
CSC2515’02 1

Linear Algebra Review
CSC2515 – Machine Learning – Fall 2002

Abstract— This tutorial note provides a quick review of
basic linear algebra concepts. It is quite condensed, as it
attempts to do in a few pages what Strang’s book does very
well in 500.

I. VECTORS AND MATRICES

Linear algebra is the study of vectors and matrices and
how they can be manipulated to perform various calcu-
lations. What do the two words “linear” and “algebra”
have to do with vectors and matrices? Consider functions
which take several input arguments and produce several
output arguments. If we stack up the input arguments into
a vector � and the outputs into a vector � then a function
� � ���� is said to be linear if:

����� ��� � ����� � ����� (1)

for all scalars �� � and all vectors ���. In other words,
scaling the input scales the output and summing inputs
sums their outputs. Now here is the amazing thing. All
functions which are linear, in the sense defined above, can
be written in the form of a matrix � which left multiplies
the input argument �:

� � �� (2)

Here � has as many rows as outputs and as many columns
as inputs. Furthermore, all matrix relations like the one
above represent linear functions from their inputs to their
outputs. [Try to show both directions of this equivalence.]

Another interesting fact is that the composition of two
linear functions is still linear [try to show this also]:
������� � ��� � �� � ����. This means that if we
think of the inputs and outputs as values running along
“wires” and the functions as “components” we can build
any “circuit” we like (assuming the values on the wires
add when they meet) and it will still be linear. The manip-
ulations of matrix multiplication and vector addition cor-
respond to running some wires through a component and
to connecting wires together. This use of multiplication
and addition of vectors is why we use the word “algebra”
in linear algebra.

Hence the entire study of mutiple-input multiple-output
linear functions can be reduced to the study of vectors and
matrices.

version 1.2 – September 2002 – c� Sam Roweis, 2002

II. MULTIPLICATION, ADDITION, TRANSPOSITION

Adding up two vectors or two matrices is easy: just add
their corresponding elements. (Of course the two things
being added have to be exactly the same size.) Multiply-
ing a vector or matrix by a scalar just multiplies each el-
ement by the scalar. So we are left with matrix-vector
multiplication and matrix-matrix multiplications.

The best way to think of an � by 	 matrix � is as a
machine that eats 	 sized vectors and spits out � sized
vectors. This conversion process is known as “(left) mul-
tiplying by �” and has many similarities to scalar multipli-
cation, but also a few differences. First of all, the machine
only accepts inputs of the right size: you can’t multiply
just any vector by just any matrix. The length of the vec-
tor must match the number of columns of the matrix to its
left (or the number of rows if the matrix is on the right of
the vector).

We can flip, or “transpose” a matrix if we want to in-
terchange its rows and columns. Usually we will write
�� � ������ � ���.

Like scalar multiplication, matrix multiplication is dis-
tributive and associative:

����� � ����� (3)

���� �� � ��� �� (4)

(5)

Which means you can think of the matrix product �� as
the equivalent linear operator you get if you compose the
action of � followed by the action of �.

Matrix-matrix multiplication as a sequence of matrix-
vector multiplications, one for each column whose results
get stacked beside each other in columns to form a new
matrix. In general, we can think of column vectors of
length
 as just
 by 	 and row vectors as 	 by
 matri-
ces; this eliminates any distinction between matrix-matrix
multiplication and matrix-vector multiplication.

Of course, unlike scalar multiplication, matrix multipli-
cation is not commutative:

�� �� �� (6)

Multiplying a vector by itself gives a scalar ��� which
is known as the (squared) norm or squared length of the

2 CSC2515’02

vector and is written ����. This measure adds up the sum
of the squares of the elements of the vector. The Frobenius
norm of a matrix �
�� does the same thing, adding up the
squares of all the matrix elements.

III. INVERSES AND DETERMINANTS

Two more important concepts to introduce before we
get to use matrices and vectors for some real stuff. The
first is the concept of reversing or undoing or inverting
the function represented by a matrix
. For a function to
be invertible, there needs to be a one-to-one relationship
between inputs and outputs so that given the output you
can always say exactly what the input was. In other words,
we need a function which, when composed with
 gives
back the original vector. Such a function – if it exists –
is called the inverse of
 and the matrix corresponding to
it is the matrix inverse or just inverse of
, denoted
��.
In matrix terms, we seek a matrix that left multiplies
 to
give the identity matrix:

��
 � � (7)

where � is the identity matrix ��� � Æ�� , corresponding to
the identity (do-nothing) function.

Only a very few, special linear functions are invertible.
For starters, they must have at least as many outputs as
inputs (think about why), in other words the matrix must
have at least as many rows as columns. Also, they must
not map any two inputs to the same output. Technically
this is means they must have full rank, a concept which is
explained in the appendix.

The last important concept is that of a matrix determi-
nant. This is a nonnegative scalar quantity, normally de-
noted �
� or ����� which measures how much the ma-
trix “stretches” or “squishes” volume as it transforms its
inputs to its outputs. Matrices with large determinants do
(on average) a lot of stretching and those with small deter-
minants to a lot of squishing. Matrices with zero determi-
nant have rank less than the number of rows and actually
collapse some of their input space into a line or hyperplane
(pancake) in the output space, and thus can be thought of
as doing “infinite squishing”. Conventionally, the deter-
minant is only defined for square matrices, but there is a
natural extension to rectangular ones using the singular
value decomposition which is a topic for another chapter.

IV. FUNDAMENTAL MATRIX EQUATIONS

The two most important matrix equations are the sys-
tem of linear equations:

� � � (8)

and the eigenvector equation:

� � � (9)

which betweeen them cover a large number of optimiza-
tion and constraint satisfaction problems. As we’ve writ-
ten them above, � is a vector but these equations also have
natural extensions to the case where there are many vec-
tors simultaneously satisfying the equation:
� � � or

� � �.

V. SYSTEMS OF LINEAR EQUATIONS

A central problem in linear algebra is the solution of a
system of linear equations like this:

��� �� � � � 	�

�� � � � �

Typically, we express this system as a single matrix equa-
tion something like this:
� � �, where
 is an 	 by
� matrix, � is an � column vector and � is an 	 column
vector. The number of unknowns is � and the number of
equations or constraints is 	. Here is another simple ex-
ample: �

� �	
	 	

� �
��
��

�
�

�
	
�

�
(10)

How do we go about “solving” this system of equa-
tions? Well, if
 is known, then we are trying to find an
� corresponding to the � on the right hand side. (Why?
Well, Finding � given
 and � is pretty easy–just multi-
ply. And for a single � there are usually a great many ma-
trices
 which satisfy the equation: one example – assum-
ing the elements of � do not sum to zero – is ����

�
���.

The only interesting question problem left, then, is to find
�.) This kind of equation is really a problem statement. It
says “hey, we applied the function
 and got the output �;
what was the input � ?” The matrix
 is dictated to us by
our problem, and represents our model of how the system
we are studying converts inputs to outputs. The vector �
is the output that we observe (or desire) – we know it. The
vector � is the set of inputs – it is what we are trying to
find.

Remember that there are two ways of thinking about
this kind of equation. One is rowwise as a set of 	 equa-
tions, or constraints that correspond geometrically to 	
intersecting constraint surfaces:

�
��� � �� � 	
�� � �� � �

�

The goal is to find the point(s), for example ���� ���
above, which are at the intersection of all the constraint

LINEAR ALGEBRA 3

surfaces. In the example above, these surfaces are two
lines in the plane. If the lines intersect then there is a so-
lution, if they are parallel, there is not, if they are coinci-
dent then there are infinite solutions. In higher dimensions
there are more geometric cases, but in general there can be
no solutions, one solution, or infinite solutions.

The other way is columnwise in which we think of the
entire system as a single vector relation:

��

�
�
	

�
� ��

�
�	
	

�
�

�
	
�

�

The goal here is to discover which linear combination(s)
���� ���, if any, of the � column vectors on the left will
give the one on the right.

Either way, the matrix equation
� � � is an al-
most ubiquitous problem whose solution comes up again
and again in theoretical derivations and in practical data
analysis problems. One of the most important applica-
tions is the minimization of quadratic energy functions:
if
 is symmetric positive definite then the quadratic
form ��
� � ���� � � is minimized at the point where

� � �. Such quadratic forms arise often in the study of
linear models with Gaussian noise since the log likelihood
of data under such models is always a matrix quadratic.

A. Least squares: solving for �

Consider the case of a single � first. Geometrically you
can think of the rows of of the system as encoding con-
straint surfaces in which the solution vector � must lie
and what we are looking for is the point(s) at which these
surfaces intersect. Of course, they may not intersect, in
which case there is no exact solution satisfying the equa-
tion; then we typically need some way to pick the “best”
approximate solution. The constraints may also intersect
along an entire line or surface in which case there are an
infinity of solutions; once again we would like to think
about which one might be best.

Let’s consider finding exact solutions first. The most
naive thing we could do is to just find the inverse of
 and
solve the equations as follows:

��
� �
��� (11)

�� �
��� (12)

� �
��� (13)

which is known as Cramer’s rule.
There are several problems with this approach. Most

importantly, many interesting functions are not invertible.
In other words, given the output there might be several
inputs which could have generated it or no inputs which

could have. But beyond that, matrix inversion is a difficult
and potentially numerically unstable operation.

In fact, there is a much better way to define what we
want as a solution. We will say that we want a solution ��

which minimizes the error:

� � �
�� � ��� � ��
�
�� ���
��� ��� (14)

This problem is known as linear least squares, for obvious
reasons. If there is an exact solution (one giving zero er-
ror) it will certainly minimize the above cost, but if there
is not, we can still find the best possible approximation.
If we take the matrix derivative (see Chapter ??) of this
expression, we can find the best soltiuon:

�� � �
�
���
�� (15)

which takes advantage of the fact that even if
 is not
invertible,
�
 may be.

But what if the problem is degererate. In other words,
what if is there more than one exact solution (say a family
of them), or indeed more than one inexact solution which
all achieve the same minimum error. How can this occur?
Imagine an equation like this:

�	��	�� � � (16)

in which
 � �	��	�. This equation constrains the differ-
ence between the two elements of � to be 4 but the sum
can be as large or small as we want. As you can read in
the appendix, this happens because the matrix
 has a null
space and we can add any amount of any vector in the null
space to � without affecting
�.

We can take things one step further to get around this
problem also. The answer is to ask for the minimum norm
vector � that still minimizes the above error. This breaks
the degeneracies in both the exact and inexact cases and
leaves us with solution vectors that have no projection into
the null space of
. In terms of our cost function, this
corresponds to adding an infinitesial penalty on ���:

� � ���
���

���
�
�� ���
��� ���� ����� (17)

And the optimal solution becomes

�� � ���
���

��
�
 � �����
��� (18)

Now, of course actually computing these solutions ef-
ficiently and in a numerically stable way is the topic of
much study in numerical methods. However, in MATLAB
you don’t have to worry about any of this, you can just
type xx=AA � bb and let someone else worry about it.

4 CSC2515’02

B. Linear Regression: solving for

Now consider what happens if we have many vectors
�� and ��, all of which we want to satisfy the some equa-
tion
�� � ��. If we stack the vectors �� beside each
other as the columns of a large matrix � and do the same
for �� to form �, we can write the problem as a large
matrix equation:

� � � (19)

There are two things we could do here. If, as before,

is known, we could find � given �. (Once again finding
� given � is trivial.) To do this we would just need to
apply the techniques above to solve the system
�� � ��
independently for each column �.

But there is something else we could do. If we were
given both � and � we could try to find a single
 which
satisfied the equations. In essence we are fitting a linear
function give its inputs � and corresponding outputs �.
This problem is called linear regression. (Don’t forget to
add a column of ones to � if you want to fit an affine
function, i.e.one with an offset.)

Once again, there are only very few cases in which there
exists an
 which exactly satisfies the equations. (If there
is, � will be square and invertible.)

But we can set things up the same way as before and
ask for the least-squares
 which minimizes:

� �
�
�

�
�� � ���
� (20)

Once again, using matrix calculus we can derive the
optimal solution to this problem. The answer, one of the
most famous formulas in all of mathematics, is known as
the discrete Wiener filter:

� � ���������� (21)

Once again, we might have invertibility problems in
���; this corresponds to having fewer equations than
unknowns in our linear system (or duplicated equations),
thus leaving some of the elements of
 unconstrained. We
can get around this in the same way as with linear least
squares by adding a small amount of penalty on the norm
of the elements in
.

� �
�
�

��� �
���
� � ��
�� (22)

Which means we are asking for the matrix of minimum
norm which still minimizes the sum squared error on the
outputs. Under this cost, the optimal solution is:

� � ������� � ����� (23)

which is known as ridge regression. Often it is a good idea
to use a small nonzero value of � even if ��� is techni-
cally invertible, because this gives more stable solutions
by penalizing large elements of
 that aren’t doing much
to reduce the error. In neural networks, this is known as
weight decay. You can also interpret it as having a Gaus-
sian prior with mean zero and variance 	��� on each ele-
ment of
.

Once again, in MATLAB you don’t have to worry about
any of this, just type AA = YY/ XX and presto! linear
regression. Notice that this is a forward slash, while least
squares used a backslash. (Can you figure out how to do
ridge regression this way, without using inv()?)

VI. EIGENVECTOR PROBLEMS

under construction

VII. SINGULAR VALUE DECOMPOSITION

under construction

APPENDIX: FUNDAMENTAL SPACES

First of all remember that if
 is 	 by � in our equation

� � � then � is an �-dimensional vector, i.e.the vectors
we are loking for live in an �-dimensional space; similarly
� is an 	-dimensional vector. Left multiplying by the
matrix
 takes us from the � space (��) into the � space
(��). Just by looking at its dimensions, you can tell that
left multiplying by
� would take us from the � space
to the � space. Careful though, it is only very special
matrices1 that have the property
� �
�� so that in
general
�
� �� �. In other words, if we send a vector
from �� to �� using
 and then bring it back to �� using

� we can’t be sure that we have the original vector again.

So now we know what matrix multiplication does in
terms of the size of its inputs and outputs. But we still
need an understanding of what is actually going on. The
answer is closely related to the idea of the fundamental
spaces of a matrix
. Here is an informal summary of
what happens, using the concept of the rank � of a matrix
and these spaces. These terms are explained further below.

The action of an 	 by � matrix
 of rank � is to take
an input vector � (�-dimensional) to an output vector �
(-dimensional) through an �-dimensional “bottleneck”.
You can think of this as happening in two steps. First,

 “crushes” part of � to bring it into an �-dimensional
subspace of the input space ��. Then it invertibly (one-to-
one) maps the crushed � into an �-dimensional subspace
of the output space ��. The part of � that is “crushed”
�Called orthogonal or in the complex case unitary matrices.

LINEAR ALGEBRA 5

is its projection into a space called the null space of

which is an �� � ��-dimensional subspace of the input
space that you “cannot come from”. The part of � that is
“kept” is its projection into a space called the row space of

 which is an �-dimensional subspace of the input space.
The output subspace where all the �’s end up is called
the column space of
, also �-dimensional. You “cannot
get to” anywhere outside the column space. If � � �
then no part of � is crushed and the row space fills the
entire input space; i.e.you can “come from everywhere”.
If � � 	 then the column space fills the entire output
space; i.e.you can “get to everywhere”. If � � � � 	
then the entire input space is mapped one-to-one onto the
entire output space and
 is called an invertible matrix.
Figure 1 (inspired by Strang) shows this graphically.

Basically, if you ask the matrix
, there are three
classes of citizens in the input vector space ��. There
is the “unfortunate” class (of dimension � � �) who live
purely in a place called the null space of
. All vectors
from this class automatically get mapped onto the zero-
vector in ��. In otherwords, anyone who lives in the null
space part of the input space gets “killed” by
’s map-
ping. There is also the “lucky” class (of dimension �) who
live purely in a place called row space of
. Any vector
from this class gets mapped invertibly (one-to-one) into
the column space in ��. Finally, there is the “average”
class who live in all the rest of the input space. Before
telling you what happens to the average vectors, let me
point out some surprising but true facts about the first two
classes:

� The place where the “unfortunate” class lives, (i.e.the
null space of
) is actually a subspace. This means
that all linear combinations of vectors in the null
space are still in the null space. No amount of cross-
breeding amongst this class can ever produce anyone
outside of it. Similarly, the place where the “lucky”
class lives (the row space of
) is also a subspace
and all linear combinations of vectors from the row
space are confined to be still in the row space.

� The classes “unfortunate” and “lucky” are orthog-
onal, meaning that any vector in one class’ sub-
space has no projection onto the other class’ sub-
space. Members of the two classes have no attributes
in common.

� The classes “unfortunate” and “lucky” span the en-
tire input space, meaning that all other vectors in the
input space (i.e.all the members of the class “aver-
age”) can be written as linear combinations of vec-
tors from the null space and the row space.

So what happens to a “average” vector under
’s map-
ping? Well, first it gets projected into the row space and

then mapped into the column space. This means that all
of its null space components disappear and all of its row
space components remain. In other words,
 cleans it up
by first removing any of its “unfortunate” attributes until
it looks just like one of the “lucky” vectors. Then
 maps
this cleaned up version of “average” into the column space
in ��.

The number of linearly independent rows (or columns)
of
 is called the rank (denoted � above) and it is the
dimension of the column space and also of the row space.
The rank is of course no bigger than the smaller dimension
of
. It is the dimension of the bottleneck through which
vectors processed by
 must pass.

The column space (or range) of
 is the space spanned
by its column vectors, or in other words, all the vectors
that could ever be created as linear combinations of its
columns. It is a subspace of the entire � space ��. So
when we form a product like
�, no matter what we pick
for � we can only end up in a limited subspace of ��

called the column space. The row space is a similar thing,
except that it is the space spanned by the rows of
. It is
of the same dimension as the column space but not neces-
sarily the same space as the column space. When we form
a product
�, no matter what we pick for � only the part
of � that lives in row space determines what the answer
is, the part of � that lives outside the rowspace (the null
space component) is irrelevant because it gets projected
out by the matrix.

It is clear that the zero vector is in every column space
since we can combine any columns to get it by simply
setting the coefficient of every column to zero, namely
� � �. The smallest possible column space is produced
by the zero matrix: its column space consists of only the
zero vector. The largest possible column space is pro-
duced by a square matrix
 with linearly independent
columns; its column space is all of �� (where � is the
size of
).

However, it may be possible to combine the columns
of a matrix using some nonzero coefficients and still have
them all cancel each other out to give zero; any such so-
lutions for � are said to lie in the null space of the ma-
trix
. That is, all solutions to
� � � except � � �

form the null space. The null space is the part of the in-
put space that is orthogonal to the rowspace. Intuitively,
any vectors that lie purely in the null space are “killed”
(projected out) by
 since they map to the zero vector.
A completely complementary picture exists when we talk
about the space �� and the matrix
� . In particular,
�

has a row space (which is the column space of
) and a
column space (which is the row space of
) and also a
null space (which is curiously called the left null space of

6 CSC2515’02

n

A
ll

o
f

R
m

R
o

w
S

p
ac

e

N
S

+R
S

M
ix

ed

M
ix

ed
L

N
S

+C
S

(R
S

)
C

o
lu

m
n

S
p

ac
e

(C
S

)

d
im

 r
d

im
 r

L
ef

t
N

u
ll

S
p

ac
e

(L
N

S
)

n
-r

N
u

ll
S

p
ac

e
(N

S
)

d
im

m
-r

d
im

A
ll

o
f

RF
o

u
r

F
u

n
d

am
en

ta
l S

u
b

sp
ac

es
 o

f
an

 m
 b

y
n

 M
at

ri
x

in
d

ic
at

es
 le

ft
 m

u
lt

ip
lic

at
io

n
 b

y
th

e
tr

an
sp

o
se

 o
f

th
e

m
at

ri
x

in
d

ic
at

es
 le

ft
 m

u
lt

ip
lic

at
io

n
 b

y
th

e
(m

 b
y

n
)

m
at

ri
x

in
d

ic
at

es
 t

h
e

ze
ro

 v
ec

to
r

Fig. 1. The Four Fundamental Subspaces of a matrix

LINEAR ALGEBRA 7

).
So we have two pairs of orthogonal subspaces, one pair

in �� which between them span �� and another pair in
�� which between them span ��. Now here is an im-
portant thing to know: Any matrix
 maps its row space
invertibly into its column space and
� does the reverse.
What does invertibly or one-to-one mean? Intuitively it
means that no information is lost in the mapping. In par-
ticular, it means that each vector in the row space has ex-
actly one corresponding vector in the column space and
that no two row space vectors get mapped to the same col-
umn space vector. You can think of little strings connect-
ing each row space vector to its column space “friend”.
Careful though,
� may have a different (although still
one-to-one) idea about who is friends with whom so it
may not necessarily “follow the strings back from the col-
umn space to the row space”, i.e.it may not be the inverse
of
. If the strings all line up then
� �
�� and we call

 orthogonal or unitary in the complex case.

Invertibility

We saw above that any matrix maps its row space in-
vertibly into its column space. Some special matrices map
their entire input space invertibly into their entire output
space. These are known as invertible or full rank or non-
singular matrices. It is clear upon some reflection that
such matrices have no null space since if they did then
some non-zero input vectors would get mapped onto the
zero vector and it would be impossible to recover them
(making the mapping non-invertible). In other words, for
such matrices, the row space fills the whole input space.

Formally, we say that a matrix
 is invertible if there
exists a matrix
�� such that

�� � �. The matrix
��

is called the inverse of
 and is unique if it exists. The
most common case is square, full rank matrices, for which
the inverse can be found explicitly using many methods,
for example Gauss-Jordan.2 It is one of the astounding
facts of computational algebra that such methods run in
only ����� time which is the same as matrix multiplica-
tion.

REFERENCES

[1] Strang, Linear Algebra and Applications

�Write I and A side by side and do row ops on A to make it I

