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Announcements

The first assignment now has six questions. There might be one more
question. The first assignment is due at 2:59PM, February 14 on Markus.
I moved up the time from 11:59PM to 2:59 PM so that the TA can go
over any questions about solutions to the first assignment.

On piazza there was a question about 5(e). Using different names, I mean
that if R has friends S and T using the method then R will start using the
method. Questions?

During the week of February 10, I will lecture on Monday and Wednesday
(in GB248). During the week of February 24, I will lecture on Wednesday
and Friday.

We will have a common tutorial on Friday, February 14 in GB248. There
will not be a tutorial during the week of February 24. After this week, we
return to the standard schedule of lectures on M,F and turotrials on
Wednesdays in GB248 and SS1070.
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This weeks agenda

This week we continue to discuss Chapter 4 of the text. In particular, we
will discuss the following:

The probability of triadic closure (resp. focal closure, membership
closure) as a function of the number of common friends (resp. the
number of common interets (foci), the number of friends in a given
focus)

Schelling’s segregation model.

Chapter 5 and structural balance

Strong structural balance and weak structural balance.

Note: Please let me know about typos (and especially errors) in the
lecture slides.
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LIveJournal

Note: Last lecture I said that I wasn’t sure LiveJournal still existed but
indeed it does exist. From the web page:

“LiveJournal is a unique place where people share their life stories, give
advice and exchange ideas ”

From Wikikpedia:

LiveJournal is a Russian social networking service where users can keep a
blog, journal or diary.
American programmer Brad Fitzpatrick started LiveJournal on April 15,
1999, as a way of keeping his high school friends updated on his
activities.[6] In January 2005, American blogging software company Six
Apart purchased Danga Interactive, the company that operated
LiveJournal, from Fitzpatrick.
Six Apart sold LiveJournal to Russian media company SUP Media in 2007
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Triadic closure: dependence on number mutual
friends

Email exchanges (over 60 days) by 22,000 students in large US
university [Kossinets, Watts 2006]

“Friends” defined as two-way email communication (prev. 60 days)

Measure probability T (k) of a new friendship emerging between a
pair of students as a function of the number k of mutual friends

That is, the probability of it happening in any given day (averaging
over many such pairs)

Compare data (black) with baseline theoretical model (red) baseline:
assume any single mutual friend will generate a new friendship with
probability p and that this will happen independently for each
common friend. Thus T (k) = 1− (1− p)k Why?

For small p, (1− p)k ≈ 1− pk so that T (k) ≈ pk.
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Probability (per-day) of triadic closure as a function
of the number of common friends

Probability (per-day) of triadic closure as a 

function of the number of common friends  

23 CSC 200 Lecture Slides (c) 2011, A. Borodin and C. Boutilier 

[E&K, Ch.4, Fig. 4.9; 

from Kossinets and Watts, 2006] 

Figure: [E&K, Fig 4.9]
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Observations

Data does not show much more propensity for friendship when going
from zero to one mutual friend.

I The second dashed red line shifts the curve over by one friend so as to
better compare the actual data and baseline model.

I Why no major impact with one common friend?

Increasing from 1 to 9 friends shows linear curve (greater slope than
baseline)

A sharp difference going beyond 9 friends
I The theoretical model (and its assumption of independence) no longer

supported.
I Is there some threshold of mutual friends which escalates the pressure

for triadic closure?

Exercise: translate per-day probability into per-month or per-year
probability

7 / 50



Probability of focal closure as a function of the
number of common classes
Kossinetts and Watts also studied focal closure where a focus means a
class in which a student is enrolled.102 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS
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Figure 4.10: Quantifying the e�ects of focal closure in an e-mail dataset [259]. Again, the
curve determined from the data is shown in the solid black line, while the dotted curve
provides a comparison to a simple baseline.

Focal and Membership Closure. Using the same approach, we can compute probabil-

ities for the other kinds of closure discussed earlier — specifically,

• focal closure: what is the probability that two people form a link as a function of the

number of foci they are jointly a⌅liated with?

• membership closure: what is the probability that a person becomes involved with a

particular focus as a function of the number of friends who are already involved in it?

As an example of the first of these kinds of closure, using Figure 4.8, Anna and Grace have

one activity in common while Anna and Frank have two in common. As an example of the

second, Esther has one friend who belongs to the karate club while Claire has two. How do

these distinctions a�ect the formation of new links?

For focal closure, Kossinets and Watts supplemented their university e-mail dataset with

information about the class schedules for each student. In this way, each class became a

focus, and two students shared a focus if they had taken a class together. They could then

compute the probability of focal closure by direct analogy with their computation for triadic

closure, determining the probability of link formation per day as a function of the number of

shared foci. Figure 4.10 shows a plot of this function. A single shared class turns out to have

roughly the same absolute e�ect on link formation as a single shared friend, but after this the

Figure: [E&K, Fig 4.10]

Clearly the theory and the actual data do not correspond especially when
considering students going from 3 to 4 common classes. Can you
speculate on a reason?

If you haven’t formed a friendship having attend 3
classes together, then perhaps there is a reason?
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Probability of membership closure as a function of
the number of common friends
The text presents two studies of membership closure where there is data
concerning both person-to-person interactions and person-foci affiliations.
The first study shows the probability of joining the blogging site
LiveJournal (https://www.livejournal.com) where “friendship” is
self-identified within a user’s profile.

4.4. TRACKING LINK FORMATION IN ON-LINE DATA 103
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Figure 4.11: Quantifying the e�ects of membership closure in a large online dataset: The
plot shows the probability of joining a LiveJournal community as a function of the number
of friends who are already members [32].

curve for focal closure behaves quite di�erently from the curve for triadic closure: it turns

downward and appears to approximately level o�, rather than turning slightly upward. Thus,

subsequent shared classes after the first produce a “diminishing returns” e�ect. Comparing

to the same kind of baseline, in which the probability of link formation with k shared classes

is 1 � (1 � p)k (shown as the dotted curve in Figure 4.10), we see that the real data turns

downward more significantly than this independent model. Again, it is an interesting open

question to understand how this e�ect generalizes to other types of shared foci, and to other

domains.

For membership closure, the analogous quantities have been measured in other on-line

domains that possess both person-to-person interactions and person-to-focus a⌅liations.

Figure 4.11 is based on the blogging site LiveJournal, where friendships are designated by

users in their profiles, and where foci correspond to membership in user-defined communities

[32]; thus the plot shows the probability of joining a community as a function of the number

of friends who have already done so. Figure 4.12 shows a similar analysis for Wikipedia [122].

Here, the social-a⌅liation network contains a node for each Wikipedia editor who maintains

a user account and user talk page on the system; and there is an edge joining two such editors

if they have communicated, with one editor writing on the user talk page of the other. Each

Figure: [E&K, Fig 4.11]
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Second study of membership closure as a function
of the number of common friends
The second study concerns Wikipedia editors and foci are specific
Wikipedia pages. Here “friendship” is defined as having communicated
together on a user-talk page and membership in a foci corresponds to
having edited a Wikipedia page.

104 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.12: Quantifying the e�ects of membership closure in a large online dataset: The
plot shows the probability of editing a Wikipedia articles as a function of the number of
friends who have already done so [122].

Wikipedia article defines a focus — an editor is associated with a focus corresponding to a

particular article if he or she has edited the article. Thus, the plot in Figure 4.12 shows the

probability a person edits a Wikipedia article as a function of the number of prior editors

with whom he or she has communicated.

As with triadic and focal closure, the probabilities in both Figure 4.11 and 4.12 increase

with the number k of common neighbors — representing friends associated with the foci. The

marginal e�ect diminishes as the number of friends increases, but the e�ect of subsequent

friends remains significant. Moreover, in both sources of data, there is an initial increasing

e�ect similar to what we saw with triadic closure: in this case, the probability of joining a

LiveJournal community or editing a Wikipedia article is more than twice as great when you

have two connections into the focus rather than one. In other words, the connection to a

second person in the focus has a particularly pronounced e�ect, and after this the diminishing

marginal e�ect of connections to further people takes over.

Of course, multiple e�ects can operate simultaneously on the formation of a single link.

For example, if we consider the example in Figure 4.8, triadic closure makes a link between

Bob and Daniel more likely due to their shared friendship with Anna; and focal closure also

makes this link more likely due to the shared membership of Bob and Daniel in the karate

club. If a link does form between them, it will not necessarily be a priori clear how to

attribute it to these two distinct e�ects. This is also a reflection of an issue we discussed

Figure: [E&K, Fig 4.12]
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The interplay between selection and influence

Using the same Wikipedia data as in the previous focal closure example,
The text presents one study that speaks to the manner in which selection
and influence combine to result in observed homophily. Once again, the
nodes are Wikipedia editors, the foci are articles, and edges correspond to
communication via a user-talk page.

In addition, the study defines a numerical similarity measure between two
users A and B as a small variation on the following ratio which is
analogous to the way neighbourhood overlap was defined:

number of articles edited by both A and B

number of artices edited at least one of A or B

Fortunately, every action on Wikipedia is recorded and time-stamped so it
is possible to conduct a meaningful longitudinal study by looking at each
“time step” defined by an “action” of an editor where an action is either
an article edit, or a communication.
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Average level of similarity before and after the first
Wikipedia communication
The figure below plots the level of similarity as a function of the number
of edits before and after the first communication. Time 0 is defined to be
the time of the first interction between a pair (A,B) of editors. This is
then averaged over all the (A,B) plots.106 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Selection: rapid 

increase in similarity 

before first contact

Social influence: 

continued slower 

increase in similarity 

after first contact

Figure 4.13: The average similarity of two editors on Wikipedia, relative to the time (0)
at which they first communicated [122]. Time, on the x-axis, is measured in discrete units,
where each unit corresponds to a single Wikipedia action taken by either of the two editors.
The curve increases both before and after the first contact at time 0, indicating that both
selection and social influence play a role; the increase in similarity is steepest just before
time 0.

Because every action on Wikipedia is recorded and time-stamped, it is not hard to get

an initial picture of this interplay, using the following method. For each pair of editors A

and B who have ever communicated, record their similarity over time, where “time” here

moves in discrete units, advancing by one “tick” whenever either A or B performs an action

on Wikipedia (editing an article or communicating with another editor). Next, declare time

0 for the pair A-B to be the point at which they first communicated. This results in many

curves showing similarity as a function of time — one for each pair of editors who ever

communicated, and each curve shifted so that time is measured for each one relative to

the moment of first communication. Averaging all these curves yields the single plot in

Figure 4.13 — it shows the average level of similarity relative to the time of first interaction,

over all pairs of editors who have ever interacted on Wikipedia [122].

There are a number of things to notice about this plot. First, similarity is clearly increas-

ing both before and after the moment of first interaction, indicating that both selection and

Figure: [E&K, Fig 4.13]
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Observations on similarity vs. interactions (Figure
4.13)

There are a number of interesting observations and caveats regarding
Figure 4.13. First some noteable observations.

The level of similarity is increassing over “time” before and after the
first interaction.

The steepest increase in similarity occurs just before the first
interaction suggesting that selection is playing a pronounced role in
forming this “friendship link” in the networks that are being
dynamically created.

The bottom dashed line indicates the level of similarity for those who
never communicate. Clearly those who eventually interact evidence
more similarity suggesting some significant similarity factors outside of
what is being studied.
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Some caveats

Like any averaging of individual data, we cannot say why any
particular pair of editors have decided to communicate.

Because the defined time 0 corresponds to different moments in “real
time” for each pair, we cannot understand to what extent real time
events may also be a factor leading communication.

In this study, links are never eliminated. Other “fully dynamic”
network settings would have node and/or links that are not
permanent.

The biggest question about such a study is the extent to which any
observations may or may not extend to different settings. In what
settings do we have the same kind of detailed time stamping of
events?
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Is some degree of segregation “natural”?
A dramatic example of homophily (i.e., we tend to live ”adjacent” to
people similar to ourselvbes) can be found at the end of Chagter 4. The
chapter ends with a discussion of Schelling’s segregation model that
provides an explanation as to how racial neighbourhood segregation can
evolve when driven by individuals wanting to be near “people similar to
themselves”. Schelling’s model and his simulations led him to a
fundamental observation:
Segregation can and will happen even if there is no explcit individual desire
to avoid (say) people of a different race. All that is needed is some desire
to be near enough similar people.
This observation isn’t restricted to racial segregation but as can also
witness neghbourhoods that are largely or significantly basd on ethnicity.

In addition to the importance of this fundamental observation, the model
provides an interesting study of network dynamics, homophily driven by
selection, and how local decisions lead to global structure in a network.

Of course, Schelling’s model does not preclude the presense of other
economic and political factors, not does it preclude explicit racism. 15 / 50



The Schelling model
The model itself is quite simple but still hard to analyze analytically. In
this model, we view two classes of individuals (X and O) living in a grid.
More speficially, individuals occupy some subset of the nodes as depicted
in figure 4.15 of the text.

4.5. A SPATIAL MODEL OF SEGREGATION 109
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Figure 4.15: In Schelling’s segregation model, agents of two di�erent types (X and O) occupy
cells on a grid. The neighbor relationships among the cells can be represented very simply
as a graph. Agents care about whether they have at least some neighbors of the same type.

The general formulation of the model is as follows. We assume that there is a population

of individuals, whom we’ll call agents; each agent is of type X or type O. We think of the

two types as representing some (immutable) characteristic that can serve as the basis for

homophily — for example, race, ethnicity, country of origin, or native language. The agents

reside in the cells of a grid, intended as a stylized model of the two-dimensional geography

of a city. As illustrated in Figure 4.15(a), we will assume that some cells of the grid contain

agents while others are unpopulated. A cell’s neighbors are the cells that touch it, including

diagonal contact; thus, a cell that is not on the boundary of the grid has eight neighbors.

We can equivalently think of the neighbor relationships as defining a graph: the cells are the

nodes, and we put an edge between two cells that are neighbors on the grid. In this view,

the agents thus occupy the nodes of a graph that are arranged in this grid-like pattern, as

shown in Figure 4.15(b). For ease of visualization, however, we will continue to draw things

using a geometric grid, rather than a graph.

The fundamental constraint driving the model is that each agent wants to have at least

some other agents of its own type as neighbors. We will assume that there is a threshold t

common to all agents: if an agent discovers that fewer than t of its neighbors are of the same

type as itself, then it has an interest in moving to a new cell. We will call such an agent

unsatisfied with its current location. For example, in Figure 4.16(a), we indicate with an

asterisk all the agents that are unsatisfied in the arrangement from Figure 4.15(a), when the

threshold t is equal to 3. (In Figure 4.16(a) we have also added a number after each agent.

This is simply to provide each with a unique name; the key distinction is still whether each

agent is of type X or type O.)
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The dynamics of the Schelling model

Schelling then hypotesizes that every individual wants to have at least
some threshold t of his/her neighbours to be immediate neighbours. When
a individal’s threshold is not met, they move. There are diffeerent versions
of the model depending on the order in which individuals move and where
they randomly move to in order to satsify the desire for similarity. The
claim is that the results do not change qualitatively.

To observe the dynamics, simulations of the network are conducted for
different threshold values. What is very apparent is the segegrated
structure of the network as it evolves.

The specific gird is a 150 by 150 grid (i.e., 12,500 cells, with 10,000 cells
occupied) with both groups equlally represented. The following figures
show the results for thresholds t = 3 (i.e. an individual desires less than a
majority of his/her neighbours to be similar) and t = 4.
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Simulations for t = 3
112 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) A simulation with threshold 3. (b) Another simulation with threshold 3.

Figure 4.17: Two runs of a simulation of the Schelling model with a threshold t of 3, on a
150-by-150 grid with 10, 000 agents of each type. Each cell of the grid is colored red if it is
occupied by an agent of the first type, blue if it is occupied by an agent of the second type,
and black if it is empty (not occupied by any agent).

150 columns, 10, 000 agents of each type, and 2500 empty cells. The threshold t is equal to

3, as in our earlier examples. The two images depict the results of two di�erent runs of the

simulation, with di�erent random starting patterns of agents. In each case, the simulation

reached a point (shown in the figures) at which all agents were satisfied, after roughly 50

rounds of movement.

Because of the di�erent random starts, the final arrangement of agents is di�erent in

the two cases, but the qualitative similarities reflect the fundamental consequences of the

model. By seeking out locations near other agents of the same type, the model produces

large homogeneous regions, interlocking with each other as they stretch across the grid. In

the midst of these regions are large numbers of agents who are surrounded on all sides by

other agents of the same type — and in fact at some distance from the nearest agent of

the opposite type. The geometric pattern has become segregated, much as in the maps of

Chicago from Figure 4.14 with which we began the section.

Interpretations of the Model. We’ve now seen how the model works, what it looks

like at relatively large scales, and how it produces spatially segregated outcomes. But what

broader insights into homophily and segregation does it suggest?

The first and most basic one is that spatial segregation is taking place even though no
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Simulation for t = 4
114 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) After 20 steps (b) After 150 steps

(c) After 350 steps (d) After 800 steps

Figure 4.19: Four intermediate points in a simulation of the Schelling model with a threshold
t of 4, on a 150-by-150 grid with 10, 000 agents of each type. As the rounds of movement
progress, large homogeneous regions on the grid grow at the expense of smaller, narrower
regions.
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Some concluding comments on the Schelling study
The model is not constructed so as to build in segregation. More
specifically, the model allows for stable configurations that are well
integrated.

However, given a random starting configuration, the simulations show
that people will gravitate to a segregated structure.

There is a compunding effect of the model dynamics. Namely, when
one person leaves, it can result in other neighbours falling below their
threshold ansd hence a new desire to leave the current location has
been created.

The word segregation is a term with a very negative connotation due
to the use of the term with respect to racial (e.g., Jim Crow
legislation in the US ) and religious segregation (e.g., ghettos in
Europe) which was forced by governments.

What if we used the word ”clustered” instead of segregated? Do we
think that neighbourhoods that are concentrated along say ethnic
lines is a bad thing?
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The reality of neighbourood segregation in Chicago
(1970s)

108 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) Chicago, 1940 (b) Chicago, 1960

Figure 4.14: The tendency of people to live in racially homogeneous neighborhoods produces
spatial patterns of segregation that are apparent both in everyday life and when superim-
posed on a map — as here, in these maps of Chicago from 1940 and 1960 [302]. In blocks
colored yellow and orange the percentage of African-Americans is below 25, while in blocks
colored brown and black the percentage is above 75.

percentage of African-Americans per city block in Chicago for the years 1940 and 1960; in

blocks colored yellow and orange the percentage is below 25, while in blocks colored brown

and black the percentage is above 75.

This pair of figures also shows how concentrations of di�erent groups can intensify over

time, emphasizing that this is a process with a dynamic aspect. Using the principles we’ve

been considering, we now discuss how simple mechansisms based on similarity and selection

can provide insight into the observed patterns and their dynamics.

The Schelling Model. A famous model due to Thomas Schelling [365, 366] shows how

global patterns of spatial segregation can arise from the e�ect of homophily operating at a

local level. There are many factors that contribute to segregation in real life, but Schelling’s

model focuses on an intentionally simplified mechanism to illustrate how the forces leading to

segregation are remarkably robust — they can operate even when no one individual explicitly

wants a segregated outcome.
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And how integrated or segregated is Toronto?

At some level (i.e., Metro Toronto), Toronto may be the most ethically
diverse city as is claimed. But at a more detailed level, many
neighbourhoods are far from being “integrated”.

It seems much easier to talk about Chicago (as we all know about racial
segregation in the US) but perhaps more difficult to talk about Canada
and Toronto. I am posting a September 2018 newspaper article and a
February 2019 talk by David Hulchanski (UT Faculty of Social Work) that
describes the changes in income levels and neighbourhoods in Toronto.
The title of the article more or less summarizes his major conclusion:
“Toronto is segregated by race and income. And the numbers are ugly”.

I call attention to this (and other similar studies) to indicate that while
homophily is a factor (especially with regard to ethnicity), there are clearly
many other factors that are prevalent and arguably dominant.
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Stuctural balance: positive and negative links
Now for a relatively less sensitive (political) topic, who we like and dislike.
As previously mentioned so far we have restricted attention to social
networks where all edges reflect some positive degree of friendship,
collaboration, communication, etc.

Chapter 5 now explores some interesting aspects of networks where edges
can be both positive and negatve. This is, of course, quite natural in that
people (countries) often have enemies as well as friends (allies). We also
have companies that can be aligned in some way or can be competitors.
Here the meaning of a edge can seemingly change any general
observations more than when there are only positive edges.

Following the development stemming from the distinction between strong
and weak ties, we would like to see what we can infer about a network
given that some edges are positive and some are negative. More
specifically, what can be assumed from certain types of triadic closures?
How can local properties (e.g., how edges of a triangle are labelled) can
have global implications (i.e., provable results about network structure)?
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Some initial assumptions

We start with a strong assumption:
Assume the network is a complete (undirected) graph. That is, as
individuals we either like or dislike someone. Furthermore, this is not
nuanced in the sense that there is no differentiation as to the extent of
attraction/repulsion).

Later in the chapter, the text considers the issue of networks that are not
complete networks. The text also reflects a little on the nature of directed
networks (when discussing the weak balance property) but essentially this
chapter is about undirected networks.

Note: We can assume the graph is connected since otherwise we can
consider each connected component separately.
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Types of instability

Thinking of networks as people with likes and dislikes of other people
(rather than some other possible interpretations), we can consider the 4
different types of labelled triangles in the graph, depending on the number
of positive (+) and negative (-) edges. That is, any completely labelled
triangle can have 0,1,2, or 3 positive edges and due to the symmetry of a
triangle that is all the information we have about any particular triangle.

Using a central idea from social psychology, two of the four triangle
labellings are considered relatively stable (called balanced) and the other
two relatively unstable (not balanced).
Here follows the four types of triangles as depicted in Figure 5.1 of the
text:
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A natural stable configuration
5.1. STRUCTURAL BALANCE 121

A

B C

+ +

+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

In this case, A,B,C are mutual friends and that naturally indicates that
they would likely remain so.
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The second stable configuration
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(c) A and B are friends with C as a mutual en-
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(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

This may be a slightly less obvious stable situation where A and B are
friends and if anything that friendship is reinforced by a mutual dislike for
C .
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A natural unstable configuration
In this case, A has two friends B and C who unfortunately do not like each
other. The claim here is that the stress of this situation will encourage A
to either try to have B and C become friends or else for A to take sides
with B or C and thus eliminate a friendship so as to move toward the
previous stable configuration.
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A somewhat less obvious unstable configuration
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friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

Why is this called unstable?

The instability here is sometimes explained by
the phenomena that “the enemy of my enemy becomes my friend” as we
sometimes see in international relations. This is less convincing than the
other type of instability and we will return to this situation soon.
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The strong structural balance property

The underlying behavioural theory is that these unstable triangles cause
stress and hence the claim that such unbalanced triangles are not common.

In order to try to understand if this theory tells us anyting about the
global structure of the network, we can make the following strong balance
assumption (much as we made the strong triadic closure assumption).

Strong structural balance property: Every triangle in the network is
balanced.

Recall that we started off with the assumption that the network is a
complete graph with every edge labelled so we are assuming a property for
all n choose 3 triangles. Of course, we cannot expect this property to hold
but just as the strong triadic closure property was an extreme assumption,
we can hope that this strong assumption will also suggest or predict useful
information about the network.
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End of Monday, January 27 lecture and todays
agenda

We ended here but noted that I skipped over the Schelling segegation
model which we will do at the end of todays lecture.

Quick review of balanced vs unbalanced triangles. Balance as a type
of equilibrium.

Consequence of the strong structural balance property: A
characterization of the networks that satisfy the property.

Harary’s Balance Theorem

Determining when unlabelled edges can and cannot be labelled to
create a strongly balanced network

Weak structural balance

Characterization of weak structural balance.

The Schelling segregation model.
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A natural stable configuration
5.1. STRUCTURAL BALANCE 121
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(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

In this case, A,B,C are mutual friends and that naturally indicates that
they would likely remain so.
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The second stable configuration
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triangles are sources of stress or psychological dissonance, people strive to minimize them in
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This may be a slightly less obvious stable situation where A and B are
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A natural unstable configuration
In this case, A has two friends B and C who unfortunately do not like each
other. The claim here is that the stress of this situation will encourage A
to either try to have B and C become friends or else for A to take sides
with B or C and thus eliminate a friendship so as to move toward the
previous stable configuration.
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(c) A and B are friends with C as a mutual en-
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(d) A, B, and C are mutual enemies: not bal-
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friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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A somewhat less obvious unstable configuration
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friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

Why is this called unstable?

The instability here is sometimes explained by
the phenomena that “the enemy of my enemy becomes my friend” as we
sometimes see in international relations. This is less convincing than the
other type of instability and we will return to this situation soon.
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Balance as a form of equilibrium

In our last lecture, while introducing these labelled triangles, it was
suggested that one way to further justify the distinction between balanced
and unbalanced triangles is to view balance (resp non balance) as a
desireable (undesireable) situation.

In a balanced (resp. unbalanced) configuration, any single change in a
relation (i.e. edge label) will lead to an unbalanced (resp. balanced)
configuratiion.

That is, balance is a form equilibrium.

Later in the term, we will discuss stable matchings. (How many have seen
this in CSC304 or elsewhere?) We view stable matchings as an
equilibrium. In stable matchings (as in balanced triangles), it is a pair of
“agents” that we consider in a single change. We discuss stable matchings
later in this course.
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Consequence of the strong structural balance
property: A provable characterization of networks
that satisfy the property
One simple (idealistic) way to construct a network satisfying the property
is to asssume that that there are no enemies; everyone is a friend. Is this
the only way?

Suppose that we had two communities of active political people (e.g. X =
the “base” for candidate or political party R, , and Y and the “base” for
candidate or political party U. In the world of highly politicized politics, it
isn’t too far of a stretch to think that eveyone within a community are
friends and everyone dislikes people in the other community. This kind of
network would also clearly satisfy the property.

So far then, we have two possibilities, the network is a clique with all
positive edges, or the network is composed of two positive cliques with a
complete bipartite graph of negative edges between the communities.
Are there other possible ways to have the strong balance property?
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Harary’s Balance Theorem

Are there other possible ways to have the strong balance property?

Perhaps suprisingly, in a complete network, these two types of networks
(no enemies and two opposing communities) are the only possibilities.

This is a theorem and the proof is not difficult as we will show using the
figure 5.4 in the text.

Proof
We assume that the network satisfies the strong balance property. If there
are no enemies, then we are done. So suppose there is at least one
negative edge and for definiteness lets say that edge is adjacent to node A.
Let X be all the friends of A and Y all of its enemies. So every node is in
either X or Y since every edge is labelled.
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Proof of balance theorem continued

Consider the three possible triangles as in the figure. It is easy to see that
in order to maintain structural balance, B and C must be friends as must
D and E , whereas B and D (also C and E ) must be enemies.5.2. CHARACTERIZING THE STRUCTURE OF BALANCED NETWORKS 125

A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and
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Strong structural balance in networks that are not
complete

We will depart from the order of topics in chapter 5, and consider the issue
of networks that are not complete. Is there a meaningful sense in which a
(non-complete) network is or is not structurally balanced?

One possibility is to ask whether or not there is a way to complete the
graph so that it becomes structurally balanced. Of course, if there is
already an unbalanced triangle then there is no way to complete the graph
into one satisfying the strong balance property.

Aside: Of course, this immediately raises the question as to how many
existing edge labels need to be changed so that a complete network is
balanced (or an incomplete network can be made to be balanced)? And
will networks tend to dynamically evolve into balanced networks. But for
now we will assume that all existing labels are permanent.
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How to label missing edges?

Note that when considering the strong triadic property, if all existing
triangles satisfied the strong triadic property, then there was always a
trivial way to assign labels to unlabelled edges by simply making each
unlabelled edge a weak link.

Question: If all existing triangles are balanced, is there always a way to
complete a network so as to form a strongly balanced network?

It is easy to see that this is not always possible. For example, comsider a
network which is a 4 node cycle having 3 positive edges and one negative
edge. Any way to label a “diagonal edge” will lead to an imbalance.

We are then led to the following
Question: Can we determine when there is an efficient algorithm to
complete the network so as to satisfy the strong blance property? And if
there is a completion, how efficiently can one be found?

41 / 50



How to label missing edges?

Note that when considering the strong triadic property, if all existing
triangles satisfied the strong triadic property, then there was always a
trivial way to assign labels to unlabelled edges by simply making each
unlabelled edge a weak link.

Question: If all existing triangles are balanced, is there always a way to
complete a network so as to form a strongly balanced network?

It is easy to see that this is not always possible. For example, comsider a
network which is a 4 node cycle having 3 positive edges and one negative
edge. Any way to label a “diagonal edge” will lead to an imbalance.

We are then led to the following
Question: Can we determine when there is an efficient algorithm to
complete the network so as to satisfy the strong blance property? And if
there is a completion, how efficiently can one be found?

41 / 50



Determining when and how to complete a network
to satisfy the strong balance property
Clearly, if the existing edges are all positve links then there is a trivial way
to complete the graph by simply making all missing edges to be positive
edges.

So the interesting case is when there are existing negative edges. In this
case, the characterization of strongly balanced networks tells us that when
the graph is completed, the graph structure must be that of two opposing
communities, with only positive edges within each community and only
negative edeges for links between the communities.

The previous example of a 4 node cycle is a clue as to how to proceed.
That example can be stated as follows: if a network contains a 4 node
cycle with one negative edge then it cannot be completed (to be strongly
balanced) . More generally, if a network contains a cycle (of any length)
with one negative edge, it cannot be completed. And even more generally,
if a network contains a cycle having an odd number of negative edges it
cannot be completed. Why?
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Consequence of an odd cycle
136 CHAPTER 5. POSITIVE AND NEGATIVE RELATIONSHIPS

1

25

4 3

-

-

+

-

+

X

X

Y
Y

X

label as

X or Y

Figure 5.10: If a signed graph contains a cycle with an odd number of negative edges, then it
is not balanced. Indeed, if we pick one of the nodes and try to place it in X, then following
the set of friend/enemy relations around the cycle will produce a conflict by the time we get
to the starting node.

negative edges between X and Y , and then we can check that all triangles will be balanced.

So this gives a “filling-in” that satisfies the first definition.

The fact that the two definitions are equivalent suggests a certain “naturalness” to the

definition, since there are fundamentally di↵erent ways to arrive at it. It also lets us use

either definition, depending on which is more convenient in a given situation. As the example

in Figure 5.9 suggests, the second definition is generally more useful to work with — it tends

to be much easier to think about dividing the nodes into two sets than to reason about filling

in edges and checking triangles.

Characterizing Balance for General Networks. Conceptually, however, there is some-

thing not fully satisfying about either definition: the definitions themselves do not provide

much insight into how to easily check that a graph is balanced. There are, after all, lots of

ways to choose signs for the missing edges, or to choose ways of splitting the nodes into sets

X and Y . And if a graph is not balanced, so that there is no way to do these things suc-

cessfully, what could you show someone to convince them of this fact? To take just a small

example to suggest some of the di�culties, it may not be obvious from a quick inspection

of Figure 5.8 that this is not a balanced graph — or that if we change the edge connecting

nodes 2 and 4 to be positive instead of negative, it becomes a balanced graph.

In fact, however, all these problems can be remedied if we explore the consequences of
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The algorithm for determining if a partially labelled
network can be completed to the strongly balanced

Lets call a cycle with an odd number of edges an odd cycle. The desired
algorithm will either find an odd cycle (certifying that the network cannot
be completed) or it will return a bipartiton of the nodes satisfying the
Balance Theorem. This then also determines if a complete network is
balanced.

We proceed as follows:

Suppose G = V ,E ) is the given connected network and let
G+ = (V ,E+) where E+ = {e ∈ E such that e is a positive link.}
We consider the connnected components C = C1, . . . ,Cr of G+ and
let T1, . . . ,Tr be spanning trees for these componenets.

Note that all edges between any Ci ,Cj must be labelled as negative
edges (or else they would have beem merged into a larger connected
component in G+..
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Completing the algorithm

Otherwise, consider the graph G− = {C,E−} whose nodes are the
components of G+ and whose edges are negative edges in G .

Since G is connected, G− is connected.

if G− has a cycle with an odd number of negative edges, then by
following positive edges in each Ci we have such a cycle in G . We
then again have a witness that G cannot be completed.

Otherwise we are showing that G− is bipartite and this gives us the
bipartition we need for the balance theorem.

A graph has an odd cycle iff the graph is not bipartite. Breadth first
search can be used to determine whether or not a graph is bipartite
(equivalently has a 2-colouring). Hence this development is efficient.

For the remainder of this lecture, we return to the assumption that
our networks are undirected complete graphs.

45 / 50



Friends-enemies vs trust-distrust
There is always an ambiguity in social networks as to how to interpret
links. Is a friend as we might traditionally mean a “good friend”, or is it a
friend as in Facebook friends which in many cases are just people you
know? And as we have seen we also use social network links to mean
collaboration or communication rather than friendship.

This is both the power of network modeling (i.e., that results can carry
over to different settings) and also the danger of misinterpreting results for
one type of setting to apply to another.

In chapter 5, we see another instance of the ambiguity where instead of
the friend-enemy relation, one can interpret an edge label as a
trust-distrust relation.

To what extent should we expect intuiton for friendship to carry over to
trust? As discussed in the text, one distinction between these settings is
that turst may be more of a directed edge concept relative to friendship.
(Of course, even for friendship the relation may not be symmetric which is
why maybe we should reserve the term of “friend” for a good friend.)
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The ambiguity in the trust-distrust relation

Ignoring the fact that trust might not be at all symmetric, there is an
additional ambiguity in the trust-distrust terminology. Namely, the text
considers two possible interpretations that are meaningful even in the
context of a single setting as in the online product rating site Epionions.

1 If trust is aligned with agremment on political issues as in the ratings
of political commentary, then the four cases of balanced and
unbalanced triangles still seem to apply. In particular, if A distrusts B
and B distrusts C , it is reasonable to assume that A trusts C and
hence a triangle having three negative labels is not stable.

2 However, if A distrusts B is aligned with A believing that he/she is
more knowledgeable than B about a certain product, then a triangle
having three negative labels is stable.

This suggests that it is reasonable to study a weaker form of structural
balance.
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A weaker form of structural balance
It is then interesting to consider a weaker form of structural balance where
the only unstable triangles are those having two positive labels.

This leades to the following definition (analogous to the strong structural
balance property:
A network satisfies the weak structural balance property if it does not
contain any triangles with exactly two positive edges. This in turn leads to
the following
Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak strucrtural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i 6= j) are negative edges.
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Proof of the characterization of weak structural
balance

Clearly if the network G = (V ,E ) has the network structure specified in
the Theorem, then the network satisfies the weak balance property. The
converse (that the weak balancet property implies the network structure)
is a reasonably simple inductive argument (say with respect to the number
of edges).

Consider any node A and let X be all the friends of A.
The following two claims are easy to verify:

Any B,C ∈ X are friends

If B ∈ X and D /∈ X , then B and D are enemies.

Upon removing the nodes in X , the induced network G ′ of the remaining
nodes still must satisfy the weak structure balance property and hence by
the induction hypothesis must have the stated network structure.
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Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-
tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War I. This figure and
example are from Antal, Krapivsky, and Redner [20].

was China’s enemy, China was India’s foe, and India had traditionally bad relations with

Pakistan. Since the U.S. was at that time improving its relations with China, it supported

the enemies of China’s enemies. Further reverberations of this strange political constellation

became inevitable: North Vietnam made friendly gestures toward India, Pakistan severed

diplomatic relations with those countries of the Eastern Bloc which recognized Bangladesh,

and China vetoed the acceptance of Bangladesh into the U.N.”

Antal, Krapivsky, and Redner use the shifting alliances preceding World War I as another

example of structural balance in international relations — see Figure 5.5. This also reinforces

the fact that structural balance is not necessarily a good thing: since its global outcome is

often two implacably opposed alliances, the search for balance in a system can sometimes

be seen as a slide into a hard-to-resolve opposition between two sides.
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