19.18: A Coordination Game with a bilingual option. Here the notation (a, b)+

denotes the larger of a and b.

r s u w yvxz

Figure 19.19: An infinite path, with nodes r and s as initial adopters of A.

It’s easy to see that AB is a dominant strategy in this game: why not be bilingual when

it gives you the best of both worlds? However, to model the trade-off discussed earlier, we

need to also incorporate the notion that bilinguality comes with a cost — the meaning of

the cost varies with the context, but the cost in general corresponds to the additional effort

and resource expenditure needed to maintain two different behaviors. Thus, we assume that

each node v will play a copy of this three-strategy Bilingual Coordination Game with each

of its neighbors; as in our models earlier in the chapter, v must use the same strategy in

each copy of the game it plays. Its payoff will be equal to the sum of its payoffs in its game

with each neighbor, minus a single cost of c if v chooses to play the strategy AB. It is this

cost that creates incentives not to play AB, balancing the incentives that exist in the payoff

matrix to play it.

The remainder of the model works as before. We assume that every node in an infinite

network starts with the default behavior B, and then (for non-strategic reasons) a finite set S

of initial adopters begins using A. We now run time forward in steps t = 1, 2, 3, . . .; in each of

these steps, each node outside S chooses the strategy that will provide it the highest payoff,

given what its neighbors were doing in the previous step. We are interested in how nodes

will choose strategies as time progresses, and particularly which nodes eventually decide to

switch permanently from B to A or AB.

An Example. To get some practice with the model, let’s try it on the infinite path shown

in Figure 19.19. Let’s suppose that nodes r and s are the initial adopters of A, and that the

payoffs are defined by the quantities a = 2, b = 3, and c = 1.

Here is how nodes behave as time progresses. In the first time step, the only interesting

decisions are the ones faced by nodes u and v, since all other nodes are either initial adopters

(who are hard-wired to play A) or nodes that have all neighbors using B. The decisions faced

Figure: A Coordination Game with a bilingual option. Here the notation (a, b)+

denotes the larger of a and b. [Fig 19.18, E&K]
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A concluding comment for chapter 19

The last sentence of the chapter makes the final comment:

Even small extensions such as the one considered here (the bilin-
gual option) can introduce significant new sources of complexity,
and the development of even richer extensions is an open area of
research.

Indeed, as we have already suggested, analytic and empirical studies
of influence spread in social networks is a field of significant research
interest impacting computer science, sociology, economics, and
political science.

24 / 52



Chapter 21: Epedemics and the spread of disease in
a contact network

The chapter first considers some simple models for how disease can
spread in a contact network that is, the social network (because the
nodes are still people) where the links links represent some form of
contact between two people.

The spread of a disease and the dynamics of an epidemic clearly
depend on the nature of the disease (e.g. how infectious, periods of
incubation, periods of contagion, immunization, permanent vs
recurring infection).

But the spread process also depends on the contact network within
which the process is unfolding. Of course, our interest here is in the
way in which we model these dynamics and how the network
characteristics impact the process.
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How does social/information spread differ from
disease contagion?

Chapter 19 considered deterministic models of spread (e.g. if a
threshold of your friends adopted a new technology, then you did
also). Chapter 21 considers contact networks where the spread
process is also stochastic (i.e. the spread is controlled by a
probabilistic process).

We already moved to such a stochastic view when we considered the
independent cascade and randomized threshold models as discussed in
the context of selecting an initiual set of influential adopters. Later in
chapter 21, the text also notes that social contagion is also often best
viewed as a stochastic process.

An intrinsic difference in these studies is that in contact networks (for
disease spread), the links are often considered to be transient (i.e.
only lasting for some period of time) whereas our study of social
spread, small worlds and decentralized search were discussed in the
context of permanent relationships (i.e.a static network).
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Pure branching processes

For simplicity (as we did in Chapter 20 and the study of decentralized
search), we start off with a tree network (i.e. assuming no triadic
closure). Here we will assume that every individual v at time t comes
in contact with k new individuals and if v is infectious, then with
some probability p, v will indpendently pass on the disease to each of
these new contacts by time t + 1.

That is, if a given (root) individual initially (at time t = 0) is
infectious, then at time 1, there will be k people, each of which will
independently contract the disease with probability p and become
infectious. Then any of these (say k ′) newly infected individuals are
potentially passing on the disease to some of the kk ′ individuals who
have indirectly come in contact by time 2, etc.
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The tree network at time t = 0

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Figure: At time t = 0, only the root is infected. [Fig 21.1(a), E&K]
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When will a disease die out in a pure branching
process?

Define R0 (the basic reproductive number) to be the expected
number of new cases of the disease caused by a single (infectious)
individual at any time. In this simple branching process, R0 = p · k .

It is intuitively clear than when R0 < 1, the disease will eventually die
out since each individual is not in some sense able to sufficiently
replenish the disease (even if by the randomization of the process the
number of new infections fluctuates for a while).

And when R0 > 1, unless the disease gets unlucky (and society gets
lucky), the disease is likely to persist and continue to witness new
infections at every time step and indeed the infection will likely be
wide spread.
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R0 > 1: likely that disease spreads widely

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Figure: High reproductive number. [Fig 21.1(b), E&K]
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R0 < 1: likely that disease dies out

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Figure: High reproductive number. [Fig 21.1(c), E&K]
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A simple conclusion from a simple model

Given that we are starting with such a simple model, we can’t expect
to draw many conclusions. But one conclusion is as follows. When
the basic reproductive number R0 exceeds 1, there is a huge societal
benefit in trying to reduce k or p so as to lower R0. How?

Quarantining infected individuals reduces the degree of contact k .

Better health care practices reduce the individual probability p of
infecting a new contact. This, of course, includes vaccines when
available.
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Networks and the SIR model

We now consider an arbitrary network structure in which individuals can
be in three states during the infectious disease spread process.
The SIR model.

S: The susceptible state where we consider any individual can
contract the disease

I: The infectious state when an individual has caught the disease and
now is infectious with some probability of spreading the disease.

R:The removed state when an individual is no longer infectious and is
“removed” from further consideration. Obviously there are good
(recovered and living) and bad ways to be removed. That is, in this
model, once someone has had the disease, we assume that they are
immune in the future. (Soon, we will consider an extended model
where people can become infected again.)
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The SIR Process

Initially, some nodes are in the infectious state I , and all others are in
the susceptible state S . This is, of course, the same as considering the
I nodes as the initial adopters in the cascade social spread process.

Each node v that enters the infectious state stays infectious for a
fixed number of steps tI . In the iindpendent cascade model for social
influence, we assumed tI = 1.

During each of these tI steps, each infectious v has a probability p of
infecting each of its susceptible neighbours. In the independent
cascade model for social influence, we allowed a different probability
for each edge (v ,w).
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Many possible extensions to the SIR Process

As in the cascade model we can have a different probability p(v,w) of
infection spread for each edge.

The length of the infectious stage can be stochastic with periods tI of
being infectious drawn from some distribution Di or even being drawn
from some distribution D(I , v) depending on node v as well as the
nature of the disease. Or more simply a node has probability q (resp.
q(v)) of recovering in each step while being infectious.

The infectious state can be partitioned in sub-stages (e.g. early,
middle, late stages of infection) with different contagion probabilities.

The disease itself mutates during an outbreak or epidemic which then
continues to dynamically change the process.

35 / 52



The course of an SIR contagion spread with tI = 1652 CHAPTER 21. EPIDEMICS
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Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to tI = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed
(R) state.

Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-o�”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not di⌅cult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving
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An alternative view of an SIR contagion spread

Conceptually we think of the SIR process being dynamic taking place over
time. There is an alternative view (mentioned in study of cascade social
influence spread and competitive spread processes) that may help explain
who eventually gets infected. Namely, we think of all these edge
probabilities being instantiated initially (each instantiation now coming
from the joint distribution). Each such instantiation results in some edges
being “open” and some “blocked”. The following figure clearly shows who
is being infected, namely the nodes reachable by “open edges”. In the
figure, nodes s,t,u,w will not become infected in the instantiation depicted
by the bold open edges. The other nodes will become infected at some
time.
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Alternative view of the previous specific instantiation
654 CHAPTER 21. EPIDEMICS
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Figure 21.4: An equivalent way to view an SIR epidemic is in terms of percolation, where
we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.

node is 4/3.

So in our example, R0 > 1. Despite this, however, it is easy to see that the disease

will die out almost surely after reaching only a finite number of steps. In each layer, there

are four edges leading to the next layer, and each will independently fail to transmit the

disease with probability 1/3. Therefore, with probability (1/3)4 = 1/81, all four edges will

fail to transmit the disease — and at this point, these four edges become a “roadblock”

guaranteeing the disease can never reach the portion of the network beyond them. Thus, as

the disease moves along layer-by-layer, there is a probability of at least 1/81 that each layer

will be its last. Therefore, with probability 1, it must come to an end after a finite number

of layers.

This is a very simple example, but it already indicates how di�erent network structures

can be more or less conducive to the spread of a disease — even taking contagiousness and

other disease properties as given. Whereas the contact network of the simple branching

process from Section 21.2 was a tree that expanded rapidly in all directions, the network in

Figure 21.3 forces the disease to pass through a narrow “channel” in which a small break-

down in contagion can wipe it out. Understanding how specific types of network structure

interact with disease dynamics remains a challenging research question, and one that a�ects

predictions about the course of real epidemics.

38 / 52



Roadblocks to contagion spread

In the context of social influence spread, we saw that tightly knit
communities can be isolated against the adoption of a new
technology. Similarly, once we move away from the pure branching
process, the basic reproductive number R0 no longer completely
determines the extent of contagion.

Consider the following simple network, and assume p = 2
3 and hence

R0 = kṗ = 4
3 where k = 2 is the in-degree of each node. . However,

the disease would have to continue to pass through a narrow channel
where there is a probability q = (13)4 that all four edges in some stage
of this network will fail to transmit and hence the disease will be
wiped out.

21.3. THE SIR EPIDEMIC MODEL 653

Figure 21.3: In this network, the epidemic is forced to pass through a narrow “channel” of
nodes. In such a structure, even a highly contagious disease will tend to die out relatively
quickly.

the other details of the model as they are.

More elaborate extensions to the model involve separating the I state into a sequence

of several states (e.g. early, middle, and late periods of the infection), and allowing the

contagion probabilities to vary across these states [238]. This could be used, for example,

to model a disease with a highly contagious incubation period, followed by a less contagious

period while symptoms are being expressed. Researchers have also considered variations on

the SIR model in which the disease-causing pathogen is mutating (and thus changing its

disease characteristics) over the course of the outbreak [183].

The Role of the Basic Reproductive Number. We now discuss some observations

about the SIR model, focusing on the most basic version of the model in an arbitrary

network. First, let’s recall the claim made at the end of Section 21.2, that in networks

that do not have a tree structure, the simple dichotomy in epidemic behavior determined

by the basic reproductive number R0 does not necessarily hold. In fact, it is not hard to

construct an example showing how this dichotomy breaks down. To do this, let’s start with

the network depicted in Figure 21.3, and suppose that these layers of two nodes at a time

continue indefinitely to the right. Let’s consider an SIR epidemic in which tI = 1, the

infection probability p is 2/3, and the two nodes at the far left are the ones that are initially

infected.

When we don’t have a tree network, we need to decide how to define an analogue of

the basic reproductive number. In a network as highly structure as the one in Figure 21.3,

we can work directly from the definition of R0 as the expected number of new cases of the

disease caused by a single individual. (For less structured networks, one can consider R0

to be the expected number of new cases caused by a randomly chosen individual from the

population.) In Figure 21.3, each infected node has edges to two nodes in the next layer;

since it infects each with probability 2/3, the expected number of new cases caused by this
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The basic SIS model

The SIR model assumes that once a person has been infected and the
infection has run its course, then the person is no longer susceptible
(and is effectively removed from the network).

But certain diseases and infections (the FLU) can and will reoccur.
The SIS model no longer has a removed state R but rather after the
infection has run its course, the individual returns to the susceptible
state S (and hence the acronym).

Initially, some nodes are in the infectious I state; other nodes are in
the susceptible S state.

Each node v that enters the infectious state stays infectious for a
fixed number of steps tI .

During each of these tI steps, each infectious v has a probability p of
infecting each of its susceptible neighbours.

After tI steps, node v is no longer infectious and returns to the
susceptible state S .
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Representing an SIS process as a sequence of SIR
iterations

658 CHAPTER 21. EPIDEMICS
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(a) To represent the SIS epidemic using the SIR model, we use a “‘time-expanded” contact network
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(b) The SIS epidemic can then be represented as an SIR epidemic on this time-expanded network.

Figure 21.6: An SIS epidemic can be represented in the SIR model by creating a separate copy of the

contact network for each time step: a node at time t can infect its contact neighbors at time t + 1.

can potentially catch the disease at time t+1 if v is infected at time t. Figure 21.6(a) shows

this construction applied to the contact network from Figure 21.5.

The point is that the same SIS disease dynamics that previously circulated around in the

original contact network can now flow forward in time through the time-expanded contact

network, with copies of nodes that are in the I state at time t producing new infections in

copies of nodes at time t + 1. But on this time-expanded graph we have an SIR process,

since any copy of a node can be treated as removed (R) once its one time step of infection

is over; and with this view of the process, we have the same distribution of outcomes as the

original SIS process. Figure 21.6(b) shows the course of the SIR epidemic that corresponds

to the SIS epidemic in Figure 21.5.

Figure: A SIS process (with tI = 1) depicted as a sequence of SIR steps. [Fig
21-6(b), E&K]
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Extensions of the SIS model

The basic SIS model can be extended in many ways. For example:

I As in the SIR model, there can be different probabilities p(u,v)
associated with each network edge (u, v).

I An individual only returns to the susceptible state S with some
probability q.

I There can be multiple stages of an infection with each stage having
different contagion properties.

An interesting modification is the following SIRS model which
provides insight into why some diseases seem to show a time
oscillating behaviour in terms of the extent of infection in given
populations.
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The SIRS model

As in the previous models, initially some nodes are in the infectious I
state; all others are in the susceptible S state.

Each node v that enters the infectious state stays infectious for some
tI steps.

During each of these tI steps, each infectious v has a probability p of
infecting each of its susceptible neighbours.

After tI steps, the infectious node v enters the R (i.e., a period of
immunity) state for some tR steps. After these tR steps, the node
returns to the S state. Either or both tI and tR can be random
variables.
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Disease oscillations

The presense of periods of immunity in the SIRS model induced by the tI
parameter can produce oscillations in localized parts of a network. It is
also the case that we sometimes observe seemingly coordinated outbreaks
of a disease in different parts of the network. To explain how this can
occur, consider a network that has long range edges in addition to edges
within small neighbourhoods.

This is, of course, reminiscent of the network structure that provided an
explanation for the small world phenomena.

Indeed, Kuperman and Abrahamson [2001] consider a network model
following the original network model of Watts and Strogatz.

More specifically, we have a network with edges connecting (graph
theoretically) nearby nodes augmented with some edges chosen uniformly
at random. (Here the random edges do not depend on distance as in the
model used to explain decentralized search and the small worlds
phenomena in Chapter 20.)
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The Kuperman and Abrahamson model

Furthermore, Kuperman and Abrahamson consder a one dimensional
model contructed as follows:

Nodes are arranged in a ring (i.e. a cycle) with edges between nodes
within some small distance of each other.

Then with some probability c , an edge is redirected randomly to a
node chosen uniformly at random.

They then study the SIRS contagion model for such a stochastic
network.

As we might expect the behaviour of disease occurence in such a
network will depend on the probability c of redirecting an edge even
when fixing p (the probability of transitting the disease), ti (the
duration for being infectious,, and tR (the period of immunity).
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Simulations from Kuperman and Abrahamson21.5. SYNCHRONIZATION 661

Figure 21.7: These plots depict the number of infected people over time (the quantity ninf(t)
on the y-axis) by SIRS epidemics in networks with di�erent proportions of long-range links.
With c representing the fraction of long-range links, we see an abscence of oscillations for
small c (c = 0.01), wide oscillations for large c (c = 0.9), and a transitional region (c = 0.2)
where oscillations intermittently appear and then disappear. (Results and image from [267].)

transmission through the network occurs mainly via the short-range local edges, and so

flare-ups of the disease in one part of the network never become coordinated with flare-ups

in other parts. As c increases, these flare-ups start to synchronize, and since each burst

produces a large number of nodes with temporary immunity, there is a subsequent trough

as the disease has di⌅culty making its way through the sparser set of available targets. For

very large values of c (such as c = 0.9 in Figure 21.7), there are clear waves in the number

of a�ected individuals; for intermediate values of c (such as c = 0.2) one observes interesting

e�ects in which the system achieves network-wide synchronization for a period, and then

seems to fall back “out of sync” for reasons that are hard to quantify.

These results show how fairly complex epidemic dynamics can arise from simple models of

contagion and contact structure. There are, however, a number of interesting open questions;

Figure: The plots depict the number ninf (t) (at time t) of infected people in an
SIRS contagion spread. Figure and results are due to Kueprman and Abrahamson.
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Reflections on the Kuperman and Abrahamson
study for a syntactic network, and empirical findings
As always the text cautions us about the significance of models, and in
this case, the simplified network model. Still, it is interesting to observe
how different the results are for diferent settings of the random redirection
probability c.

In the small worlds phenomena, the theoretical model and results seem to
match well with real world data. Here we do not have theoretical results
but rather simulations on synthetically constructed networks. (The text
indicates that this is a good research topic.)

However, there is some real world findings for which the SIRS model
provides some insight (into observed oscillations in disease outbreaks).

Grassly, Fraser and Garnett [2005] compared the differences in the
occurence of two STDs, namely syphillis and gonorrhea. Namely syphilis
exhibits oscilllations on an 8-11 year cycle whereas gonorrhea does not
exhibit any substantial periodic behavior.

47 / 52



How to explain the differences in the spread of two
different STDs?

This difference in oscillating behviour is, at first thought, surprising since
the method of contagion spread is the same and the underlying network
for social relations is also the same. What is a plausible explanation?

It turns out the syphilis has limited periods of temporary immunity after
infection whereas gonnorrhea does not. The osciallation periods for syphilis
seem to correlate well with the timing (i.e., the tI parameter) of immunity.

Moreover, the extent to which the outbreaks of syphilis are synchronized in
the U.S. has been increasing over the second half of the 20th century
which can be explained by increasing levels (i.e. the redirection parameter
c) of cross-country contacts.
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The transient nature of contacts

In our introduction of contact networks and models for disease spread, we
noted that there is a dynamic aspect to such models. This manifested
itself in the duration for being contagious. However, the underlying
network itself was static. This is not a bad assumption for infections that
spread quickly at a faster pace than the creation and ending of contacts.

In other disease scenarios, the spread of an infection may be very
dependent on the transient behaviour of contacts. This can be especially
true of diseases that are spread by sexual relations.

We can extend the contact network models to reflect very transient
contacts, by specifying (on the edges) the time period when individuals are
in contact with each other and can transmit the disease.
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The transient nature of contacts continued:
concurrency maters
It should not be surprising that the more contacts occur simulataneously,
the more extensive will be the spread of a disease.

And as the text points out, this transient behaviour of contacts can apply
to settings outside of disease spread such as information spread.

The following example illustrates the impact of concurrency while keeping
the duration tI of infection fixed. In these examples, tI = 5. In addition,
each edge e = (k , `) is labelled by an interval [se , fe ] indicating that
individuals k and ` were in contact starting at time se and ending at time
fe . (In these examples, the number ne of time steps of contact has been
set to ne = 5 for all edges. It is an unfortunate choice that ne = tI = 5 as
this is not mandated by the model.)

The assumption is that if individual k becomes infected at some time
t ∈ [se , fe ], then ` can possibily be infected at some time step t ′ with
t + 1 ≤ t ′ ≤ min{fe + 1, t + tI + 1}.
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The impact of concurrency

An example of the impact of concurrency is provided in Figure 12.8
(below) of the text where the only change in the networks is that the
period of contact between v and w has been switched with the period of
contact between w and y . The example assumes t = 5. Assume node u is
initially infected (at some time t ∈ [1, 5]). In the network on the left, it is
the possible that the disease could pass to all nodes except node x . In
contrast, in the network on the right, only node v can become infected.
(Here we are ignoring the probability of becoming infecting and just
looking at what is possible.)
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(a) In a contact network, we can annotate the
edges with time windows during which they existed.
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(b) The same network as in (a), except that the
timing of the w-v and w-y partnerships have been
reversed.

Figure 21.8: Di�erent timings for the edges in a contact network can a�ect the potential for
a disease to spread among individuals. For example, in (a) the disease can potentially pass
all the way from u to y, while in (b) it cannot.

point in time (a few people have many, which is important as well); and the identities of

these contacts can shift significantly while the disease progresses, as new sexual partnerships

are formed and others break up.

So for modeling the contact network in such diseases, it is important to take into account

the fact that contacts are transient — they do not necessarily last through the whole course

of the epidemic, but only for particular windows of time. Thus, we will consider contact

networks in which each edge is annotated with the period of time during which it existed

— that is, the time range over which it was possible for one endpoint of the edge to have

passed the disease directly to the other.

Figure 21.8(a) shows an example of this, with the numbers inside square brackets indi-

cating the time ranges when each edge exists. Thus the u-v and w-x partnerships happen

first, and they overlap in time; after this, w has a partnership with v and then later with y.

Note also that for this section — in keeping with the motivation from HIV/AIDS and similar

diseases — we assume the edges to be undirected rather than directed, to indicate that in-

fection can pass in either direction between a pair of people in a partnership. (As in previous

sections, we could also accomplish this by having directed edges pointing in both directions

between each pair of connected people, but since everything here will be symmetric, it is

more convenient to use undirected edges.)

The Consequences of Transient Contacts. A little experimentation with the example

in Figure 21.8(a) indicates how the timing of di�erent edges can a�ect the spread of a disease.
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Another example of the impact of concurrency

The example in Figure 12.10 (below) provides another example of the
impact of concurrency. Here we have the same underlying network as in
Figure 12.8 and again assume t = 5. But now the times for concurrent
contact have been signifiantly altered. In the figure on the left, there are
no concurrent times of contact between any two individuals. Clearly in this
case, no individual can spreasd the disease to anyone else. In contrast, in
the figure on the right, any single individual can possibly spread the
disease to everyone in the network.
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(a) No node is involved in any concurrent partner-
ships
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(b) All partnerships overlap in time

Figure 21.10: In larger networks, the e�ects of concurrency on disease spreading can become
particularly pronounced.

epidemic itself. A timing pattern of particular interest — and concern — to HIV researchers

is concurrency [307, 406].

A person is involved in concurrent partnerships if he or she has two or more active

partnerships that overlap in time. For example, in each of Figures 21.9(a) and 21.9(b), node

v has partnerships with each of u and w. But in the first of these figures, the partnerships

happen serially — first one, then the other — while in the second, they happen concurrently,

overlapping in time. The concurrent pattern causes the disease to circulate more vigorously

through this three-person network. u and w may not be aware of each other’s existence,

but the concurrent partnerships make it possible for either of u or w to spread the disease

to the other; the serial partnerships only allow spreading from u to w, but not the other

way. In larger examples one can find more extreme e�ects; for example, Figure 21.10(b)

di�ers from Figure 21.10(a) only in that the time windows of the partnerships have been

“pushed together” so that they all overlap. But the e�ect is considerable: where the pattern

in Figure 21.10(a) allowed di�erent parts of the network to be “walled o�” from each other

by the timing e�ects, the concurrent partnerships make it possible for any node with the

disease to potentially spread it to any other.

In simulations with various notions of concurrency, Morris and Kretzschmar found that

small changes in the amount of concurrency — keeping other variables like the average

number and duration of partnerships fixed — could produce large changes in the size of

the epidemic [307]. Qualitatively, this aligns well with the intuition from earlier sections,

that changing the average number of new cases of a disease caused by an infected individual

even slightly can sometimes have significant consequences. For some of the simplest models,

such as the branching process, it is possible to make this intuition precise; for more complex
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