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We present an algorithm for automatically constructing eodegpositional shape model from
examples. Unlike current approaches to structural modgliaition, in which one-to-one
correspondences among appearance-based features art® esedtruct an exemplar-based
model, we search for many-to-many correspondences amaiigeqire shape features (multi-
scale ridges and blobs) to construct a generic shape modate Such features are highly
ambiguous, their structural context must be exploited imgoting correspondences, which
are often many-to-many. The result is a Marr-like abstoarctiierarchy, in which a shape
feature at a coarser scale can be decomposed into a calledtattached shape features at
a finer scale. We systematically evaluate all componentsipoftgorithm, and demonstrate
it on the task of recovering a decompositional model of a hutoeso from example images

containing different subjects with dissimilar local apge®e.
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Chapter 1

| ntroduction

The early generic object models proposed by researchersaudlarr and Nishihara [12]
and Brooks [13] not only decomposed a 3-D object into a setohimetric parts and their
attachments, but supported the representation of objectsltiple scales, using an abstraction
hierarchy (Figure 1.1). Marr’s classical example of a huamsists of a single cylindrical part
at the highest level, a torso, head, and arms appearing aéxtéevel, an upper arm and lower
arm appearing at the next level, etc. Modeling an objectfégrént levels of abstraction is a
powerful paradigm, offering a mechanism for coarse-to-fibect recognition. Unfortunately,
such models were constructed manually, and the featuraatiin and abstraction machinery
required to effectively recover volumetric parts, muclsltéeeir abstractions, was not available

at the time.

The recognition community has recently returned to the lerabof modeling objects as
configurations of parts and relations, with the goal of awtboally recovering (or learning)
such descriptions from examples. For example, collectafnsterest points [1, 9] or affine-
invariant image patches [2], forming a “constellation” e&fures, capture the “parts” and their
geometric relations that define a view-based object cayegamed with powerful new ma-
chine learning techniques, complex configuration modeishesautomatically recovered from

image collections or image sequences. For example, onexteacttemodels based on mo-
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Figure 1.1: Hierarchical models proposed by Marr for theppse of categorical modeling

(taken from [12]).

tion and persistent appearance [5, 6, 15, 3, 4]. Global tetethat combine both motion and

appearance have also been successfully applied to pesasacking tasks [19].

As powerful as these part-based techniques are, theyytmetomputing a one-to-one cor-
respondence between low-level, appearance-based featdoevever, two exemplars belong-
ing to the same class may not share a single appearancefbasge. Yet at some higher level
of abstraction, the two exemplars may share the same coants&tucture. Local, appearance-
based features simply do not lend themselves to the typebstfaat object representations
proposed by Marr and his peers — abstractions in which aesipgit may cover an entire
subcollection of local, appearance-based features. Opmagh might be to try and group
the appearance-based features into local collections eaeiich defines an abstract part.
However, appearance-based features are texture encarfinggghbourhoods centered at in-
terest points, and do not reflect the underlying shape sireicequired for perceptual grouping.

Granted, the analysis of moving interest point-based feattan support their partitioning into
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groups. But again, this requires the tracking of an exemfdarvhich one-to-one feature cor-
respondence is assured. Moreover, it is not clear how toadist coarse part model from a

sparse set of local features.

In this paper, we address the problem of recovering a Mierdbstraction hierarchy from
a set of examples. Note that a hierarchy can arise for differasons. In Marr's work,
such a hierarchy arises from examining the same object fatrelift levels of abstraction. In
our experiments, a hierarchy arises due to object artiomatThough the causes are slightly
different, the end result is the same — the same part of tlebbgin be represented by different

numbers of features.

We begin by applying a multi-scale blob and ridge detectaj {@ a set of images contain-
ing exemplars drawn from the same class. The extractedrésabecome the nodes irb&b
graphwhose edges reflect nonaccidental proximity relations eetwpairs of features. Blobs
and ridges capture the coarse part structure of an objettiegamesent low-order projections
of restricted classes of volumetric part models, includiegeralized cylinders, superquadric
ellipsoids, and geons. Unfortunately, as feature complancreases, so does its reliability
decrease, as seen in Figure 1.2, showing the extracted tdphgfrom a set of images of dif-
ferent humans with varying appearance and arm articulatiSome parts are over-segmented,
some are under-segmented, some are missing, and some aoeISgpossibly representing
background clutter). These segmentation errors all poggnéisant challenge to a matching
algorithm whose goal is to find common structure in a set ofg@esa Whereas one-to-one
matching of local appearance-based features can expbititth dimensionality of the fea-
tures to ensure robust matching, one-to-one matching @lyridobs and ridges is ripe with

ambiguity, and structural relations and context must béogbgal for successful matching.

Still, there is an even more challenging problem to be soherd. In Figure 1.2, sometimes
an arm may appear as a single, elongated ridge (when the artersded), while at other times,
an arm is broken into two smaller ridges (due to articulatrihe elbow). Any matching

algorithm that assumes a one-to-one correspondence lreteageares cannot match these two
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Figure 1.2: Blob graphs extracted from a set of images, eantaming the upper body of
a different person (with different clothing). The high léw# feature abstraction comes at
the cost of increased segmentation errors in the form ofdiaghel over-segmentation, missing
features, and spurious features (including backgrourttecju Notice also that features may be
extracted at different levels of abstraction, such as &strarm (single ridge) or bent arm (two
smaller ridges). Edges between blobs reflect a commitmerdnaccidental proximity-based

grouping (see text) with edge width reflecting strength ofuging.

descriptions, therefore failing to capture the notion #habarser feature can be decomposed
(at a finer level of abstraction) into two smaller featuresetdating these decompositional
or abstraction relations between features requires a ingtstrategy that can match features
many-to-many. Only then can we recover the multi-scalerabsbn models that support true

generic object recognition or categorization.

In this paper, we propose a framework for learning a shapgeab®n hierarchy from a
set of examples with dissimilar local appearance. From afssbisy, poorly-segmented blob
graphs, capturing the articulated part structure of objatdifferent levels of abstraction, we
construct an abstraction hierarchy, in the form of a graphf tontains both coarse-to-fine

decompositional (abstraction) relations as well as atteit relations. Relaxing the one-to-
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one feature correspondence assumption common to mostusgdearning frameworks, we
draw on recent results in graph matching to match blob gramdasy-to-many, allowing the
matching of two exemplars whose parts may apadifferent levels of abstractionAn
analysis of the many-to-many matching results over allspafrinput exemplars ultimately
yields the nodes and edges (both abstraction and attachméimé final model.

We begin with a summary of related work (Chapter 2) and anveserof our system
(Chapter 3). We proceed to present our graph constructiorpated over a multi-scale blob
and ridge decomposition (Chapter 4). We then describe omystamany graph matching
technique (Chapter 5), our technique for identifying psesit parts (Chapter 6.1), and our
technique for defining both attachment and abstractiotioels(and their probabilities) (Chap-
ter 6.2). We evaluate each stage of the pipeline using groutiddata, and explore the sensi-
tivity of each step to changes in parameters (Chapter 7allginve offer some limitations and

conclusions as well as directions for future research (@ng8,9).



Chapter 2

Related Work

Object recognition contains several subproblems, inalgdnodelling, indexing and identi-
fication. Though some researchers address all these igs@erecognition framework, we
will concentrate only on automatic model acquisition. @bjecognition can be roughly di-
vided into two tasks: identification (or low-level recogait) and categorization (or high-level
recognition). The first involves recognizing specific obged he second involves recognizing
an object from a large category, such as people or animalsaré/gying to learn an appro-
priate model for an object category. During categorical el@tquisition, it is important to
construct a sufficiently general model to accomodate albtljects in a given category, yet a
sufficiently restrictive model to reject outliers from otleategories. As mentioned in Chap-
ter 1, Marr and his peers proposed generic, hierarchicaletsptiowever, the tools to build
such models automatically did not exist then. Although joaath the help of new machine
learning techniques, there is growing research in aut@matidel acquisition, most acquired
models are appearance-based and are not geared towararizatiegcognition. In this paper,

our focus will be on recovering decompositional generiqghaodels.

Model acquisition is only part of the object recognitioniplem. As mentioned previously,
some authors attempt to address all components in an itgedramework. Though our model

will eventually be used for recognition in the real world, vl indexing and matching are
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important, we leave such concerns for future research.ring®f model construction, some
integrated systems learn models dynamically (on-liney.éxample, given region segmented
scenes as input, Xu et al. [38] group regions based on thétyjoélthe template matching
results, forming composite nodes. The model evolves bytipglithe composite nodes as new
templates become available. Segen [44] provides a way atiaiing graph-based models by
representing feature relations (and not features) as ndthesmodeled relations can be n-ary,
and are not restricted to be pairwise. An efficient algoriterprovided to dynamically learn
such models as new input graphs become available. On thetahd, our goal during model
construction is to obtain natural high-level parts andtretes between them. Our model will be
built off-line with pairwise decomposition and attachmesiations. Thus, we will concentrate
only on model recovery, with no concern for issues such asmym model acquisition or

modeling more complex relations.

The main choices facing the model acquisition communityttzeeype of the model and the
features used in its construction. A model can be part- orpairbased. Non-part-based, or
global models, try to represent an object as a whole, eitloeletiing its appearance or shape.
Part-based, or local models, try to model the object as adodin of parts, which again can be

appearance- or shape-based.

A lot of early work in modeling relates to global models. Suabrk includes PCA models,
such as eigenfaces [17], which are based on the appearatice object, and active shape
models, originally proposed by Cootes et al. [18], which elatie contour of the object.
In PCA models, the objects are linearly projected to a lowsrethsional space. The model
consists of several basis objects that represent the tagggsvectors of the space of all the
training exemplars. In active shape models, the contounebbject is modeled with a snake
(a sequence of points) in case of 2D modeling; or with a meshar8D case. The model is
obtained by registering the points from each exemplar tegetA mean shape for the snake
or the mesh is obtained together with information about mitaevariability in the position of

each point.
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Several extensions to the original active shape models meqgosed. Duta et al. [39]
focus on the robust registration of the exemplars, and olaaiaverage contour of an object.
Maurel and Sapiro [37] extend active shape models to dehlwdieo sequences as input. This
adds an additional problem of temporal alignment. Ueda arzdilS [42] provide a multiscale
representation for contour description and match contaudifferent scales. If a portion of
one contour contains more detailed information than amatbetour, the final model contour
will contain the coarser representation. Though global e®dre a highly researched field,
they do not handle occlusion or noise very well. Such modssiire that only the modeled
object be present in the training images. Therefore, weasiticentrate on part-based models
in our work.

Part-based models have been shown to contain many advamagreglobal models. Part-
based models store the object’s description as a collecfisaveral components, and recogni-
tion is possible even if some parts are occluded or missihg.parts themselves often contain
statistical information about their parameters, allowioigrobust recognition. The number of
parts can range from hunderds to tens or less. Some paud-basgels also contain the rela-
tions between parts, such as distance or orientation. Merethe topic of finding the best
relational structure for the model has gained consideratition, as it restricts the recog-
nition stage even further and provides a solution for degaluith the exponential number of
matches of a new exemplar to the model. The work in part bassdkling can be divided into

several areas of interest.

2.1 Typeof input

A lot of part-based model acquisition work goes hand in haitid the tracking field. Thereis a
dual advantage in using part-based models for trackinggs@g On the one hand, part-based
models provide more robust tracking that can handle oamhend missing parts. One the other

hand, since tracking deals with video sequences of moviamelars as its input, it provides a
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simpler way of correctly matching the images and thus sifyipkj part correspondence. The
latter consequence gives a significant advantage to thefusac&ing for automatic model
acquisition.

The area of human tracking has gained particular attemitimel part-based modelling field
[4, 5, 6, 15]. Ramanan and Forsyth [4, 5] provide a full fraragnfor learning a part-based
model together with building a robust tracker, and applyrtheethod to tracking articulated
objects such as humans and animals. They learn both thegaveppearance of each part,
and relations between parts which can encode either destarerticulation. Their framework
can be used both as a tracker without any prior knowledgeeobliject in question, and as an

object recognition system that uses the model obtainedigffirthe tracking process.

loffe and Forsyth [6] emphasize the fact that due to occlusmissing parts and other
factors, the same object may consist of different partsfiierdint images. If each such config-
uration is a tree, the final model is a mixture of trees. Thaaustpropose an efficient way to
store and search such a mixture. Jepson et al. [15] deal atbdclusion of parts by adding a
notion of depth (a numbered layer based on the distance fiernamera) to each part, which
is not present in other methods where only the location isefestlin most cases. The num-
ber of parts is adjusted automatically based on visibilitg anotion data. Moving parts that
are visible for sufficient time are included in the model. Tigpb motion data is very useful,
it generally consists of a specific moving object. Part-dag®pe models can be constructed
given a motion sequence of a particular exemplar. Howewetrywto solve the harder problem
of obtaining such a model from different exemplars from thene category whose appearance

may be dissimilar.

Though part-based models have received considerabldiatten the tracking commu-
nity, their use is not restricted to tracking. Based on thekvwad Weber, Welling and Perona
[7, 8], Fergus et al. [9] obtain a constellation model (gased model with pairwise relations
between parts) from several training images, where boteajapce and shape (pairwise rela-

tions between parts) are being learned. Since the authibnssst appearance-based features,
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they can robustly match features from each exemplar withmitton information. They use
the framework to recognize objects such as cars and motescy€ei-Fei et al. [1] extend
the work to be able to learn a new category from a single or atfaiming images, relying
on statistical information from the already learned catexgpo Felzenszwalb and Huttenlocher
[10] show how to efficiently match such constellation stanes to image data. Given that the
model is a tree, the authors propose an efficient dynamia@noging algorithm to match the
model with the image. The field of constellation models seelmser to our goal. However,
all of the above work relies on the ability to match image tieas independently. Though it is
possible for appearance-based features, it is not pogsitilee types of shape features we are

using, since blobs are much more ambiguous than appeabaseelfeatures.

2.2 Partsof the moded

All part-based models try to cluster image features intoeceht model parts. Features that
are used for the model can range from generalized cylind&jsdroposed in the early days
of computer vision (Figure 2.1) at one end, to appearanseébpatches, such as the ones
proposed by David Lowe [16], at the other end of the spectriimday, appearance-based
features are a very popular choice since they are robustiiyg deformations and are relatively
easy to match. Moreover, such features can be matched indepity without the need for
examining the context of each feature.

Some appearance-based modeling papers exploit this sarid emphasize the feature
extraction stage. Lazebnik et al. [2, 36] identify regionattare affinely invariant throughout
the training set. Each such region becomes a part in the fiodénconsisting of several affine
invariant appearance descriptors that are rigidly arrdndg2orko and Schmid [35] not only
cluster features into parts but concentrate on finding Si@tparts for best recognition results
based on a measure of the classification rate for each papeakpnce-based features restrict

the matching to objects with similar appearance. Thisic&in is non-problematic for mod-
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Figure 2.1: Geons. Generic features proposed in the eantypuater vision days [14].

&~ g O

eling of a single object or a category of objects with simdppearance, but many categories
have no appearance similarity among their members. Wh#reasitomatic recovery of volu-
metric parts is still very ambitious, other descriptionsdategorization are becoming popular.
Such descriptions include segmented regions, an objébisiette, and its decomposition into
blobs (circles and ellipses encompasing different regidtise object). In our work, we choose
to represent an object’s parts by blobs and ridges ([27]pLgh such features allow for a more

generic description, the matching becomes far more ambguo
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2.3 Modd structure

Most part-based models contain spatial relations betwa#gs.prhe final models usually have
parts as nodes of a graph and relations as edges. Coneteliadidels do not restrict the final
graphs to be trees, but since many objects (such as humarsgimple) exhibit independent
behaviour among their parts, such independence is usualielad. This modeling of inde-
pendence greatly helps during recognition time, sinceuhgs out the exponential number of
potential matchings.

In 1969, Chow and Liu [11] showed that a tree-based appraxam#o an arbitrary distri-
bution represented as a graph could be obtained optimatyg asMinimum Weight Spanning
Tree algorithm. This is a remarkable fact due to the expoalemimber of possible trees. This
method is very useful for recovering part dependenciesidwbject modelling. For example,
taking an articulated object such as a human, a given pashditonally independent of other
parts given the information about the parts that are coedeict it by a joint. Taycher et al.
[34] use this method to obtain a tree structure given featareespondences from the different
frames of a video sequence. Anguelov et al. [33] have sewagahes with point-wise corre-
spondences. As opposed to the previously mentioned wotkléads with mutual information
among parts, they recover the dependence structure inegiahffmanner. First, they partition
the points into rigid parts. Since all the points belongim@ given rigid part undergo the same
rigid transformation, points that agree on their transfation get assigned to the same part.
Secondly, they recover the skeleton without the tree-ltkecsure assumption that was used
before. Points that agree with several transformationslaly to be on the boundary between
parts and are used to compute the skeleton.

In our work, feature matching is only possible through theahcommitment to a percep-
tual grouping stage. Unlike the previously mentioned meshbat recover relations only after
the parts are extracted, we impose a relational structutbeparts of individual exemplars
to facilitate our exemplar matching stage. Since such a doment has already been made,

relations in the final model can be found by collecting reliadil statistics among the different
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exemplars in the training set.

2.4 Hierarchical models

In most part-based models, the relations among parts ati@lsgach as articulation of parts or
distance between them. All the features composing the patte model have been observed
in one image or another in such a case, and the parts are moedrish any way. However, the
original models proposed by Marr [12] contained hierarahielations. Parts may be ordered
in a hierarchy based on their scale or generality. A pareritrpay be an abstraction of its
children. In the early days of computer vision, hierarchicadels were constructed manually.
Since then, however, some researchers have attemptedt@retich models automatically.

Connell and Brady [43] proposed learning such models auioally using semantic nets.
Nishida and Mori [45] build a structural model for recognigihand-written digits. Strokes
are grouped based on the quality of the matching, making ntia¢ digit model into a hierar-
chy, where the leaves correspond to indiviual strokes aadhtier nodes correspond to stroke
groupings. After recent advances in machine learning, naaniyors began approaching the
problem from a Bayesian network perspective. Bouchard aig)3 [31] use a constellation
model; however, they add a hidden layer of parts above ther lafyparts extracted from the
model. Such hidden variables correspond to meaningfucibiins of image parts and provide
an abstraction layer over the parts that were actually @bgden an image. These high-level
parts were not observed in the image, yet they represent @oriant abstraction that is useful
during learning and recognition. Utans [32] also tries tartea hidden layer in his model.
The low-level variables correspond to the observed feafwéereas the higher levels of the
Bayesian network represent conditionally independentigrags of the image parts. Utans
applies his work to digit modeling.

Others approach the problem from a graph matching perspedtieselman and Dickin-

son [25] compute the largest common abstraction of seveeahplars represented as graphs
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through a process of merging nodes. Each part (region) ifitalemodel represents a subset of
connected regions in each exemplar whose merging togatidsa set of qualitatively similar
shapes. Jiang et al. [26] introduce the notion of a mediaphgranhich is graph whose sum
of squared distances to a set of input graphs is minimal, evgeaph distance can be defined
as graph-edit distance or any other graph distance meaStiey propose an algorithm for
efficiently computing median graphs based on graph-edianice. In our work, we will also
concentrate on modeling hierarchical relations. As maetibpreviously, we commit to a re-
lational structure for each individual exemplar. Theref@ince each of our input exemplars is
a graph, we also approach the problem of hierarchical medelMery from a graph matching

perspective.

2.5 Summary

There are three critical differences between our approadtitee above frameworks. The first
is our use of generic shape features, as opposed to spegéam@nce-based features, as used
by most part-based models these days. Using appearaneg-feadures not only constrains
the training set to the same object exemplars, but yieldsnplsi correspondence problem.
Our generic features, in the form of ridges and blobs, arélhigmbiguous, and cannot be
tracked across training examples on the basis of their ptiepealone. This gives rise to the
second major difference, whereby the context of a featuee, the nature of its structural
connections to nearby blobs, is critical to computing hiiolgle correspondence across training
examples. The use of perceptual grouping (grouping fesitmeed on nonaccidental relations)
to commit to this necessary structysgor to matching is in contrast to approaches in which
the use of robust, local feature correspondences allowststal relations to be computed
following matching. The final, and perhaps most critical differens@ur recovery of decom-
positional relations between features, allowing us towapa coarse-to-fine representation of

an object. Recovering such relations hinges on being abiteatoh features many-to-many, as
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opposed to assuming a one-to-one feature correspondent@uimotion (of a single exem-
plar), appearance-based features cannot be matched oxamgrty, due to their lack of generic

structure.



Chapter 3

Overview

The main objective of this work is to construct a decomposai shape model from exemplar
objects of a given category. For example, consider the tastrestructing a model of a human
torso given exemplar images of torsos of different peopdesteown in Figure 3.1(a). This

section provides an overview of our approach to recovenmaty & model.

Most authors in the appearance-based modelling commuedgribe the parts of their
models as clusters of appearance based features. In ppeViapters, we have argued that such
an approach is unsuitable for generic modelling as appearnamot necessarily a persistent
cue among different exemplars from the same category. Stegras to be a more persistent
cue in categorical model acquisition. We therefore choeatufes, specifically blobs, that en-
code only shape information. The final parts of our modelbelclusters of such features from
the different exemplars provided during the training stafiee final model will also contain
relational links between the parts. As opposed to most pusvivork, our system supports two
types of relations: attachment and decompositional malati Attachment relations will indi-
cate a spatial attachment between pairs of parts that wegedntly observed to be attached.
Decompositional links will indicate a relation where onetgaay be split into several others.
Such a relation means that a given part of the object was widett different levels of gran-

ularity among the different exemplars. An example of an lidieal decompositional shape

16
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(b)

Figure 3.1: (a) Sample input images for constructing theaonodel. (b) Extracted blobs from
sample exemplar images. Green edges indicate attachnmssd ba our perceptual grouping

rules. The width of the edges indicates the strength of attant.

model for the human torso images (from Figure 3.1(a)) is shiowFigure 3.2.

Our system is a pipeline of four primary steps, as shown imfei¢.3. Initially, blobs are
detected in every exemplar image. Since blobs cannot benetin isolation, as was argued
in previous chapters, we construct a graph for every inpatrgtar. The nodes in the graph
correspond to the recovered blobs and the edges encodgeiogrouping relations, which
capture non accidental attachment relations between blgbgt, given an input blob graph
for each exemplar, each pair of exemplars is matched manyatty. These many-to-many

matching results are used in the final two stages to consardectompositional shape model.
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- Attachment
= 2% Decompostion

Figure 3.2: Ideal decompositional torso shape model.

During the part extraction stage, the matching results seel to group consistently matching
features into clusters which will be the parts of the modélk Tinal stage adds attachment and
decomposition links to the model. Attachment links are adol@ased on statistical informa-
tion about blob attachment for each pair of parts. Decontiposil links are added based on
statistical information about many-to-many matching hsdoetween pairs of exemplars.
During the feature detection stage, we use the approachdeberg and Bretzner [27] to
efficiently recover blobs and ridges through filter resparetedifferent scales. The results of
the blob detector are post-processed, resulting in therainon of fully included blobs and
blobs with weak support. Extracted blobs from a few samplages of human torsos can
be seen in Figure 3.1(b). Since many-to-many graph matakimgractable, we transform
the problem into a weighted point matching problem (knowrtagh Mover’s Distance, or
EMD), where the goal is to match two sets of weighted pointsgyn the same Euclidean
space. The result of the EMD algorithm consists of mass floara features of one exemplar
to the features of another exemplar that indicate the mamgany matching results. The
flows store the portion of each feature in the first exemplairtmatches a feature in the second

exemplar. For the EMD algorithm, for every exemplar, eadbli$ assigned a mass and each
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Exemplar images

Extract Blob
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relations
Assemble Final Model

l

Final Decompositional Hierarchy

Figure 3.3: Different stages in our system.
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pair of blobs is assigned an edge weight (the motivationrzkthis choice will be explained
in Chapter 4). The mass assignment corresponds to the atba bfob, which intuitively
describes the size of the corresponding part. The edgesbéethiobs are formed based on
joint connectivity, with large weights assigned to blobattivere deemed disconnected by the
perceptual grouping stage. Sample results of this stagesdgp human torso images can be
seen in Figure 3.1(b).

The feature matching stage uses the masses and the edgésveigimbed the features in a
Euclidean space and match them many-to-many using an EM&r trashsformation algorithm
[21]. Each pair of exemplars is matched, resultingfgr) matching results, wher#' is the
number of training exemplars (see Figure 3.4). Each magat@sult contains the flows from
the first set of features to the second set, where the flows ateral valued assignment of each

feature from the first set to each feature in the second set.

Figure 3.4: Matching each pair of training exemplars manyagny.

The matching results are used in the part extraction stagleister the blobs into parts. A
group of features that match strongly among themselvesdapart. Salient parts (or blob
clusters) are supported by consistent one-to-one matekmgts (Figure 3.5 shows sample
clusters for right, upper right, and lower right arm parid)e more features that match consis-

tently, the more evidence there is for the existence of aipdhte final model. Once the parts
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Figure 3.5: Model construction stages. On the left, thre&sgae formed by clustering blobs
from individual exemplars. On the top, the cluster for thghtiarm is shown. On the bottom,
the upper right and the lower right arm clusters are showne fldht portion of the figure

shows the relations recovery stage. The right arm is retatdee two half-arm parts through a

decompositional relation. The two half-arms are connebtean attachment relation.
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are formed, decomposition and attachment connectionseetihe parts are recovered based
on individual matching and attachment results from theufiesst represented by the extracted
model parts (Figure 3.5 shows the relations between thg uglper right, and lower right arm

parts in the human torso model). The final result is a parethdecompositional model.
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Representing Qualitative Image Structure

We seek a decomposition of an image into a set of qualitatarespand attachment rela-
tions, and adopt the multi-scale blob and ridge decompmwsfiroposed in [27]. Accordingly,
the input signalf is convolved with Gaussian kernej$-; t) of different variance, giving
L(-; t) = g(+; t) = f(-). To detect compact parts (blobs), we search for scale-dpaaé

maxima in the square of the normalized Laplacian operator,

V2, L=t (Lys + Lyy). (4.1)

Similarly, elongated parts (ridges) are located at scpéea local maxima in:

RnormL = t3/2 ‘Lpp - LQQ‘Z
(4.2)
= 97 ((Lm - Lyy)2 + 4L926y)
where the (p,q) space is obtained by aligning the space teig@ndirections of the Hessian
matrix of the brightness function (see [27] for more detaiighe derivation).

To represent the spatial extent of a detected image steyauwvindowed second moment

matrix

L2 L,L,

by :/ ) , g(n; tine) dn (4.3)
nel® \ LI, L2

is computed at the detected feature position and at an attegrscale;,; proportional to the

scale of the detected image feature. There are two parasradtdre directional statistics that

23
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we make use of here: thwrientationand theanisotropy given from the eigenvalues, and
A2 (A1 > A2) and their corresponding eigenvectess ande), of ¥. The anisotropy is defined

asQ = ﬁiz& while the orientation is given by the direction@f,. We found the results of

the blob detector to be quite noisy even on relatively simpliages. To reduce the effect of
noise on further system components we “clean” the blob tesulVe remove the non-salient
blobs (by thresholding the saliency parameter), large $ltie size of the image or larger),

and blobs that are mostly included in others.

Since blobs are generic features, they encode no appeaspeac#ic information. Conse-
guently, matching a blob in one image to a blob in another caba done solely on the basis
of a blob’s parameters, which include only a blob vs. ridgeudee type, position (not transla-
tion or articulation invariant), orientation (not rotatiocnvariant), ridge extent (not viewpoint
invariant), and saliency (strength of the blob’s responeg,the size of the detected minimum
of the Laplacian in a given scale). To overcome this tremasdonbiguity during matching,
we need to draw on a blob’s context, i.e., the structure ofliyeblobs thought to be part of
the same object. Specifically, we seek a set of edges thatfeptmes that are unlikely to be
in close proximity by chance. Given our desire to describeab at multiple levels of ab-
straction, spatial coherence and continuity dictate floatexample, when a coarse, elongated
shape is decomposed into a set of smaller, elongated shibpdaiter will likely be attached

end-to-end.

To set the edge weights, we must look ahead slightly to how\hkbe used at matching
time. The many-to-many graph matching algorithm (to be dlesd in more detail later) first
embeds the nodes of two graphs to be matched into two weigliatsets in Euclidean space.
For a given graph, the Euclidean distance between two p@ipoportional to the weight of
the shortest path between their corresponding nodes inrthgwith small distortion. In
this geometric space, a powerful many-to-many weightedtpoatching algorithm, thEarth
Mover’s Distance (EMD)20], yields a solution which, in turn, specifies a many-taapnode

correspondence between the original graphs. EMD will magdqoeread”) a point from one
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graph to a collection of points from another graph if the merslof the collection are in close
geometric proximity in the embedded space. Therefore, ifmaat multiple parts at a finer

scale in one graph to match a single part at a coarser scat®ihex graph, the edge weights
linking the finer scale parts to be grouped must be relatiseigll.

A connectivity measure is computed for each pair of featuaesording to:
max{d;/major(A),ds/major(B)}, (4.4)

wheremajor(X) is the length of the major axis of bla¥, andd,, d- are defined in Figure 4.1.
If this measure is greater than a threshold (whose sergitig evaluate in Section 7.1), the
blobs are considered disconnected; if the measure is lasshk threshold, an edge is inserted
between the blobs whose weight is a functiondgpfand d,, as shown in Figure 4.1. The
connectivity measure is not used for edge computationesiresults in a measure that is far
from a metric and causes bad embedding results. Insteaddtieeweights are computed as

follows:

e ridgeridge: Let p be the intersection point of the major axes of the ridges. ddge

weight is the sum of the distances of the center of each richya .

e blob-ridge: Let p be the closest point to the blob center that is on the majar @ixihe
ridge. The edge weight is the sum of the distances of the cefntde ridge and the

center of the blob fromp.
e blob-blob: The edge weight is the distance between blob centers.

Due to scene clutter, the graph may have a number of conneotegonents, representing
multiple objects. We greedily choose the largest connemegponent as a simple method for
figure-ground separation, and discard the other componétiisiately, a distance matrix over
these chosen features is necessary to construct an embexfdime graph into a geometric
space. To ensure that the distance matrix is invariant togpculation, the distance between

any two nodes is defined as the shortest path distance (atapf gdges) between the nodes.
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(¢)

Figure 4.1: Edge construction: (a) ridge-ridge; (b) riddeb; and (c) blob-blob. The total
length of the bold lines represents the assigned edge weahveen the two features in the

graph.

For any two previously disconnected nodes, the edge weigtrbes the sum of the edges
along the shortest path between the two nodes. Figure 4vizsghe embedding resulting with
our choice of distance measure, as opposed to using Euctidseances between blob centers.
The actual embedding procedure is explained in Chapter 5.e®@bedding achieves articu-
lation invariance, whereas using the Euclidean distancmglembedding does not achieve

articulation invariance.
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Extracted blobs

Euclidean embedding

Our embedding

Figure 4.2: Embedding results. The upper row shows one aitamplars with its embedding

using Euclidean distance and our distance measure. The toweshows similar information

for an exemplar with similar parts under different articida. Our distance measure achieves
similar embeddings (similar relative Euclidean posititorscorresponding points) for both ex-

emplars under different articulations, whereas usingileah distance results in significantly

different embeddings.




Chapter 5

Computing Many-to-M any Blob

Correspondences

Many-to-many matching of blob graphs is a form of inexacipgranatching. The topic can
be approached from two directions. Either there is a cosinf@iching graphs in the original
graph space, or the graphs are first embedded and the maistmge in the embedding space.
Among the works that are in the first group, Pelillo et al. [&&hsform the problem of finding
isomorphic subgraphs into the problem of finding maximajudis. They later extend their
work to deal with many-to-many matching, although saliesdes are still assumed to be in a
one-to-one correspondence. Sebastian et al. [48] appgyaph matching by computing the
shortest path in the transformation space of a graph, whiephdransformation is defined over
shock graphs. Transforming the graph results in the moddicaf the underlying skeleton
that the graph represents. The shortest path correspotidssmallest graph-edit distance that
aligns the two graphs. They apply their approach to shocghgaln the graph embedding
community, Demirci et al. [22] embed the graphs using a nspkerical embedding technique
and then match the embedded graphs using the Earth’s Mo&esbe algorithm. Macrini et
al. [49] obtain topological signature vectors based on time sf the eigenvalues of the graph’s

adjacency matrix. The resulting vectors represent anatigin of graph structure, and can be

28
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used to compare graphs (or subgraphs) of different sizeingesand Caelli [47] project the

graphs onto the first few eigenvectors corresponding toafgest eigenvalues of the graph’s
adjacency matrix. The actual matching consists of clusgethe nodes of the two graphs in the
embedding space. One disadvantage in this method (alohgsahe of the aforementioned
methods) is that it does not account for edge weights in {hatigraphs. Also, the methods that
match graphs in the graph domain (using graph-edit distdocexample) are computationally

expensive, especially when many-to-many matching is reeede

Given an input training set of blob graphs, we compute a ntanyrany matching between
each pair of graphs. In the graph domain, this is an intréetptoblem that would require
matching (perhaps connected) subsets of nodes in one graphgets of nodes in another. Our
technique is based on a recent approach to this problemogedby Keselman et al. [24] and
Demirci et al. [22], which transforms the many-to-many drapatching problem to a many-
to-many weighted point matching problem, for which an efintialgorithm exists. Given a
shortest-path distance matrix encoding node-to-nodarsts, the algorithm employs a spher-
ical coding technique to yield a low-distortion embeddirigh® nodes in a low-dimensional
Euclidean space. Though Demirci et al. deal with affine fiansations during matching, ex-
perimental results have shown that some graphs cannogoedlwith an affine transformation
when embedding our shortest path graphs using sphericadaainty. Therefore, we adopt a
simpler, spectral embedding technique, similar to [28]e @pproach essentially throws out the
original graph edges, and locates the points in space satth#nEuclidean distances between
points in the embedded space is close (with low distortiometh distances between nodes in

the original graph.

The embedded points can now be matched many-to-many usngatth Mover’s Dis-
tance (EMD) under transformation [21]. If the points copasding to one graph are viewed
as piles of earth, while the points corresponding to therogineph are viewed as holes, the
EMD algorithm computes the assignment of earth to holestinaimizes the amount of work

required to move the earth to the holes. If we assume that imaggroximately conserved
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through levels of abstraction, then points should be assignveight that's proportional to the
areas of their corresponding blobs. Returning to our “arrédneple, the mass of the straight
arm blob should roughly equal the sum of the masses of theshrakm blobs. The EMD under
transformation is an iterative assignment/alignment@ssc¢hat converges to a locally optimal
solution which can be mapped to a many-to-many node cornelgmze between the original

graphs. In the following subsections, we provide the detail these steps.

5.1 Graph Embedding

A number of techniques are available for embedding a distaratrix (encoding, for example,
shortest path distances between all pairs of nodes) inttideat space; examples include
metric tree embedding [23], spherical codes [22], and IS®M2A8]. In [24], Keselman et
al. first convert each graph into a tree and then use Mat@igekbedding method [23] to
embed the trees into a Euclidean space. However, the twodstmggs do not necessarily have
the same dimensionality, and an additional normalizatiep $s needed. In [22], Demirci
et al. extend that work by introducing a method that embedsttees into the same space.
However, the two point sets are not aligned and an alignmeptis necessary in order to
match them. Due to the nature of the embedding, howevemitislear how to parameterize
such an alignment. We adopt a simpler spectral embeddinglstance matrix computed in
terms of shortest paths between nodes in a blob graph, sitoi[28], which is summarized
in Algorithm 1. Though such an embedding is global and nadiiiant to local mismatches in
graph structure, our experiments have shown that the megydbints can usually be aligned
using an affine transformation.

Each blob in the graph maps to a point which encodes the bésbtsedded position and
mass (blob area). The matching of two blob graphs can nowrbeulated as the matching of
their embedded weighted point sets, in which a source gaimé'ss can flow to multiple target

points and a target point can receive flow from multiple seyoints. For our experiments,
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Algorithm 1 Embedding of features for EMD
1: Let A be the distance matrix between all the blobs in a given exannplage.

2: Find theK largest eigenvectors of and stack them in columns, forming\ax K matrix
X, whereN is the number of blobs in a given exemplaf.is a matrix of coordinates for
the embedded blobs in a given exemplar, wheré-itsrow gives the coordinates of the

1-th embedded blob.

we embed the graph into a 2-D space, for reasons that willdmgsed later.

5.2 Weighted Point Matching

The Earth Mover’s Distance (EMD) algorithm under transfation [21] allows us to compute
a many-to-many matching of the embedded points which, im, tsppecifies a many-to-many
node correspondence between the original graphs. Congptiten EMD is based on a so-
lution to the well-knowntransportation problemwhose optimal value determines the min-
imum amount of “work” required to transform one distributinto the other. More for-
mally, let P = {(p1,wp,)- -, (Dm,wy,,)} be the first distribution withn points, and let
Q = {(q1,wg),- .., (g, w,,)} be the second distribution with points. LetD = [d;;] be
the ground distance matrix, whedg; is the ground distance between poipfsandg;. Our
objective is to find a flow matrix¥' = [f;;], with f;; being the flow between poinis andg;,

that minimizes the overall cost:

Work(P, @, F) = 371, 370, fijdi

subject to the following list of constraints:
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fii>0,1<i<m,1<j<n
Yo fig Swp, 1<i<m
Z?;lfijgwq]w 1§]§n

> i1 21 Jij = min (ZZL Wpiy D5 wqj)

The optimal value of the objective function WoR @), F') defines the Earth Mover’s Distance

between the two distributions, and is recovered using astarinear programming algorithm.

The original EMD formulation assumes that the total masstsedwo graphs are the same.
However, with noise, occlusion, and clutter, this assuampis violated, and we must modify
the EMD algorithm to take a more local approach. Specificily mass of each feature in the
first image is distributed among its nearby features in tloese image in a greedy fashion,
with both small flows and flows over large distances elimiddfdgorithm 2). If we compute
the flows in the opposite direction, i.e., from the secondyena the first image, the flows may
be different, due to our greedy approximation. AugmentivegEMD cost function (the amount
of work required to redistribute the mass) with terms thaigbiee for unmatched masses in the
two images, we select the direction with minimum cost. Naig in our greedy version of
EMD there is a parameterwhich controls the percentage of the remaining mass in sourc
blobs that is distributed. If it is less thdn then not all the remaining mass would flow to its
closest neighbour (even if it could all fit). This gives eaehtfire the opportunity to match
other features instead of matching only the closest ones titying to counter the negative
effects of the greedy solution. The lower this parametethis,more many-to-many matches
will result. During the actual runs of the EMD code, we sampfeom 0.5 to 1 and choose
the solution with the best cost. A few iterations from theegig EMD algorithm are shown in
Figure 5.1.

The flows associated with a given direction are used to coenputaffine transformation
between the corresponding point sets using a least-sqguamesization of the sum of squared

differences between the locations of points in one set andhtex (by the flows) average



CHAPTER 5. COMPUTING MANY-TO-MANY BLOB CORRESPONDENCES 33

Algorithm 2 Greedy EMD

1:

10:

11:

12:

13:

14:

Let M, M, be the vectors containing the masses of the two exemplargioong N, IV,
features respectively.

Let Mr = My, My = M, be the remaining masses in the first exemplar and the unfilled
masses in the second exemplar.

Sort the distance matrix in increasing order, obtaining the index vectéks S, of the

sorted results, such théts; (1), S2(1)) = min, ;{d(i, 7)}.

. Let Flows be theN1 x N2 flow matrix that is intialized with zeros.

fori=1t0 N1 x N2do

Let My = min{e - Mr(5:(7)), My (S2(i))} be the transfered mass between features
S1(i), Sa(i), thereby selecting the minimum between the mass remainifegtures; (i)
and the unfilled mass in featufg(z).
MRg(S1(7)) = Mg(5:(i)) — My, removing the transferred mass from the first set.
My (S2(i)) = My(S2(i)) — My, adding the transferred mass to the second set (thus
decreasing the remaining mass in the second set).
Flows(S1(1), S2(i)) = My, storing the amount of mass transferred between features
S1(7), S2(7).

end for

Flows below a certain threshold and flows over distances elaovertain threshold are

zeroed out.

Let Cost = S>02 (Flows(i, §) x d(i, j)) + iy Mg(i) + >3 My(j) be the cost
of the computed flows, including the original EMD cost in thestfiterm and additional
penalty costs for remaining and unfilled masses in the o#reng.

Normalize the flows by dividing each row ifilows by the sum of that row.

ReturnFlows andCost.
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Figure 5.1: Greedy EMD computation between two exemplamgiheir best alignment. The
aligned features, as well as the results after iteratiobg 8,10 are displayed. Blue and red
discs indicate features from the two point sets. The areadid@corresponds to blob mass.
Green lines indicate flows from the red to the blue points.id¢¢othat the shortest flows are
recovered first, followed by flows over longer distanceslané mass from all the red features

has been moved or until the blue features have no more cgpacincoming mass.

locations of matched points in the other set:
> Flows(i, j) x Py,

; 107 =T Ej Flows(i, j)

whereT' is a D—dimensional affine transformatiof) is a parameter of our algorithm. Higher

NIZ, (5.1)

values ofD result in a lower distortion during embedding and result mae accurate many-
to-many matching result using our algorithm. However, fa alignment computation not to
be underconstrained, there needs to be at IBast1 point correspondences between the two
point sets each time the alignment is computed. Though sdroarexemplar pairs satisfy
this restriction for higher values dp, most only satisfy it for low values such asor 3. We

therefore choose a 2D embedding and affine transformationriexperiments. It is possible
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Figure 5.2:1¢,2" and 3" iterations from the EMD under Transformation algorithm. €Th

corresponding features become aligned while weak correlpwes get pruned.

to adapt the dimensionality of the embedding space for eadicplar matching, the subject
of future work.

Algorithm 3 formalizes the alignment computation. We haa&téd our system on human
torso figures. Human torso figures have an inherent righsjehmetry. Since our embedding
disregards the actual Euclidean positions of blobs, ouchirag algorithm cannot distinguish
between the right and the left sides of the human torso. Withayood initial alignment for
the algorithm, the recovered local solution would be fanfrte optimal one. For this reason,
we first roughly align the blobs from the two exemplars basedh@ir horizontal positions
to account for right-left ambiguity. The remaining alignmigprocedure is described by the
alignment algorithm.

In this approximation to the iteratiieT (an optimalFlow and an optimal ransformation)
algorithm [21], which alternates between computing the ENds and computing the affine
transformation, the algorithm typically converges in 3efations. The final flow matrix com-
puted by the algorithm (Algorithm 4) defines a direction ohimum cost. This matrix can
be “inverted” to yield a consistent flow matrix for the oppgesiirection. If Flows,, was the
normalizedN; x N, flow matrix from pointsP; to pointsP,, then the “inverted” flow matrix

Flowsy, is computed by following these steps:

1. Multiply the rows of Flows;, by the corresponding entries 8f; (the mass of features
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Algorithm 3 Alignment of points for EMD

1: Let Flows be the theN; x N» normalized flow matrix. Le;, P> be N1 x D, N2 x D matrices of points wher&/;, N> indicate

the number of points in the two point sets respectively Bnid the dimensionality of the embedding space.

2. LetP={ic 1..N1|(ZJ].V:21 Flows(i,7)) > 0}, indicating a set of matched points from the first exemplat X = | P|.
3: for i = 1..N (for every matched point of the first st
4. VP = Zj Flows(P(i),7) x Py;, computing the flow-weighted average of points from the selcet.
5! end for
VP 1,VPi 2, - ,VP p,1 0,---,0 0,---,0
0,---,0 VP1,1,VP12,.,VP p,1 0,---,0
0,---,0 0,---,0 VP1,VPi2,.,VP p,1
VP1,VP2,--- ,VP; p,1 0,---,0 0,---,0
0,---,0 VP31,VP22,.,VP p,1 0,---,0
6: LetA = _ :
0,---,0 0,---,0 VPs1,VP22,.,VPp,1
VPN1,VPNg2, -+ ,VPND,1 0,---,0 0,---,0
0,---,0 VPn,1,VPN32,..VPN D, 1 0,---,0
0,---,0 0,---,0 VPn1,VPN2,..VPND,1

bea(N - D) x (D - (D + 1)) matrix, z be the(D - (D + 1)) x 1 vector representing the unknowns of the affine transfortmaf
(D x (D + 1) matrix) written in a row-wise order, and
Plp(1),1

Plp(1),2

PlP(l),D

b= ' , storing the coordinates of each point from the first sethdhat Az = b becomes an overdetermined system of

Pronya

PlP(N),z

Py,
(N),D
linear equations. Flow weighted points from 8éhat are stored iml undergo a linear transformation (the same for each poitted

in z, to become the points from skthat are stored ih.

7. z = (AT A)~1 ATb. Solve the overdetermined system using normal equations.
8. Let T be the resultingd x (D + 1) affine transformation, such that ravof T'is z(((i — 1)(D 4+ 1) + 1) ...4(D + 1)) (storing the

D + 1 linear coefficients that produce the¢h coordinate in the transformed set of points).
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from the first set), thus making the flows unnormalized again.
2. Transpose the resulting matrix.
3. Normalize the resulting matrix by dividing each elementhe sum of its row entries.

These two matrices will play a key role in our procedure farasting the parts in the final
decompositional model. Figure 5.2 shows a few iteratiomsfthne EMD under transformation
algorithm, and Figure 5.3 shows pairs of blob graphs and tia finatching between them, as
computed by the algorithm.

Due to the limitations in embedding and noise present inripatigraphs in the locations
and sizes of the input blobs (which affects our perceptualiging and matching stage), our
matching algorithm has some drawbacks. The first problesesrdue to the fact that we
discard the Euclidean positions of the blobs in the imagdstore only a shortest path distance
between them as computed by our perceptual grouping stage blbbs with similar global
relations to the rest of the blobs in the image get embedaeitbsly. For example, a head blob
in one image can match a noisy blob in another image that édddoon the side or underneath
the body. Shortest path distance does not maintain nodeirgde.g., outgoing edges of a
node. Therefore, since the distributions of shortest pistiaices of these two blobs relative to
the other blobs in their exemplars are the same, they getcdufebdesimilarly.

The second problem arises due to noisy input. Since EMDsreliethe mass conserva-
tion principle, our algorithm assumes that a given part oolgect will have the same mass,
whether it is detected as one or as several features. Thaugtigorithm is somewhat robust to
mass mismatches, due to its greedy nature nearby featutegewiilled first. If, for example,

a part that is detected as one feature in the first exemplauck smaller in mass than the total
mass of features that represent it in another exemplar,ahlgra portion of the features from
the second exemplar will match the feature from the first gtamFigure 5.4 illustrates these

two problems.
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Algorithm 4 EMD Under Transformation for Many-to-Many Matching of Twasyhted Point

Sets

1:

-
e

Compute the distance matwii, j) = || P1, — Py,

Compute th&'lows matrix using the above distance mattix

repeat
Compute the transformatighthat minimizesy, ||(P1, — T'(3_; Flows(i, j) x Py;))||*.
Transform each poin®,; from the second set with the computed transformation
Compute a new distance matrli, j) = || P, — Py, ||.
Compute a new'lows matrix using the new distance matrix

until the change in thé&'lows matrix is small

Assign a cost to the computdtows matrix.

Return computed flow matrikiows and its cost.
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Figure 5.3: Many-to-many matching of blob graphs using lfiEltbver’s Distance under trans-
formation in embedded (Euclidean) space. Left two imagesvsie detected blobs with
green lines indicating blob connections and line widthdating edge strength (nonaccidental,
proximity-based grouping strength). The right figures sktiosvembedded features (red for left
images, blue for right images) after alignment, using theliftred EMD under transformation.
The flows are shown in green, with line width indicating amooinflow. Note that since the
blobs are well aligned, the flow distances are very small.sibes of the circles correspond to
the point masses (blob areas). Note that some blobs arg neeen in the right column due
to their small mass and proximity to other bigger blobs. Alse2"¢ image in the final row

has a second small connected componnent which was remaeedypthe embedding.
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Figure 5.4: Failures in matching show where our algorithits faNote that the head in the
center figure is embedded (top blue blob in the right figurgraxmately the same way as
the noisy blob in the left figure (on the left side of the torstie red blob in the top of the
right figure). Moreover, the left arm is detected as two fezgun the left image and as a single
feature in the center image. The mass of the upper arm in thédgere (right red blob) is
larger than the mass of the full arm in the center figure, prég a 2-to-1 match (the forearm
matches a full arm 1-to-1 as shown on the right side of thet figire). The red blobs in the
left image match the blue blobs in the right image (they alswespond to two of the the red

and blue points in the embedding figure).



Chapter 6

M odel Construction

Using the above feature matching framework, each pair oftlvgput exemplars is matched,
resulting inO(P?) pairs of mass flow matrices (one per direction). Furthermeaeh pair of
flow matrices can be row normalized tpwith each row entry indicating the fraction of mass
flowing from the feature specified by the row to the featurecBpgal by the column. These
matrices are combined to form a single x N matching matrix,M, where N is the total
number of blobs in all of the exemplar imagéd. is a block matrix, where thg, j)-th block
stores the flows from features in image features in image; diagonal blocks are identity
matrices, reflecting the perfect one-to-one matching tlmatlevresult from matching an image

to itself.

The final decompositional model is derived from the matchiragrix M/ and the original
blob graphs. First, the one-to-one flows are analyzed ta ygehsistently appearing parts,
i.e., parts that match one-to-one across many pairs of inpages. Next, the many-to-many
flows in M are analyzed to yield the decompositional relations amantg pletected in the first
step. Finally, the input blob graphs are analyzed to yieddatiachment edges. The detected
parts and their relations are used to construct the finalmdpositional model. The following

subsections outline these steps in more detail.
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6.1 Extracting Parts

Our goal in populating the final model is to select parts tleatio frequently across many input
exemplars, i.e., parts that match one-to-one. Recall thtay ép, ¢) in the matching matrix
M contains the computed flow from blgb(in the image in which it was detected) to blgb
(in the image it was detected) when the two images were mat¢hep) contains the flow in
the other direction. If both flows are close @), then the blobs are said to be in one-to-one
correspondence. However, if parbr g is involved in a many-to-one decompositional relation,

the flow in one direction will be less than 1.0.

By redefining both entries to be the minimum of the two flows émtries representing
one-to-one correspondences will retain their high valaksé to 1.0) and the matrix becomes
symmetric. Subtracting the entry from 1.0 turns the symimé&tiw matrix into a symmetric
distance matrix, setting up a clustering problem wheretetsgepresent collections of nodes,
pairs of which are in one-to-one correspondence. Again,ra& dn spectral techniques to em-
bed the distance matrix into a low-dimensional space, aadhesk-meansalgorithm for clus-
tering [29]. The quality of the cluster is in ran{fe 1] and it is proportional to the “cliqueness”
of the one-to-one matches among the members of the clusterewhe quality is computed by
averaging the pairwise one-to-one matching results fquaitks of blobs in a given cluster. If a
cluster is of sufficient size and quality, it becomes a nodiéaénfinal decompositional model.
The algorithm is formalized below. Figure 6.1 shows fourragtar images and the distance

between every pair of blobs. Black indicates a small diggghe., a good match).

Lwe first run k-means with a large value of k, resulting in osegmented clusters. In a post-processing step,
we reassign some blobs to more compatible clusters, remaisyg blobs from clusters, remove weak clusters, and
merge similar clusters. The resulting procedure yieldslstalusters that are less sensitive to the initial choice of
k.
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Algorithm 5 Spectral Clustering Algorithm (taken from Ng, Jordan andsa/¢29])

1: Let A be the distance matrix between all the blobs in a given graph.

2: Let D be the diagonal matrix whose, i)-element is the sum of A's i-th row, and I&t= D~z AD~ 2.

3: Find theK largest eigenvectors df and stack them in columns, forming\ax K matrix X, whereN is the
total number of blobs anfl is the number of clusters.

4: Form the matrix” by normalizing each row ok to have unit length.

5: Cluster the rows oY into K clusters using the k-means clustering algorithm, treagench row as a point in
RK

6: Blobi is assigned to clustérif and only if row: of Y is in clusterk.

6.2 Extracting Relations

Two types of edges are used to link together the extractes (rrdes). Decompositional edges
are directed from one part to multiple parts, and capturentiten that a feature can appear
alternatively as a set of component features, due to finée scarticulation (or, in the reverse
direction, a set of features can be abstracted to form aesiiegiture). Attachment relations
are the same nonaccidental proximity relations found inbiloé graphs computed from the
training images. An attachment edge is undirected, andigmnphat the blobs spanning the
edge are connected. The many-to-many matching resultssfflogtween the extracted parts
will be analyzed to extract the decompositional edges, entie attachment relations (in the
original blob graphs) between the extracted parts will balyaed to extract the attachment

relations.

The K extracted parts represent clusters of matching blobs im#tax A/. For attachment
relations, we compute the likelihood with which any two speints not only co-appear in the
images in which they were found, but are attached as wellhisf likelihood of attachment
exceeds a threshold, we define an attachment relation betiheadwo extracted parts. The
likelihood [0, 1] of attachment between partsind; is defined by théd x K matrix PA (part

attachment) as:
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T i SV (Culk) = 1[C, (1) = lconny (k. )
S T LY Co(k) = C,(1) =

where P is the number of training image®(p) is the number of blobs in training image

PA(i, j)

(6.1)

C,(k) is the cluster that blok in imagep is assigned tojC,(k) = ] is an indicator function
whose value id whenC,(k) = i and0 otherwise, andonn,(k,[) has valuel if there is an
attachment between blolsand! in imagep (and0 otherwise). The expression captures the
number of times blobs drawn from the two clusters were agdchormalized by the number
of times blobs from the two clusters co-appeared in an imBgg.attachment relations above a
thresholdl, .., are inserted into the final model. We found thgt,., = 0.6 worked well for
our complete set of experiments, representing the comditiat co-occurring blobs belonging
to two different parts are connected in at least 60% of thatinpages.

For decompositional relations, we restrict ourselves ®-tmmmany decompositional rela-
tions. This restriction, compared to having many-to-maigtrons, was imposed for two main
reasons: (1) Most domains have a hierarchical structuréniolnone part may decompose into
several, and there are few situations in which two subsetsavé than one node match; and
(2) Such a simplification makes the matching stage easiemand stable, allowing the use of
a greedy approach instead of a global optimization. A déegobne-to-many decompositional
relation between one extracted part (parent) and a set abtwwre extracted parts (children)

must satisfy three conditions:
1. Most of the mass of the parent flows to the children.
2. Inthe reverse (many-to-one) direction, most of the méasach child flows to the parent.
3. The children form a connected component, implying a apatiherence constraint.

Testing the first two (flow) conditions requiresia x K part flow matrix, PF(i, j), con-
structed by averaging the normalized flows from all blobsxtraeted parti’s cluster to all

blobs in extracted paits cluster:
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PG ) — bt SIS [CR) = )€ = jIM (k.1 62)
T ELlew) = ) < (SIS = 1)

where N is the total number of blobs extracted from all imag@$l) is the cluster that blob

l is assigned to, andl/ is the N x N matching matrix. The expression represents the sum of
all normalized flows from blobs in clustéto blobs in clusterj, normalized by the number of
flows, yielding a mean flow. The entries in the matrix PF arehimtiang€0, 1]. Figure 6.2
shows a decomposition under idealized conditions givemby’tA and theP F' matrices.

Given the part flow P F') and part attachmenBP{A) matrices, Algorithm 6 extracts the part

decomposition relations among the extracted parts in thérfiodel. 7,4 (0.6) is determined

Algorithm 6 Extracting Decompositional Relations
1: fori=1to K do

2: Find all partsj # 4, s.t. PF(j,4) > T.nia- Let D be the set of all such parts, representing the potential

children ofi.

3:  for all subsetd)’ of D do

4: Let PAp. be the upper triangular matrix étA(k, ), wherek,l € D'.

5: The quality of the decomposition of part into the set D' is e |'=Ssen PFGI|
min{l, Z’”Gfl;fff"(k’l)} {The first term in the quality measure cost is high when moshefpar-
ent's mass flows to the children (and low otherwise). The séderm encourages the children to
form a connected component, where a connected componéptt cildren implies at leasD’ — 1
attachment edges among thém.

6: endfor

7: end for

8: Choose decompositions whose quality exceeds, .,

empirically and reflects the degree to which a conservationass constraint can be imposed
between the children and their parent in a many-to-one mgppi higher threshold, reflecting

a stronger constraint, implies less blob over- or undensagation in the image domain in
which the models are being learnéf....,, is also set to 0.6, reflecting the fact that a parent
distributes most of its mass to its children and that thedclii are attached (the product of the

two terms needs to be larger than 0.6).
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6.3 Assembling the Final Model Graph

The final model is a graph whose nodes represent the extiaatesdand whose edges represent
the extracted attachment and decompositional relatioasoéiated with each node is a quality
value, defined as the average of all the pairwise one-to-aaiehimg results of blobs in a
given cluster (defined in Section 6.1). The attachmentiogldietween parts andj has an
associated likelihood, defined byA(i, 7). The decompositional relation between a parent
part and its constituent children has both an associatdiyquiefined by the algorithm above,
and a probability reflecting how likely the decompositioniis., the probability that the set of

children will be observed in an image in lieu of the parent.
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Best Worst
Match Match

Figure 6.1: Distance matrices between blob graphs. A podiahe distance matrixl that

is used for spectral clustering. Blobs that match well anerie are clustered together. For
example, the left arms of the subject, corresponding tod#58,3,4 in images 1-4 respectively
(where the origin is in the bottom left of the figure), all ntatgell one-to-one. The last column

shows the first 5 dimensions in the embedding space, wheranige 0..1 is colour coded from

black to white. Note that blobs corresponding to the samehase similar coordinates. For

example, the torso blobs, coresponding to the first blobeh @aage, have similar coordinates.
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PF matrix

Figure 6.2: Ideal decomposition. In this example a total pfarts were recovered. Of thie
recovered parts, the right part of the figure illustrates igo of the resulting model where a
decomposition of part into partsl and4 is shown. Notice the supporting evidence for such a
decomposition given by th2 A and PF matrices. These matrices satisfy the three conditions

for a good decomposition mentioned above.



Chapter 7

Experimental Results

We evaluate our model on a database of 86 torso images cmgtaifferent individuals with
different arm articulations; the blob graphs extracteanfriome of these images can be seen
in Figure 1.2. Usually, models are evaluated through retiognperformance. We have not
yet developed a recognition component that would use ouremotherefore, ground truth
is provided for each input image in the form of a manual laigelbf the extracted blobs in
terms of the parts in an ideal torso decompositional modws in Figure 3.2; blobs that
are not deemed (by a human observer) to correspond to a pHré atheal model are labelled
as noise. Given the ideal model and a user-defined labelfifdpbs in an input image ac-
cording to the model, the ground truth attachment edges amdige matching correctness
can be induced automatically. This allows us to systemitieaaluate each component of the
system, including the detection of the blobs and attachmetgiions forming the input graphs,
the many-to-many matching results, the detection of pattsiering) that become the nodes
in the final graph, and the attachment and decompositional relations thiattfie nodes to-
gether. Moreover, we can evaluate the sensitivity of eagh a$ a function of any underlying

parameters (Table 7.1).

1Since the clustering step is not deterministic (due to tmeloan initialization of clusters), the clustering
experiments, as well as all experiments that rely on thealingy results, were conducted 20 times for each value
of the parameter being evaluated.
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Parameter

Description

Perceptual grouping threshold

The threshold determining the pairwise

connectivity between blobs in the

exemplar images.

Embedding dimensionality during matching

The dimensionality of the embedding
space in which every pair of exemplars

is embedded and matched.

Embedding dimensionality during part extracti

pithe dimensionality of the embedding

space in which all blobs from all
exemplars are embedded and clustere

into parts based on one-to-one matchi

The maximum number of parts in the

model.

Tatmch

The threshold for accepting attachmen
between parts in the final model, base

on the entries of th& A matrix.

Tehitd

The threshold for considering a part to
be a potential child of another part,

based on the entries of tH&F' matrix.

Tdecomp

The threshold for accepting a
decomposition based on its quality

measure.

d

—

Table 7.1: List of system parameters
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7.1 Evaluation of Input Blob Graphs

As mentioned in Chapter 1, the detection of blobs is a noisggss, resulting in over- and
under-segmentation, spurious blobs, missing blobs, amdyptocalized blobs. Given the
ground truth labeling, we can evaluate the blob detectioogss. According to the part labels
shown in Figure 3.2, the percentage of images in which thgdated part was present in the
ground truth data was: head (47%), torso (83%), left arm (50kght arm (51%), left upper
arm (37%), left lower arm (36%), right upper arm (40%), arghtilower arm (37%). These
relatively low percentages reflect the significant degresoige in the detection of blobs (note
that a straight arm and its two components cannot simultsig@ppear). The attachment
relations are governed by a single proximity threshold geahreshold values cause all blobs
to be attached and thus produce false positive attachmatibres among parts, whereas small
threshold values create sparse graphs with false negataheent relations among parts.
Figure 7.1(a) shows the error in individual attachmentresenting the sum of the SSD error
in the attachment matrices of all exemplar blob graphs. Asbsaseen from the figure, there
is a clear minima in the error function for a proximity threshof about 1.0. Our system is
relatively sensitive to this parameter. Choosing a thriestimat is far from the optimal will
result in incorrect matching, and the error will propagaiehe other stages of the model

construction process.

7.2 Evaluation of Many-to-Many Matching

The error in the many-to-many matching component is contpbtefinding the sum of the

SSD errors in the flow matrix of each pair of exemplars. Thecimag component does have
a number of parameters, such as the mass fraetibat is distributed during the greedy EMD
algorithm, and the number of dimensions used for graph edibgd However, in the case
of ¢, the parameter is automatically sampled and the best valdedsen for each individual

matching. In the case of the number of dimensions, the lowbasraf object features in the
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training set that was used prevents us from using a largebauof dimensions (as explained
in Chapter 5). Given the optimal proximity threshold, ourtaméng algorithm yields a 9%
error based on an element-by-element comparison of the wiathmatching matrix/ to the

ground truth data.

7.3 Evaluation of Part Extraction

The error in the clustering step comprising part extracigsanfunction of two parameters. The
cluster error is computed by first finding the best clusteefary part in the ideal model. Given
a labeling of each image in terms of the ideal model, we can toenpute both precision and
recall for each model part. The minimum (worst-case) of trecigion and recall values is
averaged across all clusters and then inverted to yield bdiira measure. Figure 7.1(b) plots
smoothed error as a function of embedding dimension. Franfiglure, we conclude that the
choice of the embedding dimension is not critical. The sdquarameter i&, representing an

upper bound on the true number of clusters. Figure 7.1(d¥ gimoothed error as a function
of k£ (max number of clusters). Since the minimum is rather shalbwr algorithm is not very

sensitive to the choice @f.

7.4 Evaluation of Edge Extraction

Errors in the extraction of part attachment and part decamipa edges are computed by first
finding the correspondence between the ideal model (growtid) tparts and the computed
clusters, from which the SSD errors in the attachment andrdposition edges can be com-
puted. Since the correspondence between ground truth amglted clusters is not necessarily
one-to-one, and since a computed cluster does not nedggsarespond to any ground truth
cluster, an additional error term is added to account fodtkgimilarity in the number of edges

between the ground truth model and the final recovered mé&dgires 7.1(d) and 7.1(e) show
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the error in attachment edges, as a function of the threshgld,,, and decomposition edges,
as a function of the thresholdg,;i;; and7 ..., The same clustering results are used through-
out these two experiments. As can be seen from the figures, itha range of thresholds that

results in good attachments and decomposition edges.

7.5 Evaluation of the Final M odel

From the above experiments, we determined optimal valuethédifferent parameters and
manually entered them into the system. In our final expertmeea evaluate the error of the
final decompositional model as a function of the size of tipiiriraining set. The error is de-
fined by averaging the clustering error, the recovered pgatlament error, and the recovered
part decomposition error. Figure 7.1(f) shows the smodtinatimodel error and its three com-
ponents as a function of set size. It can be clearly seentibartors decrease as the number
of training images increases. Figures 7.2—7.4 show cdyrgeherated decompositional shape
models given the full set of the torso images as input. Sinegart extraction stage contains a
clustering component that includes a random initializabbclusters, the model acquisition is
non-deterministic. These three figures show the modelwvesed with different cluster initial-
izations. The models are structurally the same with miniéeinces in the contents of the part
clusters. Figures 7.8—7.15 show the different parts of tisedi these recovered models (Fig-
ure 7.2). The recovered models are isomorphic to the idedemmoeflecting our algorithm’s
ability to correctly recover a decompositional model froxamaples.

Figures 7.5—7.7 show potential problems during model regowhich include recovering
extra parts and relations; however, these problems arisédyrue to bad choices of the differ-
ent thresholds that were analyzed in the previous sectimrsexample, in Figure 7.5, an extra
head was detected. Due to the nature of the exemplar imagesuamatching algorithm, the
head blob often matches with other blobs connected to thg. [Adds results in a less consis-

tent matching for the head cluster; thus, depending on ftitialimation of clusters, the head
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may be detected as one or as two clusters.

Figure 7.6 shows a model with an extra attachment betweengper left and upper right
arms. Due to the nature of the detected parts and our peateptauping stage, blobs be-
longing to the upper left and upper right arms are sometinoesidered attached. In this
experiment, the value df .., was lowered from the optimal value 6f6 to 0.4. This re-
sulted in the detection of this extra attachment relatidmctvis still strongly supported by the
recovered blob graphs.

Figure 7.7 shows several problems. In this experiment, @heevof the initial number of
clustersk, was changed from its optimal value tf to 20 initial clusters. Although some of
the 20 clusters were merged or removed, the resulting model stdllB parts. Some of these
clusters correspond to the same part; for example, clusteand4 all correspond to the torso.
Moreover, if a part that is a parent in a decomposition isatetkas two or more clusters (as
happened with the left arm, detected as clustérand12), each of the correponding clusters

will decompose into its constituent parts, resulting irrextecompositional relations.
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Figure 7.1: Evaluating the Model: (a) Input attachmenttretaerror as function of proximity-
based grouping threshold; (b,c,f) The four curves repitedestering error, recovered attach-
ment edge error, recovered decomposition edge error, aaldd@compositional model error
as a function of dimensionality of embedding, the upper lbouion the number of putative
clusters, and training set size, respectively; (d) Reaattachment edge error as a function

of Touach; (€) Recovered decomposition edge error as a functidiyaf; and 7 yecom,-
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Figure 7.2: Correct final decompositional model obtainedblysystem on 86 input images.

Red edges indicate part attachment, while blue edges tedieat decomposition (or, inversely,
abstraction). The values on the decomposition edges gpbeithildren (square brackets), the
guality of the decomposition, and the probability of theamposition. The top number inside
a node is its part number, the middle number is its clustelityuand the bottom number is the
probability of occurrence of the part. At the bottom is onaraple image for each part (shown
in red), sampled from its cluster. The model not only capuine correct attachments between
parts, but also captures the decompositional relationsdset each arm and its constituent

subparts.
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Figure 7.3: Correct final decompositional model obtainedblysystem on 86 input images.

This model was obtained with a different part cluster itiggtion.
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Figure 7.4: Correct final decompositional model obtaineablysystem on 86 input images.

This model was obtained with a different part cluster itiggtion.
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Figure 7.5: Incorrect final decompositional model obtaibgdur system on 86 input images.
Here, two clusters for the head were found. Both clusterst@osg enough to become parts,

yet not strong enough to be detected as the same part.
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Figure 7.6: Incorrect final decompositional model obtaibgdur system on 86 input images.
Here, the left and the right upper arms are attached. In meayplar images, the correspond-

ing blobs appear closely together and are attached. If énsugh exemplars exist, the parts

will become attached.
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Figure 7.7: Incorrect final decompositional model obtaibgdur system on 86 input images.
Due to the large initial number of clustefs,many extra clusters are detected. Notice that not
only are there different clusters representing the sante fuach as the torso or the head, but

that the left arm was detected as two clusters, both of whedmhpose into half-arm parts.
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Figure 7.8: The torso part in the resulting model. Most bliolise torso cluster, shown in red,

do correspond to a torso. Some noisy blobs or other partselaled as well.
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Figure 7.9: The head part in the resulting model, shown in red
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Figure 7.10: The right arm part in the resulting model, shawred.
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Figure 7.11: The left arm part in the resulting model, showred.
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Figure 7.12: The upper right arm part in the resulting mostebwn in red.
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Figure 7.13: The lower right arm part in the resulting modabwn in red.
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Figure 7.14: The upper left arm part in the resulting modsbyven in red.
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Figure 7.15: The lower left arm part in the resulting modegwn in red.
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Chapter 8

Limitations

Our system consists of three main components: featuretd@iematching, and model con-
struction (includes part extraction and part relation vecp). The most important component
is the matching component, since the quality of the extchptats depends highly on the qual-
ity of the matching. However, matching two exemplars withmlying on appearance is a
difficult task. We have to deal with noise both in the form ofispus or missing parts, as well
as incorrectly segmented parts. We aim to minimize the tffefcthe noise by removing some
distracting features and choosing the largest connectegbaonent in the hope that it contains
the object we are modeling. Though such measures do helgystem cannot correctly deal

with large amounts of noise.

Most of the detected features need to correspond to objetst @ad need to be correctly
segmented (located in appropriate positions for the coress of the perceptual grouping stage
and having appropriate masses for the EMD matching). Sirear® working with a global
connected component embedding and matching, all the edléeatures (the features in the
largest connected component) are matched. If the majofiguch features are noisy, the
matching results will not be sufficiently consistent to nezothe parts in the next stage. The
matching algorithm is not scale invariant, since both tlebdlshasses and the distances between

them are functions of the absolute blob parameters. Moresw&e we choose to work with
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a greedy EMD algorithm and not a global optimization EMD aitjon, correct flows are
computed only given a sufficently close alignment of our ingnaphs in the first place. For
our experiments, a sufficiently good alignment is achievedugh the horizontal symmetry
alignment where features from a given side of the people ¢h eaemplar image are aligned
together (i.e., features on the right side of the body in ceeglar are aligned with features on
the right side of the body in another exemplar, and the samtiédeft side). This step solves
both the initial alignment problem and the problem of amiiigoetween the left and right sides
in case of matching humans. However, it can be seen that sterayoften makes the mistake
of matching a blob corresponding to the head with a blob Extan the side or the bottom of
the torso. This result is a direct consequence of the fatwhare not using any information
about the actual Euclidean positions of the features inrtfages, but using distances from the
perceptual grouping stage instead. Though such a choigelpsoour system with articulation

invariance, it introduces additional ambiguity.



Chapter 9

Conclusions and Future Work

We have presented an algorithm for automatically recogaidecompositional, generic shape
model from examples; parts of the model can be representifieaatent levels of abstraction —
an important representational goal originally proposetyiayr. Two important challenges face
this task: 1) the inherent ambiguity in generic shape featsuch as ridges and blobs; and 2)
the need, due to articulation, scale, and segmentation éoranatch such features many-to-
many. By imposing a graph-based perceptual grouping ondhs,we provide the structural
context necessary to match ambiguous parts many-to-mamyal@orithm requires a number
of parameters, and we have established the relative insétysof the results to changes in
the parameters. We have demonstrated the approach on regoaedecompositional torso
model from example images of different subjects. The comess of the recovered model
as a function of the size of the training set has been evaluaith respect to ground truth.
Preliminary results are very encouraging, and currentrisffare aimed at recovering more

complex models.

For future work, we plan to apply machine learning technggigerecover optimal percep-
tual grouping parameters. As mentioned in Chapter 8, iecbisegmentation is a potential
problem for our system since it can cause the mass consmnvatnstraints to be violated.

We plan to explore methods for better feature recovery, xangle, using a blob we obtain
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currently to initialize an active contour that better cages on the part's boundary. Since
matching is the major component of our system, further rebgato many-to-many matching
techniques is needed, allowing the system to deal with taageunts of noise. Other tech-
niques for part recovery based on the matching results wi#amined, e.g., techniques that
do not rely on the extra step of feature embedding, such aslaton clustering. In the fu-
ture, we plan to apply our method to model recovery in othenaas. Our ultimate goal is
to study object recognition techniques adapted to thelpesed decompositional models we

have recovered in this work.
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