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Abstract. Detecting contour closure, i.e., finding a cycle of discon-
nected contour fragments that separates an object from its background,
is an important problem in perceptual grouping. Searching the entire
space of possible groupings is intractable, and previous approaches have
adopted powerful perceptual grouping heuristics, such as proximity and
co-curvilinearity, to manage the search. We introduce a new formulation
of the problem, by transforming the problem of finding cycles of contour
fragments to finding subsets of superpixels whose collective boundary
has strong edge support in the image. Our cost function, a ratio of a
novel learned boundary gap measure to area, promotes spatially coherent
sets of superpixels. Moreover, its properties support a global optimiza-
tion procedure using parametric maxflow. We evaluate our framework by
comparing it to two leading contour closure approaches, and find that it
yields improved performance.

1 Introduction

One of the key challenges in perceptual grouping is computing contour closure,
i.e., linking together a set of fragmented contours into a cycle that separates an
object from its background. What makes the problem particularly hard is the
intractable number of cycles that may exist in the contours extracted from an
image of a real scene. Early perceptual grouping researchers [1] identified a set of
nonaccidental contour relations, such as symmetry, parallelism, collinearity, co-
curvilinearity, etc., that can be used to link together causally related contours.
Such nonaccidental grouping rules can serve as powerful heuristics to help man-
age the complexity of greedily searching for a contour closure that is unlikely
to have arisen by chance [2,3]. However, the space of possible closures is still
overwhelming, particularly when one allows larger and larger boundary gaps in
a closure. Finding an optimal solution is intractable without somehow reducing
the complexity of the problem.

In this paper, we introduce a novel framework for efficiently searching for an
optimal closure. Fig. 1 illustrates an overview of our aproach. Given an image of
extracted contours (Fig. 1(a)), we begin by restricting contour closures to pass
along boundaries of superpixels computed over the contour image (Fig. 1(b)).
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(a) (b) (c) (d)

Fig. 1. Approach Overview: (a) contour image – while we take only contours as input,
we will overlay the original image in the subsequent figures for clarity; (b) superpixel
segmentation, in which superpixel resolution is chosen to ensure that target bound-
aries are reasonably well approximated by superpixel boundaries; (c) a novel, learned
measure of gap reflects the extent to which the superpixel boundary is supported by ev-
idence of a real image contour (line thickness is inversely proportional to gap); (d) our
cost function can be globally optimized to yield the largest set of superpixels bounded
by contours that have the least gaps. In this case the solutions, in increasing cost
(decreasing quality), are organized left to right, top to bottom.

In this way, our first contribution is to reformulate the problem of searching for
cycles of contours as the problem of searching for a subset of superpixels whose
border has strong contour support in the contour image; the assumption we
make here is that those salient contours that define the boundary of the object
(our target closure) will align well with superpixel boundaries. However, while a
cycle of contours represents a single contour closure, our reformulation needs a
mechanism to prefer superpixel subsets that are spatially coherent.

Spatial coherence is an inherent property of a cost function that computes
the ratio of perimeter to area. We modify the ratio cost function of Stahl and
Wang [4] to operate on superpixels rather than contours, and extend it to yield
a cost function that: 1) promotes spatially coherent selections of superpixels; 2)
favors larger closures over smaller ones; and 3) introduces a novel, learned gap
function measuring the agreement between the boundary of the selection and
image contours. The third property adds cost as the number and sizes of gaps
between contours increase. Given a superpixel boundary fragment (e.g., a side
of a superpixel) representing a hypothesized closure component, we assign a gap
cost that’s a function of the proximity of nearby image contours, their strength,
their orientation, and their curvature (Fig. 1(c)). It is in this third property that
our superpixel reformulation plays a second important role – by providing an
appropriate scope of contour over which our gap analysis can be conducted.

In our third and final contribution, the two components of our cost function,
i.e., area and gap, are combined in a simple ratio that can be efficiently optimized
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using parametric maxflow [5] to yield the global optimum. The optimal solution
yields the largest set of superpixels bounded by contours that have the least
gaps (Fig. 1(d)). Moreover, parametric maxflow will yield the top k solutions
(see [6], for example). In an object recognition setting, generating a small set of
such solutions can be thought of as generating a small set of promising shape
hypotheses which, through an indexing process, could invoke candidate models
that could be verified (detected).

In the following sections, we begin by reviewing related work on contour
closure (Sec. 2). Next, in Sec. 3, we introduce our problem formulation that
transforms the problem of finding optimal cycles of contour fragments into the
problem of finding an optimal subset of superpixels. It is here that our cost func-
tion is described. In Sec. 4, we describe our process for learning our gap function
from training data, and in Sec. 5, we present an efficient procedure for finding
the global minimum of our cost function using parametric maxflow. In Sec. 6, we
evaluate our framework, comparing it to two competing approaches for comput-
ing closure, and discuss the strengths and weaknesses of our approach. We also
illustrate the third important role of our superpixel reformulation of providing
an appropriate scope over which appearance can be analyzed, and show how
our grouping framework can easily be augmented to include both contour and
region information. Finally, in Sec. 7, we draw conclusions and outline our plans
for future work.

2 Related Work

Detecting closed contours in an image has been addressed by many researchers
in different ways. One possible taxonomy for categorizing related work is based
on the nature of the prior information used to constrain the grouping process.
We will stop short of reviewing methods which assume object-level priors, for it
is unclear how to make such methods scale up to very large databases. Instead,
we focus on methods that make no assumptions about scene content, although
as we will see, many make assumptions about the nature of parts that make
up the objects in the scene. In fact, some methods incorporate low-, mid-, and
high-level shape priors, as exemplified by Ren et al. [7]. We will also stop short of
reviewing methods focused solely on contour completion, e.g., Ren et al. [8] and
Williams and Jacobs [9], although the regularities exploited by such approaches
can clearly play a powerful role in detecting closure.

Many researchers have exploited the classical Gestalt cues of parallelism and
symmetry to group contours. Lowe’s [10] early work on perceptual grouping was
one of the first to develop a computational model for parallelism, collinearity,
and proximity. Many computational models exist for symmetry-based grouping,
including Brady and Asada [11], Cham and Cipolla [12], Saint-Marc et al. [13],
Ylä-Jääski and Ade [14], and more recently, Stahl and Wang [15]. One signif-
icant challenge faced by these systems is the complexity of pairwise contour
grouping to detect symmetry-related contour pairs. Levinshtein et al. [16] at-
tempt to overcome this computational complexity limitation by constraining the
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symmetric parts to be collections of superpixels. We will draw on this idea of
grouping superpixels, but will focus on the more generic cue of closure.

Further down the spectrum of prior knowledge are methods based on weaker
shape priors than parallelism and symmetry. For example, Jacobs [17] uses con-
vexity as well as gap to extract closed contours by grouping straight line seg-
ments. A less restrictive measure is that of compactness, which can be attained
by normalizing the gap by area (Estrada and Jepson [2,3], Stahl and Wang [4]).
Some measure of internal homogeneity can also be used (Estrada and Jepson [3],
Stahl and Wang [4]), provided that the inside of the region is easily accessible.

Finally we come to the most general methods that compute closure using
only weak shape priors, such as continuity and proximity. The most basic closure-
based cost function uses a notion of boundary gap, which is a measure of missing
image edges along the closed contour. Elder and Zucker [18] model the proba-
bility of a connection between two adjacent contour fragments, and find contour
cycles using a shortest path algorithm. Wang et al. [19] optimize a measure of av-
erage gap using the ratio cut approach. However, a measure based purely on the
total boundary gap is insufficient for perceptual closure, and Elder and Zucker
[20] argue that the distribution of gaps along the contour is also very impor-
tant. Williams and Hanson [21] addressed the problem of perceptual completion
of occluded surfaces, formulated as the problem of computing a labeled knot-
diagram representing a set of occluded surfaces from observed image contours.
While formulated as an elegant combinatorial optimization problem, for which
an optimal solution was available, the approach was not tested on real scenes.

All the above methods suffer from the high complexity of choosing the right
closure from a sea of contour fragments. To cope with this complexity, they either
resort to heuristics to prune the search (e.g., [17]) or constrain the search space
by other means (e.g., restricting the closure to alternating gap/non-gap cycles
[4]). Zhu et al. [22] propose to solve this hard grouping problem by embedding
the edge fragments into polar coordinates such that closed contours correspond
to circles in that space; however, their goal is to better detect object contours,
and they stop short of grouping the contours into closed boundaries. The method
of Jermyn and Ishikawa [23] is perhaps the closest to our work. Similar to [19,4],
they minimize closure costs using ratio cuts, but unlike [19,4] who operate on
contour fragments, [23] works directly with pixels in a 4-connected image grid.
It enables the authors to minimize many different closure costs (including our
own) by globally minimizing ratio cuts in a simply connected planar graph.
However, individual pixels provide poor scope for gap computation. In contrast,
our superpixels not only provide greater scope for gap computation (which, in
our case, is learned), they provide greater scope for the incorporation of internal
appearance-based affinity. Moreover, while their solution is optimal, it does not
provide a set of optimal solutions that capture closures at multiple scales.

In this paper, our goal is to find closed contour groups in an efficient manner.
Drawing on [16], we use superpixels to constrain the search space of the resulting
closures. Superpixels also provide an easy way to access internal region informa-
tion (such as region area). Moreover, superpixel boundaries provide better scope
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for gap computation, as opposed to most previous methods that linearize the
output of an edge detector or operate directly on image pixels. On the optimiza-
tion side, we show that parametric maxflow [5] can be used not only to recover
the global optimum of closure costs similar to that of Stahl and Wang [4] and
Jermyn and Ishikawa [23], but can also be used to recover a multiscale set of
closure hypotheses.

3 Problem Formulation

As mentioned in Sec. 1, our framework reduces grouping complexity by restrict-
ing closure to lie along superpixel boundaries. Given a contour image I(x, y)1,
we first segment it into N superpixels using a modified version of the superpixel
segmentation method of Mori et al. [25] ([25] uses the Pb edge detector [26],
while we use globalPb [24]). If we let Xi be a binary indicator variable for the
i-th superpixel, the vector X yields a full labeling of the superpixels of I as
figure (1) or ground (0). Recall that our goal will be to select a maximal set of
superpixels which have high spatial coherence and whose boundary has strong
contour support in the image. Drawing on Stahl and Wang [4], we define our
closure cost to be C(X) = G(X)

A(X) , where G(X) is the boundary gap along the
perimeter of (the “on” superpixels of) X, and A(X) is its area. Boundary gap
is a measure of the disagreement between the boundary of X and is defined to
be G(X) = P (X)−E(X), where P (X) is the perimeter of X and E(X) is the
“edginess” of the boundary of X. Out of the total number of pixels along the
boundary of X, P (X), edginess is the number of edge pixels, with the edginess
of image boundary pixels defined to be 0.

Fig. 2. Boundary gap computation over superpixel graph. S1, S2, S3, and S4 correspond
to superpixels that were selected. Gi and Gij are the boundary gap of superpixel i and
the gap on the edge between superpixels i and j respectively . The gap along the bound-
ary of the selection (red) is then G1234 =

∑4
i=1 Gi − 2 (G12 + G13 + G14 + G23 + G34).

In order to facilitate the optimization of this cost using an optimal graph cut-
based approach (see Sec. 5), we must decompose the cost function into unary
and pairwise terms of the variables in X . Let Pi be the perimeter length of
1 The contour image takes the form of a globalPb image [24].
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superpixel i and let Pij be the length of the shared edge between superpixels i
and j. Similarly, let Ei be the edginess of superpixel i’s boundary, and Eij be
the edginess for the shared boundary between superpixels. Let the superpixel
and superpixel edge gaps be Gi = Pi − Ei and Gij = Pij − Eij respectively.
Finally, let Ai be the area of superpixel i. Our closure cost becomes:

C(X) =

∑
i GiXi − 2

∑
i<j GijXiXj

∑
i AiXi

(1)

The denominator in the above ratio simply adds the individual areas of all the
superpixels that were selected. Normalization by area not only promotes spatial
coherence but also promotes compactness; as we shall see in Sec. 6, given two
possible paths (with strong edge support) a closure may take, it will prefer a
compact path over one with deep concavities. The numerator in the above cost
is more complicated. To compute the gap along the perimeter, we first add the
individual gaps of all the selected superpixels. However, for selected superpixels
that share boundaries, adding individual superpixel gaps would add gaps that
are not on the boundary of the selection. For every internal boundary, the gap
over that boundary was counted twice (once for each of the superpixels that share
the boundary). Therefore, we subtract the gap twice for all internal boundaries.
Note that if two superpixels do not have a shared boundary, then both Pij and
Eij (and thus Gij) will be 0. Fig. 2 gives an example of gap computation over
a simple superpixel graph. In the next section, we introduce our gap measure,
and show how it can be learned from training data.

4 Learning the Gap Measure

Most approaches to detecting contour closure (e.g., [4]) typically define gap as
simply the length of the missing contour fragments, i.e., the length of that portion
of the closure for which no image edges exist. In order to ground our gap measure
using image evidence, as well as incorporate multiple contour features for gap
computation, we choose to learn the gap from ground truth. Remember from
Sec. 3 that for a pair of superpixels i and j, the gap on the edge between them is
Gij = Pij − Eij . Specifically, if EPij is the set of pixels on the superpixel edge
(i, j), then Pij = |EPij | and Eij =

∑
p∈EPij

Ep
ij , where Ep

ij = [P (fp) > Te]
is an edge indicator for pixel p (P (·) is a logistic regressor and fp is a feature
vector for the pixel p). Te is a necessary threshold on the edginess measure.
Since the distribution of edges in the training set is not necessarily the same
as that for test images, this parameter controls the contribution of weak edges.
Decreasing it results in many smaller structures being detected and causes more
potential solutions to be generated. We analyze the performance of our method
as a function of this parameter in Sec. 6.

Given a pixel p on the superpixel boundary, the feature vector fp is a function
of both the local geometry of the superpixel boundary and the detected image
edge evidence in the neighborhood of the superpixel boundary pixel. This feature
vector consists of four features (see Fig. 3(a)):
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(a)
Only distance + strength + alignment + curvature

(b)

Fig. 3. (a) Contour features for learning the gap measure. Black curves correspond to
superpixel boundaries, while the red curve corresponds to detected image edges. The
features that are used for edge probability computation at superpixel boundary pixel p
are: 1) distance d between p and q, where q is the closest point to p among the detected
image edges; 2) image edge strength at q; 3) the alignment, computed as the absolute
value of the cosine of the angle between v and w; and 4) the smoothness, computed
as the squared curvature at p. (b) Effect of different features on gap (ordered left to
right). For example, the superpixel edges that cross the legs weaken as alignment is
added and the shadow edge on the body weakens as strength is added.

1. Distance to the nearest image edge; closer edges provide stronger evidence.
2. Strength of the nearest image edge; stronger edges provide stronger evidence.
3. Alignment between the tangent to the superpixel boundary pixel and the

tangent to the nearest image edge; aligned edges provide stronger evidence.
4. Squared curvature of the superpixel edge at a point.

Given a dataset of images with manually labeled figure/ground, we map the
ground truth onto superpixels. Our training set is composed of all the pixels
falling on superpixel boundaries and is used to train a logistic classifier over a
feature vector fp. In addition to learning from all four of the above features,
we tried learning from subsets of the features. Fig. 3(b) illustrates the effect
of incrementally adding more features; the thickness of each superpixel edge
corresponds to the average edge probability of its superpixel boundary pixels.
Using all four features results in the best performance, in terms of retaining
object boundary edges while suppressing other edges.

5 Optimization Framework

It has been known for some time that ratios of real variables that adhere to
certain constraints can be minimized globally. Instead of minimizing the ratio
R(x) = P (x)

Q(x) directly, one can minimize a parametrized difference E(x, λ) =
P (x) − λQ(x). It can be shown that the optimal λ corresponds to the optimal
ratio P (x)

Q(x) . The constraints on the ratio guarantee that the resulting difference
is concave and thus can be minimized globally.

In the case of binary variables, ratio minimization can be reduced to solving
a parametric maxflow problem. Kolmogorov et al. [5] showed that under certain
constraints on the ratio R(x), the energy E(x, λ) is submodular and can thus be
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minimized globally in polynomial time using min-cuts. Converting our closure
cost C(X) in Eqn. 1 to a parametrized difference results in a submodular cost
C(X , λ), making the method in [5] applicable for minimizing the ratio C(X).

In fact, the method in [5] does not simply optimize the ratio R(x), but finds
all intervals of λ (and the corresponding x) for which the solution x remains
constant. The interval boundaries are called breakpoints, and while the small-
est breakpoint λ0 corresponds to the optimal ratio R(x), consecutively larger
breakpoints λ1, λ2, . . . are also related to ratio optimization. Kolmogorov et al.
show that the optimal solution x∗ of E(x, λ) in the interval [λi, λi+1], is also an
optimal solution of minQ(x)≥T R(x), where T = Q(x∗). In case of optimizing the
closure cost in Eqn. 1, using parametric maxflow results in a multiscale set of
optimal closure solutions under increasing area thresholds.

The method in [5] can be exponential if the number of breakpoints is expo-
nential, but is polynomial for obtaining a global optimum. In our experiments,
a solution is obtained in a fraction of a second for a superpixel graph of 200
superpixels, as there are typically less than 10 breakpoints.

6 Evaluation

We compare our work, which we refer to as superpixel closure (SC), to two other
contour grouping methods: Estrada and Jepson (EJ) [3] and a version of ratio
contours (RRC) from Stahl and Wang [4]. We provide a qualitative evaluation on
various images (see Fig. 6), as well as a quantitative evaluation on two datasets,
including the Weizmann Horse Database (WHD) [27] and the Weizmann Seg-
mentation Database (WSD) [28]. Learning the gap measure (Sec. 4) is accom-
plished on the first 30 images from WHD. For testing, we use 170 additional
images from WHD and all 100 images from WSD.

6.1 Quantitative Evaluation

For a quantitative evaluation of the results, we use the F-measure, F = 2RP
R+P ,

where R and P are recall and precision, respectively, of the solution relative
to the ground truth. Specifically, if A is the set of pixels corresponding to the
solution and Agt is the ground truth, then R = |A∩Agt|

|Agt| and P = |A∩Agt|
|A| .

Given K solutions, we select the solution with the best F-measure relative to
the ground truth. We average the “per-image” F-measure for all the images (and
three ground truth segmentations in WSD) in a dataset and report the result.

Fig. 4 shows the results of the three methods for increasing values of K. We
chose the best parameters for all three algorithms and fixed them for the entire
experiment. For EJ, we used a Normalized Affinity Threshold (τaffty) of 0.01,
with the line segments generated by fitting the globalPb output. For RRC, we
used λ = 0 and α = 1. Here, we could not give the algorithm globalPb-based
line segments, and thus use the method’s own line segments generated from a
Canny edge response. For our method, we fixed the number of superpixels to
200 and set Te = 0.05, giving us best performance at the high range of K.
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Fig. 4. Quantitative results. We compare our results (SC) to two other algorithms:
Estrada and Jepson [3] (EJ) and Ratio Contours [4] (RRC).

Since the resulting solutions can be thought of as shape hypotheses for object
recognition, we believe that the performance for some reasonably small value of
K > 1 is more important than aiming to obtain a single best contour (K = 1)2.
For K = 10, SC (EJ, RRC) obtains an average F-measure of 79.72% (79.44%,
68.13%) on WHD and 87.19%3 (78.44%, 77.82%) on WSD.

We outperform the competing approaches on both datasets for a setting of
K = 10 (obtaining a comparable performance to EJ on the horses dataset),
which we attribute to the superpixel formulation, as well as the optimal closure
finding method in our framework. On the WHD, both SC and RRC perform
significantly worse than on WSD, while EJ performs the same. This is likely due
to the lower compactness of objects in the horse dataset (average isoperimetric
ratio of 0.15, compared to 0.4 in WSD). Moreover, in many images there is a
more compact path that includes the gap between the horse’s legs due to shadow
or ground edges. In addition, a significant number of images in the horse dataset
have a picture frame boundary around the image. These boundaries provide the
largest and most compact solutions, and are therefore found by SC instead of
finding the horse. Finally, an intersting fact is that EJ still performs well on the
horse dataset (unlike SC and RRC). This is most likely due to its reliance on
internal appearance, which is definetely homogeneous in the case of horses.

Since Te is set so low, our performance is poor for low values of K, but it is
better for high K’s. Fig. 5 shows the change in performance of our algorithm as
we change the number of superpixels and vary Te. Fig. 5(a) illustrates that, in
general, higher superpixel density results in a very marginal performance gain for
large values of K, while for low values of K, coarser superpixel segmentations
prevent very small objects from being detected. Increasing the threshold Te

(Fig. 5(b)) reduces the detection of small objects and improves performance at

2 SC can be tuned (see Fig. 5) to perform better for K = 1 at a small expense of
performance for higher K’s.

3 For WSD, there are three ground truth segmentations per image. If we instead choose
the closest of the three ground truth segmentations per image (as opposed to taking
the average), our score on WSD improves to 88.76%.
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Fig. 5. Varying the parameters of our method. (a) Varying the number of superpixels
for a fixed edge threshold Te = 0.05. (b) Varying the edge threshold Te for a fixed
number of superpixels (200).

the low range of K, but also hurts the detection of objects with weak edges and
thus results in slightly poorer performance at the high range of K.

We also compare the running times of the three methods on WSD (average
image size of 300 × 290 pixels). On a 2.6GHz Dual Core Intel CPU with 4GB
of RAM, setting the methods to retrieve K = 10 best contours, the average
running times per image are: SC (not including edge detection and superpixel
extraction) – 1.3 sec, EJ (not including edge detection) – 23 sec, RRC – 59 sec.

6.2 Qualitative Evaluation

In addition to the quantitative evaluation, we also provide a qualitative evalu-
ation of our method by testing it on images from the two datasets, as well as
other images obtained from the internet. Fig. 6 illustrates the performance of our
method compared to the two competing approaches4. We manually select the
best of 10 solutions for each method. Notice that the detected contours in our
framework lie closer to the true object contours since the superpixel edges, even
in the persence of a gap, lie closer to object edges than the linearized contours
detected by the other algorithms. We pleasantly observed that our framework is
not constrained to obtain compact solutions as is usually the case when one is
normalizing perimeter by area. This is clearly visible in the image of a spider,
where very thin legs are segmented since that represents the best closure solu-
tion. However, this is not always the case, for if there is a more compact contour
that is not losing on gap, it will be preferred. This is the reason for the filled gap
between the horse’s legs or the filled gap between the carriage’s wheels in the
first two images. Note that for the horse image, EJ obtains a better solution by
relying on the homogeneous appearance inside the horse. Finally, our method
relies on superpixels to oversegment the object. We still detect thin structures,
such as the spider’s legs, if good superpixels were found due to strong image
edges. For weaker edges, however, thin structures are harder to capture (the bat
of the baseball player, for example).
4 Supplementary material contains the results of SC for all the images in both datasets.
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Fig. 6. Qualitative results. We compare our results (left) to two other algorithms:
Estrada and Jepson [3] (middle) and Ratio Contours [4] (right).
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6.3 Using Internal Homogeneity

As mentioned in Sec. 1, our superpixel formulation also facilitates the incor-
poration of appearance information, when it is both available and appropriate.
The cost function in Eqn. 1 can be easily modified to incorporate a term which
reflects the degree to which adjacent superpixels inside the superpixel selection,
i.e., inside the closed contour, have high affinity. Assuming that we are given an
affinity matrix W , such that Wij is the affinity between two superpixels i and j,
we modify our closure cost to be:

Caffty(X) =

∑
i GiXi − 2

∑
i<j GijXiXj

∑
i<j WijXiXj

(2)

Compared to the cost in Eqn. 1, the numerator remains the same while the
denominator changes to an internal homogeneity measure instead of the total
object area. Minimizing this ratio results in minimizing the gap while maximizing
the total affinity between the selected superpixels. Fig. 7 shows an example where
better results were achieved by exploiting appearance homogeneity.

Fig. 7. Using internal appearance homogeneity. For objects with strong internal homo-
geneity of appearance, optimizing the cost in Eqn. 2 is better (right) than optimizing
the cost in Eqn. 1 (left). Note that the gap between the horse’s legs was not included
on the right due to its hetrogeneous appearance w.r.t. the rest of the horse.

6.4 Multiple Superpixel Scales

Though it might seem that the more superpixels we use, the better SC will
perform, it is not always so. As seen in Fig. 5(a), coarser superpixel scales con-
strain the solution more and thus perform better for low values of K. However,
there is one additional advantage of using coarser superpixel scales. Since our
superpixel algorithm does not produce hierarchical superpixels (since new super-
pixel boundaries may be introduced from finer to coarser scales), it is possible
to occasionally have less undersegmentation at coarser scales. Fig. 8 illustrates
a situation where an object was segmented better at a coarser scale and conse-
quently detected by SC.

We tried a simple multiscale version of SC where we merge the results from
all scales. Specifically, we run SC at four superpixel scales, obtaining 25, 50,
100, and 200 superpixels for each image. Setting K = 10 for each scale results
in 40 solutions once the results are merged together. Since the performance of
SC for a given scale does not significantly vary for K > 10, we do not select 10
of 40 solutions for the multiscale version, but instead retain all 40. Using the
multiscale version increases the performance on WSD from 87.19% to 89.53%.
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Fig. 8. Multiscale results. Choosing the K = 2 top solutions yields better results in
the case of 50 superpixels (left) than in the case of 200 superpixels (right).

7 Conclusions

Our reformulation of the problem of finding cycles of contours as the problem of
finding spatially coherent subsets of superpixels, whose collective boundary has
strong image edge evidence yields an optimal framework for closure detection
that compares favorably with two leading prior approaches. While superpixels
provide an ideal scope for learning a gap measure from training data, they offer
a number of additional advantages that we are currently exploring. We plan to
use superpixel junctions to learn an affinity measure between pairs of superpixels
that are both inside and adjacent to the boundary. Such an affinity measure can
encode a learned measure of continuity and T-junction, and could significantly
strengthen our cost function. Superpixels also provide a convenient mechanism
for incorporating appearance information, if appropriate and if available. For
example, if the object was known to be homogeneous in appearance, our modified
cost function can easily incorporate such a prior, as discussed in Sec. 6.3. Our
framework is flexible, and can easily accommodate many classical non-accidental
regularities. In the future, we also plan to pursue a more elegant coarse-to-fine
framework for finding contour closure using multiple superpixel scales.

Acknowledgements

We thank Allan Jepson for discussion about closure cost functions and optimiza-
tion procedures, and Yuri Boykov and Vladimir Kolmogorov for providing their
parametric maxflow implementation. This work was supported in part by the
European Commission under a Marie Curie Excellence Grant MCEXT-025481
(Cristian Sminchisescu) and NSERC (Alex Levinshtein, Sven Dickinson).

References

1. Wertheimer, M.: Laws of organization in perceptual forms. In: Ellis, W. (ed.) Source
Book of Gestalt Psychology. Harcourt, Brace (1938)

2. Estrada, F.J., Jepson, A.D.: Perceptual grouping for contour extraction. In: ICPR,
pp. 32–35 (2004)

3. Estrada, F.J., Jepson, A.D.: Robust boundary detection with adaptive grouping.
In: POCV, p. 184 (2006)



Optimal Contour Closure by Superpixel Grouping 493

4. Stahl, J., Wang, S.: Edge grouping combining boundary and region information.
IEEE Transactions on Image Processing 16, 2590–2606 (2007)

5. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in
computer vision. In: ICCV (2007)

6. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic ob-
ject segmentation. In: CVPR (2010)

7. Ren, X., Fowlkes, C.C., Malik, J.: Cue integration in figure/ground labeling. In:
NIPS, pp. 1121–1128 (2005)

8. Ren, X., Fowlkes, C.C., Malik, J.: Scale-invariant contour completion using condi-
tional random fields. In: ICCV, pp. 1214–1221 (2005)

9. Williams, L.R., Jacobs, D.W.: Stochastic completion fields: a neural model of illu-
sory contour shape and salience. In: ICCV, p. 408 (1995)

10. Lowe, D.G.: Perceptual Organization and Visual Recognition. Kluwer Academic
Publishers, Norwell (1985)

11. Brady, M., Asada, H.: Smoothed local symmetries and their implementation.
IJRR 3, 36–61 (1984)

12. Cham, T.J., Cipolla, R.: Geometric saliency of curve correspondances and grouping
of symmetric comntours. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS,
vol. 1065, pp. 385–398. Springer, Heidelberg (1996)

13. Saint-Marc, P., Rom, H., Medioni, G.: B-spline contour representation and sym-
metry detection. PAMI 15, 1191–1197 (1993)
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