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Announcements

Five questions have been posted for the second asasignment. There
will be a couple more questons.

Midterm March 4 and March 6. The test will cover everything in the
first six week. Not sure if we will also have a short question on this
weeks material. The Wednesday, March 4 part of the test is in the
usual tutorial rooms. The Friday, March 6 part of the text will be in
GB248 and for those in the other tutorial, the test will take place in
Haultain Building, room 403. Please take the test in the
appropopriate room so that there will be plenty of space.

Comments on the critical review assignment.
I Due date: March 30
I You need to find a conference or journal article that has appeared in the

last 3 years; to be precise lets say, has appeared since January 1, 2017.
I The article can be about any topic in the course.
I You are to provide a critical review of the article as if you were on

program committee or a reviewer for a journal. I will elaborate in class.
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This weeks agenda

Brief introduction to sublinear time algorithms

Chapter 19: Influence spread in a social network
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The computational challenge presented by super
large networks

As we observed at the start of the course, the size of some modern
networks such as the web and social networks such as Facebook are at an
unprecedented scale.

The number of Web documents (e.g., distinct URLs) as reportedly indexed
by Google is around 62 million pages. I have not seen a claim about the
total number of links but lets say that there are perhaps a trillion or more
edges in this netwok.

Facebook has roughly 2.5 billion monthly active users worldwide. The
average facebook user has 155 friends which then implies about 387 billion
edges. It is interesting to note that 90% of daily active users are outside
USA and Canada. See
https://www.omnicoreagency.com/facebook-statistics/
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Linear is the new exponential

In complexity theory (e.g. in the P vs NP issue) we say (as an
abstraction) that polynomial time algorithms are “efficient” and
“exponntial time” is infeasible. (There are, of course, exceptions but as an
abstraction this has led to invaluable fundamental insights.

As problem instances have grown, there was a common saying that
“quadratic (time) is the new exponential”.

But with the emergence of networks such as the web graph and the
Facebook network, we might now say that “linear is the new exponential”
when it comes to extracting even the most basic facts about these
networks. For example, how do we even estimate the size (number of
nodes and/or edges) of a giant network?

There are many facts about large networks that we would like to extract
from the network. How do we compute page ranks? How do we find
influential or interesting nodes” in a social network?

5 / 26



Sublinear time and local computation algorithms

There is a large body of research concerning sublinear time and local
computation algorithms that precedes the more current interest in such
algorithms in the context of specific networks like the web or large social
networks.

I am providing a reasonably recent survey by Rubinfeld and Blais on the
work that is not especially focused on specific networks.

I am also attaching a paper by Braubach and Kearns which is more
directly relevant to our course and concerns networks that satsify power
laws and more specifically, arise from preferential atachment models.

There are some notable differences between these two research
“communities” but there is also a lot of similarity.
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A quick comparison of the two local information and
sublinear time communties

Just for the sake of this comparison, let me call the more “established
area”, the graph property testing (GT) area, and the more recent area
with focus on the web and social networks, the prefential attachment (PA)
area. This is an abuse of terminology as both areas do more than just
what the name suggests. First lets consider what is common between the
GT and PA areas.

What do we mean be sublinear time and local information algorithms?

These areas refer to sequential time in contrast to the area of massively
parallel computation (MPC) models where we can also achieve sublinear
time by distributing computation amongst a large number of processors.
Although there are some connections we are focusing on sequential
algorithms.
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Quick comparison continued; the similarities

In general when we measure complexity, we do so as a funtion of the
input/output size. For graphs G = (V ,E ), the size of the input is usually
the number of edges E . (An exception is that when the graph is presented
say as an adjacency matrix, the size is n2 where n = |V |.)
Given our interest in massive information and social networks, we consider
sparse graphs (e.g. average constant degree) so that |E | = O(|V |) and
hence we will mean sublinear in n. The desired goal will be time bounds of
the form O(nα) with α < 1 and in some cases maybe even O(log n) or
polylog(n). The literature in the GT area considers both dense and sparse
graphs but again we are only considering sparse graphs.

We will always need a way to access these massive graphs.

Given that almost any optimal algorithm for a graph property (respectively,
for any function) will depend on the entire graph (resp. the entire input) ,
we will have to settle for approximations. Furthermore, we will need to
sample the graph so as to avoid having to consider all nodes and edges.
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Local computation/information algorithms

Most (if not all) of the research in both the GT and PA areas are with
respect to local computation (as mainly refered to in the GT area) or local
information (as mainly refered to in the PA area) algorithms. There are
sometimes differences in the way these terms are used but we will use the
following informal idea.

Local information algorithms are sequential algorithms where the network
topology is initially unknown and is revealed only within a local
neighborhood of vertices, and when information is revealed, this
information is then irrevocably added to the unknown network.

To make this more precise we will present the Jump and Crawl
computation model as used in the PA area.
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The Jump and Crawl Model

The Jump and Crawl model assumes access to a uniformly revealed
random nodes (the Jump operation), and the ability to examine any and
all neighbours of any revealed vertex (the Crawl operation).

In the web graph, Crawl is going to a link from a page, and in Facebook,
crawl going to a friends profile. Jump is like the scaled version of page
rank and, in Facebook, like a generalization of a friends finder option to
find someone with a given profile.
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Quick comparison continued; the differences
In mentioning the differences, I am only refering to what seems to be the
emphasis in these areas; it is also apparent that any differences between
the models are not fundamental inherent differences.

In the GT area, the vertex names are known and impliclty so is the size
|V | of the network. (Again, I am restricting attention to the sparse GT
model.) See, however, a recent paper by Goldreich [2018].

In the GT area, algorithms explore adjacent edges without revealing all
adjacencies at once.

In the GT area, the focus is often on global graph properties (e,.g. average
degree) whereas in the PA area the emphasis is often on extremal
properties (vertices of maximum degree).

However, the main difference for me is that the GT area is more focused
on worst case (over all graphs) rather than graphs which enjoy properties
that result say from a preferential attachment model as in the PA work.
(But here results are often contrasted with results for general graphs.)
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A brief introduction to results in the PA area

The area of sublinear time and local information algorithms is quite
extensive and some results are quite technical. For now we will mainly just
give an overcview of results in the Brautbar and Kearns paper, a paper by
Bonato et al [2015], plus some obervations in an unpublished paper by
Ben-Eliezer, Eden, Fotakis and Oren [2020].

I hope to return to this topic later in the term.

Brautbar and Kearns are using the prefential attachment model in a paper
by Barabasi and Albert [1999] which is slightly different from the model as
discussedd in the EK text. In their model, the process starts with a fixed
number (say n0) of vertices and then vertices are added to the graph one
at a time and joined to n0 earlier vertices, selected with probabilities
proportional to their degrees.
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The power law for the Barabasi and Albert Model
Barabasi and Albert suggested that after many steps the proportion P(d)
of vertices with degree d should obey a power law P(d) proprortional to
d−γ .

They obtained γ ≈ 2.9 by experiments and gave a simple heuristic
argument suggesting that γ = 3.

Bollobas et al [2001] provide a provable result corresoponding to this
conjectured power law. Namely, they show for all d ≤ n1/15 that the
expected degree distribution is a power law distribution with γ = 3
asymptotically (with n) where n is the number of vertices.

Note: It is known that an actual realized distribution may be far from its
expectation, However, for small degree values, the degree distribution is
close to expectation.

When we say that a distribution P(d) is a power law distribtion this is
usually meant to be a ”with high probaility” whereas results for networks
generated by a preferential attachment process the power law is usually
only in expectation. 13 / 26



End of Wednesay, February 26 lecture

We ended the lecture mentioning the preferential attachnment mlodel of
Barabasi and Albers and the fact that (in expectation) the node degrees
P(d) satisfy a power law with exponent 3; i.e. P(d) proprtional to d−3.
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Observed properties of social networks generated by
such preferential attachment models

In addition to this power law phenomena, other properies of social
networks have been obseerved such as :

Nodes having
I high degree
I high clustering coefficient
I high centrality
I These are what Brautbar and Kearns call sets of “interesting

individuals’ and might be candidates for being “highly influential
individuals”. Bonato et al [2015] refers to such nodes as the elites of a
social network.

Plus other properties such as
I small diameter
I relatively large dense subgraph communities.
I rapid mixing (for random walks to approach stationary distribution)
I relatively small (almost) dominating sets .
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(Almost) dominating sets and the MGEO-P
preferential attachment model.
A dominating set in a graph G = (V ,E ) is a subset S ⊂ V such that
every v ∈ V is adjacent to at least one vertex s ∈ S . It is NP-hard to
determine a dominating set within a log n factor of a minimum size
dominating set. One can relax this to call a set almost dominating if
“almost all” are adjacent to at least one vertex s ∈ S .

Bonato et al [2015] consider a preferential attachment model called
MGEO-P. This model is a geometric model where metric distances reflect
homophily. They show that in this model, networks have sublinear
dominating sets and they empirically verify the presense of a sublinear
dominating set consisting of high degree vertices within a large subset
(hundreds of millions) of the Facebook network.

Ben-Elizer et al consider the micro blogging site Tumblr. They call a user
engaged if they follow at least 10 and find that 35% (≈ 88 million) of
users are engaged. They observe that 99.3% (resp 98.2%, 94.6%) of
engaged users follow at least one of the top 1% (resp .1%, .01%) of
highest degree users. 16 / 26



Elites in a social network
Bonato et al conclude their paper with the following comment:
A different approach to detecting elites is to search for them within a
minimum size dominating set, as these sets reach the entire network.
Further, if minimum size dominating sets have much smaller order than
the network (as we postulate), then that reduces the computational costs
of finding elites.

This theme of utliizing small dominating sets is pursued in the unpublished
paper by Ben-Elizer et al. Their observations about small dominating sets
in the Tumblr network reflect what is known as Price’s square root law.

Price’s law is due to Derek J. de Solla Price who (in 1965) gave perhaps
the first mathematical rich get richer scale free network model. He was
interested in explaining how citation networks grow. Price’s Law states
that half of the work that a group does is completed by the square root of
the number of people in the group.

See Avin et al [2018] paper entitled “Elites in social networks: An
axiomatic approach to power balance and Price’s square root law”.
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Paragraph in Avin et al

1 Introduction

1.1 Elites in society

Almost all societies exhibit an (often radically) uneven distribution of power, influence, and
wealth among their members (rare exceptions are utopian or totally egalitarian societies). This
may be related to a well known and by now widely accepted observation made by the pioneer-
ing sociologist Vilfredo Pareto in his book Mind and Society [1]: “Every people is governed by
an elite, by a chosen element of the population”. Indeed, social inequality is particularly notable
when comparing the elite, namely, the small, powerful and influential group at the center of
society, against its typically larger, less organized, and less dominant complement, sometimes
referred to as the masses or the periphery.

The relative size of the elite from the population, is an ancient source of interest in the social
sciences. Jean-Jacques Rousseau, an 18th-century political philosopher (among other things)
who influenced the early French Revolution, stated a recommendation, sometimes known as
his “law of elites” [2, 3]. Rousseau claimed that a democratic government should be formed of
a number of people equal to the square root of the total number of citizens in the state.

A more recent and controversial observation was made by Derek DeSolla Price, a famous
historian of science and known as the father of scientometrics. In his classic book Little Science,
Big Science [4] Price wrote that “the total number of scientists goes up as the square, more or
less, of the number of good ones”, where the good scientists are noted as the elite group. This
became to be known as “Price’s square root law,” which, more formally, claimed that half
of the scientific papers are contributed by the square root of the total number of scientific
authors. In Price’s words, half of the papers form a ‘point of symmetry’ [4], hereafter referred
to as a ‘balance point’. Price’s claim was based on an empirical law for productivity, named
“Lotka’s law” [5], which is similar in spirit to other power law distributions like Zip’s law and
Pareto distribution [6, 7]. Price’s law was indeed controversial to many scientists and raised an
heated discussion [8, 9] about its accuracy. Empirical results on scientific contributions seem
not to match with the (too) strong and (too) exact statement of Price [9].

In economy, recent reports show that the gap between the richest people and the masses
keeps increasing, and that decreasingly fewer people amass more and more wealth [10, 11].
Claims like “The top 10 percent no longer takes in one-third of our income – it now takes
half,” made by former president Obama [12] when addressing the issue, are interpreted as
implying that the economic and political elites become increasingly more greedy and over-
bearing. Such claims are often used in order to criticize governments and regulatory financial
institutions for neglecting to cope with this disturbing development. The question raised by us
is: can society help it, or is this phenomenon an unavoidable by-product of some inherent nat-
ural properties of society? We claim that in fact, one can predict the shrinkage of elite size over
time (as a fraction of the entire society size) based on the very nature of social elites. In particu-
lar, in our model, such shrinkage is the natural result of a combination of two facts: First, soci-
ety grows, and second, elites are much better connected than peripheries. Combining these facts
implies that the fraction of the total population size comprising dense elites will decrease as the
population grows with time. And this is what we call Price’s square root law in networks and,
in particular, Price’s law for elites in social networks.

Taking a broader look at Price’s law, it states two fundamental principles. First, it claims
that to define the elite group, one should look at a balance point between the elite and the rest
of the population. Second, it claims that the elite size at this point is sub-linear, namely, the
fraction of the elite out of the total population tends to zero as the population increases. Price

claimed the elite size is about
ÅÅÅ
n
p

for a population of n individuals. We study a weaker state-
ment where the elite is nx of the population (for 1

2
 x < 1), taking the stand that the important

Elites in social networks: An axiomatic approach to power balance and Price’s square root law

PLOS ONE | https://doi.org/10.1371/journal.pone.0205820 October 24, 2018 2 / 35

the manuscript. The specific role of this author is
articulated in the author contributions section. This
does not alter our adherence to PLOS ONE policies
on sharing data and materials.

Competing interests: There are no competing
interests. In particular, the affiliation of Yvonne-
Anne Pignolet with ABB Corporate Research does
not alter our adherence to PLOS ONE policies on
sharing data and materials.

And after this little bit of political science, we return to our interest in
subinear time algorithms for massive information and social newtorks
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Highlights of some resuts in Brautbar and Kearns

Brautbar and Kearns prove (using the Jump and Crawl model) a number
of interesting (positive and negative) results contrasting what can be
shown for general networks vs what holds for power law, and preferential
attachment networks. We consider their results for finding a high degree
vertex with a provable appoximation.

I will only state results (using slides by Brautbar) without being precise
about some definitions and assumptions. The paper gives three algorithms
(for arbitrary networks , for power law networks, and for networks
generated by the PA attachment process). We will briefly present their
results for finding a high degree vertex.

An c(n) approximation algorithms for max degree (and similarly for any
maximization problem) returns a vertex v such that deg(v∗) ≤ c(n)deg(v)
where v∗ is a vertex of maximum degree.
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Theorem for approximate max degree vertex in an
arbitrary network

Let G be an arbitrary network and let v∗ be a vertex in G of maximum
degree say d∗. Then for any 0 < β ≤ 1, there is a relatively simple
algorithm using Õ(nβ) Jump and Crawl operations that w.h.p (with high
probability) returns a vertex v such that d∗ ≤ n1−βdeg(v).

Here is the algorithm:
If d∗ < n1−β then any vertex will suffice.
Else

For Õ( n
d∗ ) trials

Jump to a random vertex
% The claim is that with this many queries, a neighbor of v∗ will be

found.
If deg(v) ≥ d∗

n1−β we are done
Else Crawl all of v ′s neighbors to see if one has high degree.

End For
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A matching negative result

There is a matching lower bound. In the graph below, with constant
probability, nβ jump operations will still leave us a distance n1−β away
from the clique part of the network.

Figure: A line-clique network

21 / 26



Theorem for approximate max degree vertex in a
power law network

Let G be a power new with expomnent γ > 2. Let 0 < β < γ−1
γ . Then

there exists an algorithm using Õ(nβ) Jump and Crawl operations that

w.h.p finds a vertex with expectded approximation ratio O(n
1
γ
− β

γ−1 ).

The algorithm simply jumps to Õ(nβ) random nodes and takes the vertex
of highest degree.

The approximation guarantee relies on two properties of power law
networks with exponent γ > 2. Namely

1 The highest degree is O(n
1
γ ) and

2 The probability of randomly sampling a node of degree at least n(
β

γ−1
)

is Θ(n−β).
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Theorem for approximate max degree vertex in the
PA model of Barabasi and Albert
Let 0 < β < 1

11 and Let G be generated by the PA model of Barabasi and

Albert. Then there is an algorithm using Õ(nβ Crawl operations that finds
a vertex with degree approximating the maximum degree with expected

approximation ratio O(n
1
2
−β).

The algorithm runs nβ lazy random walks from an arbitrary vertex and
takes the termination vertex (of the random walk) with highestb degree.

A lazy random walk is the same as the random walk in scaled page rank
withing scaling factor 1

2 . That is, with probability 1/2 it goes to a
neighbour chosen uniformly at random and with probability 1/2 it goes to
a uniformly chosen random network node.

The approximation relies on the following facts:

1 A lazy random walk has a unique stationary distribution.

2 In this PA model, the mixing time of the lazy random walk is Õ(log n).
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The comparison for finding a vertex whose degree is
a good approximation to the maximum degree
The plots represent the approximation nδ guarantee as a function of the
number nβ of Jump and Crawl operations. These are log-log plots so the
figure is plotting ithe exponent δ as a function of the exponent β.
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Figure 2: Summary of achievable trade-offs between
Jump and Crawl query complexity and maximum degree
approximation for various assumptions on the network;
see text for details and discussion.

Definition 5 (Clustering Coefficient) Given a
vertex v with degree d, the clustering coefficient
(CC) of v is defined as

CC(v) =
number of triangles containing v(

d
2

) .

If d = 0 we define CC(v) = 0.

This definition is equivalent to the edge den-
sity (fraction of possible edges present) among the
neighbors of v (excluding v itself).
Many empirical papers have shown natural net-

works often have vertices of high clustering coef-
ficient (as well as high degree); see for instance
[11] Chapter 2 for a detailed survey. In this section
we examine the problem of finding such vertices
in the Jump and Crawl model. Eubank et al. [8]
showed that the global average of the CC can be
estimated quickly in a Jump and Crawl model us-
ing standard Chernoff bounds. This immediately
provides a strategy to find a vertex with more than
the average CC value (using Markov’s inequality).
However, finding a vertex with a high CC may not
be that illuminating: it may be the case that the ver-

tex with the highest CC has only very few neigh-
bors. Take the extreme case of a vertex with two
neighbors that are also connected to each other (a
triangle). In this case the CC of v would be the
highest possible of 1. This motivates us to ask how
hard is it to find a vertex with simultaneously high
CC and high degree. We shall phrase this approx-
imation problem as follows: given a degree lower
bound d as input, find a vertex of degree not much
smaller than d whose CC approximates the maxi-
mum CC among all vertices of degree d or larger.

Definition 6 Given a graph on n vertices, and a
degree value d, let v∗ be the vertex with the highest
CC among vertices of degree d or more. We say
that v is a (α, d, ϵ)-approximation to the maximum
CC if degree(v) ≥ α ·d andCC(v∗) ≤ CC(v)+
ϵ, for 0 < α ≤ 1 and 0 < ϵ < 1. If there are no
vertices of degree at least α · d in the network we
say that every vertex is a (α, d, 0)-approximation.

Let us start by noting that since we are requiring
a degree lower bound on the vertices found in addi-
tion to high CC, it is natural to begin by attempting
to adapt our results for finding high degree ver-
tices to the CC problem. Indeed, a simple adap-
tation of the lower bound for arbitrary networks
given in Theorem 2 already yields similar diffi-
culty for the CC problem. Consider Figures 3 and
4, which are slight variants of the construction in
Theorem 2. In each variant there is a single high-
degree vertex, but in one variant the CC of that ver-
tex is 0 (the lowest possible) and in the other it is
1 (the highest possible). If an algorithm fails to
find this high-degree vertex, it cannot hope to ap-
proximate the clustering coefficient by a nontrivial
additive amount, thus establishing a lower bound
of n1−β queries on the (1, nβ, 1/2)-approximation
problem for CC.
On the other hand, it is unfortunately not clear

how to adapt the upper bound for the degree prob-
lem on arbitrary graphs given by Theorem 1 to the
CC problem. The difficulty is that the algorithm
of that upper bound will only produce some ver-
tex of high degree — but if there are many such
vertices, it provides no guarantee that the one pro-
duced will also have high CC. Therefore we next
ask whether a (α, d, ϵ) is achievable for some non-
trivial α < 1. In the following theorem we show
that at the expense of a logarithmic factor in the de-

8
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End (for now) of discussion of sublinear time and
local information algorithms

Brautbar and Kearns also consider the approximation computation of a
vertex having both high degree and a high clustering coefficient.

Other network properties have been studied including searching for the
root in a PA process, and the approximation of dominating sets, page
rank, and the approximate computation of “highly influential nodes”.

Influence spread is a basic issue in social networks and is similar to issues
regarding disease contagion. This bring us back to the text and, in
particular, Chapter 19.
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End of Friday, February 28 lecture
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