
Formal JVM Code Analysis in JavaFAN

Azadeh Farzan, José Meseguer, Grigore Roşu
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{afarzan,meseguer,grosu}@cs.uiuc.edu

Abstract. JavaFAN uses a Maude rewriting logic specification of the
JVM semantics as the basis of a software analysis tool with competitive
performance. It supports formal analysis of concurrent JVM programs
by means of symbolic simulation, breadth-first search, and LTL model
checking. We discuss JavaFAN’s executable formal specification of the
JVM, illustrate its formal analysis capabilities using several case studies,
and compare its performance with similar Java analysis tools.

1 Introduction
There is a general belief in the algebraic specification community that all tra-
ditional programming language features can be described with equational spec-
ifications [2, 9, 29]. What is less known, or tends to be ignored, is that concur-
rency, which is a feature of almost any current programming language, cannot
be naturally handled by equational specifications, unless one makes determinis-
tic restrictions on how the different processes or threads are interleaved. While
some of these restrictions may be acceptable, as most programming languages
also provide thread or process scheduling algorithms, most of them are unac-
ceptable in practice because concurrent execution typically depends upon the
external environment, which is unpredictable. Rewriting logic [17] extends equa-
tional logic with rewriting rules and has been mainly introduced as a unified
model of concurrency; indeed, many formal theories of concurrency have been
naturally mapped into rewriting logic during the last decade.

A next natural challenge is to define mainstream concurrent programming
languages in rewriting logic and then use those definitions to build formal anal-
ysis tools for such languages. There is already a substantial body of case studies,
of which we only mention [25, 24, 28], backing up one of the key claims of this pa-
per, namely that rewriting logic can be fruitfully used as a unifying framework for
defining programming languages. Further evidence on this claim includes model-
ing of a wide range of programming language features that has been developed
and tested as part of a recent course taught at the University of Illinois [22]. In
this paper we give detailed evidence for a second key claim, namely that rewrit-
ing logic specifications can be used in practice to build simulators and formal
analysis tools for mainstream programming languages such as Java with com-
petitive performance. Here, we focus on Java’s bytecode, but our methodology
is general and can be applied also to the Java source code level and to many
other languages.

The JavaFAN (Java Formal Analyzer) tool specifies the semantics of the
most commonly used JVM bytecode instructions (150 out of the 250 total) as a
Maude module specifying a rewrite theory TJVM = (ΣJVM, EJVM, RJVM), where
(ΣJVM, EJVM) is an equational theory giving an algebraic semantics with se-
mantic equations EJVM to the deterministic JVM instructions, whereas RJVM

is a set of rewrite rules, with concurrent transition semantics, specifying the be-
havior of all concurrent JVM instructions. The three kinds of formal analysis
currently supported in JavaFAN are: (1) symbolic simulation, where the theory
TJVM is executed in Maude as a JVM intepreter supporting fair execution and
allowing some input values to be symbolic; (2) breadth-first search, where the
entire, possibly infinite, state space of a program is explored starting from its
initial state using Maude’s search command to find safety property violations;
and (3) model checking, where if a program’s set of reachable states is finite, lin-
ear time temporal logic (LTL) properties are verified using Maude’s LTL model
checker.

A remarkable fact is that, as we explain in Section 4, even though TJVM gives
indeed a mathematical semantics to the JVM, it becomes the basis of a formal
analysis tool whose performance is competitive and in some cases surpasses that
of other Java analysis tools. The reasons for this are twofold. On the one hand,
Maude [3] is a high-performance logical engine, achieving millions of rewrites
per second on real applications, efficiently supporting search, and performing
model checking with performance similar to that of SPIN [13]. On the other, the
algebraic specification of system states, as well as the equations EJVM and rules
RJVM, have been optimized for performance through several techniques explained
in Section 3.5, including keeping only the dynamic parts of the state explicitly
in the state representation, and making most equations and rules unconditional.
In this regard, rewriting logic’s distinction between the equations EJVM and
the rules RJVM has a crucial performance impact in drastically reducing the
sate space size. The point is that rewriting with the rules RJVM takes place
modulo the equations EJVM, and therefore only the rules RJVM affect state space
size. Our experience in specifying the JVM in rewriting logic is that we gain
the best benefits from algebraic (equations) and SOS [20] (Rules) paradigms
in a combined way, while being able to distinguish between deterministic and
concurrent features in a way not possible in either SOS or algebraic semantics.

Related Work. The different approaches to formal analysis for Java can be
classified as focusing on either sequential or concurrent programs. Our work falls
in the second category. More specifically, it belongs to a family of approaches
that use a formal executable specification of the concurrent semantics of the JVM
as a basis for formal reasoning. Two other approaches in precisely this category
are one based on the ACL2 logic and theorem prover [15], and another based
on a formal JVM semantics and reasoning based on Abstract State Machines
(ASM) [23]. Our approach seems complementary to both of these, in the sense
that it provides new formal analysis capabilities, namely search and LTL model
checking. The ACL2 work is in a sense more powerful, since it uses an inductive
theorem prover, but this greater power requires greater expertise and effort.

2

Outside the range of approaches based on executable formal specification, but
somewhat close in the form of analysis, is NASA’s Java Path Finder (JPF) [1, 12],
which is an explicit state model-checker for Java bytecode based on a modified
version of a C implementation of a JVM. Preliminary rough comparisons of
JavaFAN and JPF1 are encouraging, in the sense that we can analyze the same
types of JVM programs of the same or even larger size. Other related work
includes [21], which proposes an algorithm that takes the bytecode for a method
and generates a temporal logic formula that holds iff the bytecode is safe; an
off-the-shelf model checker can then be used to determine the validity of the
formula. Among the formal techniques for sequential Java programs, some related
approaches include the work on defensive JVM [5], and the collective effort
around the JML specification language and verification tools for sequential Java,
e.g. [16, 26].

Another approach to define analysis tools for Java is based on language trans-
lators, generating simpler language code from Java programs and then analyzing
them later. Bandera [6] extracts abstract models from Java programs, specified
in different formalisms, such as Promela, which can be further analyzed with
specialized tools such as SPIN. JCAT [7] also translates Java into PROMELA.
[19] presents an analysis tool which translates Java bytecode into C++ code
representing an executable version of a model checker. While the translation-
based approaches can benefit from abstraction techniques being integrated into
the generated code, they inevitably lead to natural worries regarding the cor-
rectness of the translations. Unnecessary overhead seems to be also generated, at
least in the case of [19]; for example, exactly the same Remote Agent Java code
that can be analyzed in 0.3 second in JavaFAN [8] takes more than 2 seconds
even on the most optimized version of the tool in [19].

In section 2 we present a brief background on Maude’s methodology. A de-
tailed description of our model is given in 3. In Section 4, we present the various
kinds of formal analysis done for the Java programs together with the perfor-
mance results for several case studies. Finally, Section 5 presents the conclusion
and future work.

2 Rewriting Logic, Maude and its Object Methodology
Here we briefly explain our methodology to specify the state of a concurrent
system, in this case focusing on the JVM, as a “pool” or “soup” of objects
whose interaction is modeled by rewrite rules. As a whole, the specification of
the JVM is a rewrite theory, that is, a triple (ΣJVM, EJVM, RJVM), with ΣJVM a
signature of operators, EJVM a set of equational axioms, and RJVM a collection
of labeled ΣJVM-rewrite rules. The equations describe the static structure of
the JVM’s state space as an algebraic data type, as well as the operational
semantics of its deterministic features. The concurrent transitions that can occur
in different threads are described by the rules RJVM. Arbitrary interleavings
of rewrite rules are possible, leading to different concurrent computations of a
multithreaded JVM program. The rewriting rules RJVM are applied modulo the

1 Authors thank Willem Visser for examples and valuable information about JPF.

3

equations EJVM. Important equations are those of associativity, commutativity
and identity (ACU) of binary operations — such as the multiset union operation
that builds up the “soup” of objects — allowing us to effectively define the state
infrastructure of the JVM. Even though we focus on the algebraic definition of
the JVM in this paper, the same methodology has been used to define the Java
language as well as several other programming languages [8, 22].

Maude [3] supports, executes, and formally analyzes rewriting logic theo-
ries, via a series of efficient algorithms for term rewriting, state-space breadth-
first search, and linear temporal logic (LTL) model checking. Once the JVM
is formally specified as a rewrite theory in Maude, the above provide us with
JVM program analysis tools at no additional cost, capable of performing fair
interpretation and simulation, potentially infinite state-space exploration for de-
tecting safety violations, as well as LTL model-checking of JVM multithreaded
programs. EJVM contains associativity, commutativity and identity equational
axioms to represent the concurrent state of the JVM computation as a multiset
of entities such as the threads, Java classes, Java objects, etc. Following a well-
established methodology in rewriting logic, for which Maude provides generic
support [3], we call these entities objects. To avoid terminology confusion with
Java objects, we may sometimes call them Maude objects. Unless differently
specified, from now on by “object” we mean a “Maude object”. Maude sup-
ports a fully generic object-oriented specification environment, where one can
define classes and then objects as instances of classes. Aiming at a maximum
of efficiency for our JVM analysis tools, we decided not to use Maude’s generic
OO meta-level framework and, instead, to define a minimal object infrastructure
at the core level. As a consequence, we have dropped the generic definition of
classes, “hardwiring” our object types according to the JVM language.

Most of our equations and rules are applied modulo ACU, which in Maude
is a highly optimized and efficient process. For example, Figures 3 and 4 present
typical object-oriented rewrite rules. An object in a given state is formally rep-
resented as a term 〈O : C | a1 : v1, . . . , an : vn〉, where O is the object’s name or
identifier, C is its class, the ai’s are the names of the object’s attribute identifiers,
and the vi’s are the corresponding values.

3 Rewriting Logic Semantics of the JVM

We use Maude to specify the operational semantics of a sufficiently large subset
of JVM bytecode. This includes 150 out of 250 bytecode instructions, defined in
about 2000 lines of Maude code, including around 300 equations and 40 rewrite
rules. We support multithreading, dynamic thread and object creation, virtual
functions, recursive functions, inheritance, and polymorphism. Exception han-
dling, garbage collection, native methods and many of the Java built-in libraries
are not supported in the current version. The formal semantics of each instruc-
tion is defined based on the informal description of JVM in [27]. Section 3.2
explains the operational semantics of the deterministic part of the JVM given
by the 300 equations in EJVM, and Section 3.3 discusses the semantics of the
concurrent part of JVM specified by the 40 rewrite rules in RJVM.

4

3.1 Algebraic Representation of the JVM State

Here, we describe the representation of states in our model. Our major design
goal has been to reduce the size and the number of system states to improve
the performance of the formal analysis. The reduction in size has been achieved
through separating the static and dynamic aspects of the program, maintaining
only the dynamic part in the system’s state. To reduce the number of states,
we keep the number of rewrite rules in the specification minimal. A detailed
discussion on these optimizations is given in Section 3.5.

The JVM has four basic components: (1) the class space, (2) the thread
space, (3) the heap, and (4) the state transition machine, updating the internal
state at each step.

In our model, no specific entity plays the role of the state transition system,
and the strict separation of the classes, threads, and objects no longer exists. In-
stead, the state of the JVM is represented as a multiset of objects and messages2

in Maude [3]. Rewrites (with rewrite rules and equations) model the changes in
the state of the JVM.

Elements of the multiset. Objects in the multiset fall into four categories:

1. Maude objects which represent Java objects,
2. Maude objects which represent Java threads,
3. Maude objects which represent Java classes, and
4. auxiliary Maude objects used mostly for definitional purposes.

Below, we discuss each in detail.

Java Objects are modeled by objects containing the following attributes.

< O:JavaObject | Addr:HeapAddress, FieldValues:FieldValues, CName:ClassName, Lock:Lock >

The Addr attribute refers to the heap address at which the object is stored.
Physical heap addresses are employed only because they are used in the bytecode
to refer to objects. The FieldValues attribute contains all instance fields and
their values. Note that a single field may have more than one value, depending
on its appearance in more than one class in the hierarchy of superclasses of the
Java class from which the object is instantiated. The sort FieldValues is a list
of pairs, with each pair consisting of a class name and a list. The latter list by
itself consists of pairs of field names and field values. Therefore, based on the
current class of the object, we can extract the right value for a desired field. The
CName attribute holds the name of the object’s class. The Lock attribute holds
the lock associated with the object.

Java Threads are modeled by objects with the following attributes.

< T : JavaThread | callStack: CallStack, Status: CallStackStat, ORef: HeapAddress >

2 Messages are used as a method to define the semantics in our model. One can use a
somewhat different approach which does not include any messages.

5

The callStack attribute models the runtime stack of threads in Java. It is a
stack of frames, where each frame models the activation record of a method
call. Therefore, at any time, the top frame corresponds to the activation record
of the method currently being executed. A frame is a tuple defined as follows.

op [, , , , , ,] : Int Inst LabeledPgm LocalVars OperandStack SyncFlag ClassName -> Frame .

The first component is an integer representing the program counter. The sec-
ond component is the next instruction of the thread to be executed. The third
component is a complete list of the instructions of the method, along with their
corresponding offsets. The fourth component is the list of the current values
of the local variables of the method. The fifth component contains the current
operand stack, which carries instruction arguments and results. The sixth com-
ponent is a flag indicating whether the call of the current method has locked the
corresponding class (SLOCKED) or the corresponding object (LOCKED) or noth-
ing at all (UNLOCKED). The last component represents the class from which the
method has been invoked.

The Status attribute is a flag indicating the scheduling status of the thread:
scheduled when the thread is ready to execute the next instruction, or waiting
otherwise. Examples of threads with waiting status include a thread waiting for
the completion of a communication it has started in order to get the code of the
method being invoked. The Oref attribute contains the address of the object to
which the thread is associated.

Java Classes. Each class is divided into static and dynamic parts (see Section
3.5), represented by JavaClassS and JavaClassD objects respectively. These
objects contain the following attributes.

< C:JavaClassS| SupClass:ClassName,StaticFields:FlatFNL,Fields:FlatFNL,Methods:MethodList >
< C’ : JavaClassD | ConstPool:ConstantPool, Lock:Lock, StaticFieldValues:FieldPairList >

The SupClass attribute contains the name of the immediate superclass of the
class represented. The attribute StaticFields is a list of pairs, each pair con-
sisting of a class name along with the list of static field names of that class.
The classes in the first components of the pairs in this list are exactly the class
represented by this object along with all its ancestors. These lists are compiled
in a preprocessing phase. The Fields attribute has exactly the same structure
as StaticFields, but for instance fields. The ConstPool attribute models the
constant pool in the Java class file. In our model the constant pool is an indexed
list containing information about methods, classes, and fields. Bytecode instruc-
tions refer to these indices, that the threads use to extract (from the constant
pool) the required information to execute the instructions. By looking at the ith
entry of the constant pool, we get a FieldInfo, which contains a field name and
the name of the class the field belongs to, or a MethodInfo, which contains the
method name, the name of the class the method belongs to, and the number of
arguments of the method, or a ClassInfo, which only contains a class name.
Examples of instructions which refer to the constant pool include,
– new #5, which creates a new object of the class whose name can be found

in the 5th element of the constant pool, or

6

– invokevirtual #3, which invokes a method whose information (name, class,
and number of arguments) can be found at the 3rd entry of the constant pool.

The Methods attribute contains a list of tuples, each representing a method. The
structure of the tuple is as follows:

op { , , , , } : MethodName MethodFormals MethodSync LabeledPgm Int -> Method .

The tuple components respectively represent the method name, a list of types of
formal arguments of the method, a flag indicating whether or not the method is
synchronized, the code of the method, and the number of local variables of the
method. The StaticFieldValues attribute is exactly the same as FieldValues
already discussed for JavaObject, except that this list refers to the values of
static fields (which are stored inside the class) as opposed to the values of instance
fields (which are stored inside the object). The Lock attribute holds the lock
associated with the class.
Auxiliary Objects: Several objects in the multiset do not belong to any of the
above categories. They have been added for definitional/implementation pur-
poses. Examples include:

1. An object collecting the outputs of the threads. This object contains a list of
values. When a thread prints a value, it adds this value to the end of this
list. Input is assumed to be hardwired in the Java program at the moment.

2. A heap manager, that maintains the last address being used on the heap.
We do not model garbage collection at the moment. but a modification of
the heap manager can add garbage collection to our current JVM definition.

3. A thread name manager, that is used to generate new thread names.
4. There are several Java built-in classes that had to be apriori defined. The

support for input/output, creating new threads, and wait/notify facilities
are among the most important ones. All of these built-in classes have been
created separately and are added as part of the initial multiset.

3.2 Equational Semantics of Deterministic JVM Instructions
If a bytecode instruction can be executed locally in the thread, meaning that no
interaction with the outside environment is needed, that instruction’s semantics
can be specified using only equations. The equations specifying the semantics of
all these deterministic bytecode instructions form the EJVM part of the JVM’s
rewrite theory. In this section we present some examples of how deterministic
bytecode instructions are modeled in our system. The complete Maude repre-
sentation and a collection of examples can be found in [8].
iadd instruction is executed locally in the thread, and therefore, is modeled by
the equation shown in Figure 1. Values I and J on top of the operand stack are
popped, and the sum I + J is pushed. The program counter is moved forward
by the size of the iadd instruction to reach the beginning offset of the next
instruction. The current instruction (which was iadd before) is also changed to
be the next instruction in the current method code. Nothing else is changed in
the thread. Many of the bytecode instructions are typed. In this example, by
defining I and J to be integer variables, we support dynamic type checking as
well. Several dynamic checks of this kind are supported.

7

eq < T : JavaThread | callStack: [PC, iadd, Pgm, LocalVars, (I # J # OperandStack),
SyncFlag, ClassName] CallStack, Status: scheduled, ORef : OR >

= < T : JavaThread | callStack: [PC + size(Pgm[PC]), Pgm[PC + size(Pgm[PC])], Pgm, LocalVars,
((I + J) # OperandStack), SyncFlag, ClassName] CallStack, Status: scheduled, ORef: OR > .

Fig. 1. The iadd instruction.
Invokevirtual is used to invoke a method from an object. It is among the most
complicated bytecode instructions and its specification includes several equations
and rewrite rules. The equation in Figure 2 is the first part of invokevirtual
semantics. One thread, one Java object, and one Java class are involved. When

ceq < T : JavaThread | callStack: [PC, invokevirtual(I), Pgm, LocalVars, OperandStack,
SyncFlag, ClassName] CallStack, Status: scheduled, ORef: OR >

< ClassName : JavaClassV | StaticFieldValues: SFV, , Lock: L
ConstPool:[I, {J, MethodName, CName]] ConstantPool >

< O : JavaObject | Addr: K , FieldValues: FV, CName: ClName, Lock: L >
= < T : JavaThread | callStack: [PC, invokevirtual(I), Pgm, LocalVars, OperandStack,

SyncFlag, ClassName] CallStack, Status: waiting, ORef: OR >
< ClassName : JavaClassV | StaticFieldValues: SFV, Lock: L,

ConstPool: [I, {J, MethodName, ClName]] ConstantPool >
< O : JavaObject | Addr: K, FieldValues: FV, CName: ClName, Lock: L >
(GetMethod MethodName ofClass ClName ArgSize J forThread T)

if K==int((popLocalVars(J+1,OperandStack))[0]) .

Fig. 2. The invokevirtual instruction.

the thread reaches the invokevirtual instruction, by looking at the reference
on top of the operand stack (REF(K)), it figures out from what object it has
to call the method. The method information (see Section 3.1) will be extracted
from the constant pool. The class ClassName needs to be involved, since the
constant pool is stored inside this class. The class (ClName) is the current3 class
of the object O, therefore the code of the desired method should be extracted
from the constant part of it. The thread will send a message asking for the
code of the method, sending all the information to uniquely specify it. The last
entity before the condition is a message. This message is consumed later and the
desired method is sent back to the thread through another message. The thread
receives the message, and that is when the invocation is complete. If the method
being invoked is a synchronized method, the thread has to acquire a lock before
the invocation is complete. This then has to be done using a rewrite rule (see
Section 3.5).

3.3 Rewriting Semantics of Concurrent JVM Instructions
The semantics of those bytecode instructions that involve interaction with the
outside environment is defined using rewrite rules, thus allowing us to explore
all the possible concurrent executions of a program. In this section we present
the semantics of several concurrent bytecode instructions.

monitorenter (Figure 3) is used to acquire a lock. This makes a change in
the shared space between threads, and so has to be specified by a rewrite
rule. One Java object and one Java thread are involved. The thread execut-
ing monitorenter acquires the lock of the object whose reference is on top of
the operand stack (REF(K)). The heap address of the object (K) is matched with
3 Note that this can change dynamically.

8

rl [MONITORENTER1] :
< T : JavaThread | callStack: [PC, monitorenter, Pgm, LocalVars, (REF(K) # OperandStack),

SyncFlag, ClassName] CallStack, Status: scheduled, ORef: OR >
< O : JavaObject | Addr: K, Lock: Lock(OIL, NoThread, 0), REST >

=> < T : JavaThread | callStack: [PC + size(Pgm[PC]), Pgm[PC + size(Pgm[PC])], Pgm, LocalVars,
OperandStack, SyncFlag, ClassName] CallStack, Status: scheduled, ORef : OR >

< O:JavaObject | Addr: K, Lock: Lock(OIL, T, 1), REST > .

Fig. 3. The monitorenter instruction.

this reference, and the lock of the object is changed to indicate that the object
is now locked once by the thread T (note that a thread can lock or unlock an
object several times). See section 3.4 for a more detailed discussion on locking
and unlocking procedures.

getfield is a more complex instruction modeled by the rewrite rule in Figure
4. One thread and two Java classes are involved in this rule. The I operand is
an index to the constant pool referring to the field information ([I, {ClName,
fieldname}]), namely, field’s name and its corresponding class name. The Java
class ClassName is needed to extract the constant pool. The Java object O is
identified by matching its heap address K with the reference REF(K) on top of
the operand stack. On the right hand side of the rule, the thread proceeds to the

rl [GETFIELD] :
< T : JavaThread | callStack : ([PC, getfield(I), Pgm, LocalVars, REF(K) # OperandStack,

SyncFlag, ClassName] CallStack), Status: scheduled, ORef: OR >
< ClassName : JavaClassV | ConstPool: ([I, {ClName, FieldName}] ConstantPool), REST >
< O : JavaObject | Addr: K, FieldValues: FV, REST’ >

=> < T : JavaThread | callStack: ([PC + size(Pgm[PC]), Pgm[PC + size(Pgm[PC])], Pgm,
LocalVars, (FV[ClName, FieldName])#OperandStack, SyncFlag, ClassName] CallStack),
Status: scheduled, ORef: OR >

< ClassName : JavaClassV | ConstPool : ([I, {ClName, FieldName}] ConstantPool), REST >
< O : JavaObject | Addr: K, FieldValues: FV, REST’ > .

Fig. 4. getfield Instruction.

next instruction, and the value of the indicated field of object O is placed on top
of the operand stack of the thread (FV[ClName, FieldName] # OperandStack).

3.4 Synchronization

We support three means of thread synchronization: (1) synchronized sections,
(2) synchronized methods, and (3) wait/notifyAll methods. In this section
we explain how these means of synchronization are modeled.

The synchronized sections in Java are translated into sections surrounded
by monitorenter (see Figure 3) and monitorexit bytecode instructions. Dur-
ing the execution of both, an object reference is expected to be on top of the
operand stack whose corresponding lock is acquired and released respectively.
Each Java object is modeled by a Maude object that includes a Lock attribute.
This attribute has a tuple structure of the following form:

op Lock : OidList Oid Int -> Lock .

The first component is a list of identifiers of all threads that have waited on
this object. This corresponds to wait and notifyAll methods (see below). The
second component shows what thread currently owns the lock of this object
(NoThread if none). The third component is a counter that shows how many

9

times the owner of the lock has acquired the lock, since each lock can be acquired
several times by the same owner.

When a thread encounters the monitorenter instruction, it checks whether
the lock of the corresponding object is free. If so, the lock is changed to belong to
this thread, and the thread can proceed to the critical section. It is also possible
that the lock is not free, but has been acquired by the same thread before. In
this case, only the counter is increased by one. When the thread finishes the
execution of the critical section and reaches the monitorexit instruction, it
simply decreases the counter by one. If the counter becomes zero, the lock is
marked as free.

The synchronized methods are modeled in a very similar way. The differ-
ence is that, when the method is synchronized, monitorenter and monitorexit
are replaced by method invocation and return, respectively. These methods are
modeled through different rewrite rules, since different bytecode instructions are
used for them.

Adding support (with little effort) for the wait and notifyAll methods of
the Java built-in class Object is an interesting problem that we have solved. Sim-
ilar to synchronization primitives, wait and notifyAll are called expecting an
object reference on top of the operand stack. The thread (calling these methods)
should already own the lock of the object on top of the operand stack. When
wait is called, the thread releases the lock of the corresponding object, which
it must own, and goes to sleep. It will not continue unless notified by another
thread. The lock of the object is marked as free, the identifier of the current
thread is added to the list of threads waiting on this object (the first compo-
nent of the lock), and the integer indicating the number of times the thread had
locked the corresponding object is stored locally in the sleeping thread, so that
it can be recalled when the thread wakes up.

When notifyAll is called, a (broadcast) message is created containing the
list of all threads which have waited on the corresponding object up to that
point. This message will then be consumed by all the threads in this list. Each
thread that consumes the message will try to wake up. In order to continue their
execution, all these threads have to compete to acquire the lock on the specific
object, to follow the rest of their executions inside the synchronized section.
After the lock becomes available, one thread nondeterministically 4 acquires it.

3.5 Optimizations
Below, we discuss two major optimizations we have applied to decrease the size
and number of system states, as well as the size of the state space.
Size of the State. In order to keep the state of the system small, we only
maintain the dynamic part of the Java classes inside the system state. Every
attribute of Java threads and Java objects can potentially change during the

4 In our model, but in general various implementations of the JVM use a variety of
algorithms to choose the thread. By not committing to any specific deterministic
choice approach, our formal analysis can discover subtle violations that may appear
in some JVM implementations, but may not show up in others.

10

execution, but Java classes contain attributes that remain constant all along,
namely, the methods, inheritance information, and field names. This, potentially
huge amount of information, does not have to be carried along in the state of the
JVM. The attributes of each class are grouped into dynamic and static attributes.
The former group appears in the multiset, and the latter group is kept outside
the multiset, in a Maude constant accessed through auxiliary operations.
Rules vs. Equations. Using equations for all deterministic computations, and
rules only for concurrent ones leads to great savings in state space size. The
key idea is that the only two cases in which a thread interacts with (possibly
changes) the outside environment are shared memory access and acquiring locks.
Examples of the former include the semantics of the instruction getfield (see
Section 3.3) where a rule has been used. As an example for the latter case, we
refer the reader to semantics of the monitorenter instruction (see Section 3.3).
Since only the 40 rules in RJVM contribute to the size of the state space, which is
basically a graph with states as nodes and rewrite transitions as edges, we obtain
a much smaller state space than if all the deterministic bytecode instructions had
been specified as rules, in which case 340 rules would be used.

4 Formal Analysis

Using the underlying fair rewriting, search and model checking features of Maude,
JavaFAN can be used to formally analyze Java programs in bytecode format. The
Maude’s specification of the JVM can be used as an interpreter to simulate fair
JVM computations by rewriting. Breadth-first search analysis is a semi-decision
procedure that can be used to explore all the concurrent computations of a pro-
gram looking for safety violations characterized by a pattern and a condition.
Infinite state programs can be analyzed this way. For finite state programs it is
also possible to perform explicit-state model checking of properties specified in
linear temporal logic (LTL).

4.1 Simulation

Our Maude specification provides executable semantics for the JVM, which can
be used to execute Java programs in bytecode format. This simulator can also be
used to execute programs with symbolic inputs. Maude’s frewrite command
provides fair rewriting with respect to objects, and since all Java threads are
defined as objects in the specification, no thread ever starves, although no spe-
cific scheduling algorithm is imposed. This assumption of fairness (with respect
to threads) coincides with real models of JVM with a built-in scheduler, since
scheduling algorithms also take the fairness into account. This fairness assump-
tion does not mean that a deadlock is avoided; a deadlock in our model is a
state in which no more rewrites are possible. The fair rewriting helps us avoid
the situations in which a thread stuck in a loop is being executed forever, while
other threads that can also be executed are starving.

To facilitate user interaction, the JVM semantics specification is integrated
within the JavaFAN tool, that accepts standard bytecode as its input. The user
can use javac (or any Java compiler) to generate the bytecode. She can then
execute the bytecode in JavaFAN, being totally unaware of Maude. We use

11

javap as the disassembler on the class files along with another disassembler
jreversepro [14] to extract the constant pool information that javap does not
provide.

4.2 Breadth-first Search
Using the simulator (Section 4.1), one can explore only one possible trace (mod-
eled as sequence of rewrites) of the Java program being executed. Maude’s
search command allows exhaustively exploring all possible traces of a Java pro-
gram. The breadth-first nature of the search command gives us a semi-decision
procedure to find errors even in infinite state spaces, being limited only by the
available memory. Below, we discuss a number of case studies.
Remote Agent. The Remote Agent (RA) is an AI-based spacecraft controller
that has been developed at NASA Ames Research Center and has been part
of the software component of NASA’s Deep Space 1 shuttle. On Tuesday, May
18th, 1999, Deep Space 1’s software deadlocked 96 million kilometers away from
the Earth and consequently had to be manually interrupted and restarted from
ground. The blocking was due to a missing critical section in the RA that had led
to a data-race between two concurrent threads, which further caused a deadlock
[10, 11]. This real life example shows that even quite experienced programmers
can miss data-race errors in their programs. Moreover, these errors are so sub-
tle that they often cannot be exposed by intensive testing procedures, such as
NASA’s, where more than 80% of a project’s resources go into testing. This
justifies formal analysis techniques like the ones presented in this paper which
could have caught that error.

The RA consists of three components: a Planner that generates plans from
mission goals; an Executive that executes the plans; and a Recovery system that
monitors RA’s status. The Executive contains features of a multithreaded oper-
ating system, and the Planner and Executive exchange messages in an interactive
manner. Hence, this system is highly vulnerable to multithreading errors. Events
and tasks are two major components (see [8] for the code). In order to catch the
events that occur while tasks are executing, each event has an associated event
counter that is increased whenever the event is signaled. A task then only calls
wait for event in case this counter has not changed, hence, there have been no
events since it was last restarted from a call of wait for event.

The error in this code results from the unprotected access to the variable
count of the class Event. When the value of event1.count is read to check the
condition, it can change before the related action is taken, and this can lead
to a possible deadlock. This example has been extensively studied in [10, 11].
Using the search capability of our system, we also found the deadlock in the
same faulty copy in 0.3 seconds. This is while the tool in [19] finds it in more
than 2 seconds in its most optimized version5.

The Thread Game. The Thread Game [18] is a simple multithreaded program
which shows the possible data races between two threads accessing a common
variable (see [8] for the code). Each thread reads the value of the static variable

5 All the performance results given in this section are in seconds on a 2.4GHz PC.

12

c twice and writes the sum of the two values back to c. Note that these two
readings may or may not coincide. An interesting question is what values can c
possibly hold during the infinite execution of the program. Theoretically, it can
be proved that all natural numbers can be reached [18].

We can use Maude’s search command to address this question for each specific
value of N . The search command can find one or all existing solutions (sequences)
that lead to get the value N . We have tried numbers up to 1000 where for all of
them a solution is found in a reasonable amount time (Table 1).

N 50 100 200 400 500 1000

Time(s) 7.2 17.1 41.3 104 4.5m 10.1m

Table 1. Thread Game Times.

4.3 Model Checking

Maude’s model checker is explicit state and supports Linear Temporal Logic.
This general purpose rewriting logic model checker can be directly used on the
Maude specification of JVM’s concurrent semantics. This way, we obtain a model
checking procedure for Java programs for free. The user has to specify in Maude
the atomic propositions to be used in order to specify relevant LTL properties.
We illustrate this kind of model checking analysis by the following examples.

Table 2. Din-
ing Philosophers
Times.
Tests Times(s)
DP(4) 0.64
DP(5) 4.5
DP(6) 33.3
DP(7) 4.4m
DP(8) 13.7m
DP(9) 803.2m
DF(4) 21.5
DF(5) 3.2m
DF(6) 23.9m
DF(7) 686.4m

Dining Philosophers. See [8] for the version of the din-
ing philosophers problem that we have used in our exper-
iments (DP). The property that we have model checked
is whether all the philosopher can eventually dine. Each
philosopher prints her ID when she dines. Therefore, to
check whether the first philosopher has dined, we only
have to check if 1 is written in the output list (see Sec-
tion 3.1 for the output process). The LTL formula can be
built based on propositions defined as follows. op Check :
Int -> Prop, where Check(N) will be true at some state
if the output list contains all the numbers from 1 to N .
In this case, we check the following LTL formula using the
modelCheck, where InitialState is the initial state of
the program defined automatically. The formula that we
model checked is ♦Check(n) for n philosophers. The model
checker generates counterexamples, in this case a sequence of states that lead to
a possible deadlock. The sequence shows a situation in which each philosopher
has acquired one fork and is waiting for the other fork. Currently, we can detect
the deadlock for up to 9 philosophers (Table 2). We also model checked a slightly
modified version of the same program which avoids deadlock (DF). In this case,
we can prove the program deadlock-free when there are up to 7 philosophers.
This compares favorably with JPF [1, 12] which for the same program cannot
deal with 4 philosophers.
2-stage Pipeline implements a pipeline computation (see [8] for the code),
where each pipeline stage executes as a separate thread. Stages interact through

13

connector objects that provide methods for adding and taking data. The prop-
erty we have model checked for this program is related to the proper shutdown
of pipelined computation, namely, “the eventual shutdown of a pipeline stage in
response to a call to stop on the pipeline’s input connector”. The LTL formula
for the property is �(c1stop → ♦(¬stage1return)). JavaFAN model checks the
property and returns true in 17 minutes (no partial order reduction was used).
This compares favorably with the model checker in [19] which without using the
partial order reduction performs the task in more than 100 minutes.

5 Lessons Learned and Future Work
We have presented JavaFAN, explained its design, its rewriting logic semantic
basis, and its Maude implementation. We have also illustrated JavaFAN’s for-
mal analysis capabilities and its performance on several case studies. The main
lessons learned are that, using a rewriting logic semantics and a high-performance
logical engine as a basis to build software analysis tools for conventional con-
current programs has the following advantages: (1) it is cost-effective in terms
of amount of work needed to develop such tools; (2) it provides a generic tech-
nology that can bee applied to many different languages and furthermore the
analysis tools for each language come essentially for free from the underlying log-
ical engine; and (3) it has competitive performance compared to similar software
analysis tools tailored to a specific language.

As always, there is much work ahead. On the one hand, in collaboration
with Feng Chen support for the Java source code level has also been added
to to JavaFAN and we plan to gain more experience and further optimize the
tool at both levels. On the other, we plan to extend the range of formal anal-
yses supported by JavaFAN, including, among the others, support for program
abstraction, to model check finite-state abstractions of infinite-state programs,
and for theorem proving, using Maude’s inductive theorem prover (ITP) [4] as
a basis. Furthermore, since the general techniques used in JavaFAN are in fact
language-independent, we hope that other researchers find these techniques use-
ful and apply them to develop similar tools for other concurrent languages.

Acknowledgment. Research supported by NASA/NSF grant CCR-0234524
and by ONR grant N00014-02-0715.

References

1. G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. In
Automated Software Engineering 2000, pages 3 – 12, 2000.

2. M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of programming
languages. ACM Trans. on Prog. Lang. and Systems, 9(1):54–99, January 1987.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

4. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In Proc. of the CafeOBJ Symposium, April 1998.

5. R. M. Cohen. The defensive Java Virtual Machine specification. Technical report,
Electronic Data Systems Corp, 1997.

14

6. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, R. Zheng,
and H. Zheng. Bandera: extracting finite-state models from Java source code. In
International Conference on Software Engineering, pages 439 – 448, 2000.

7. C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java
programs. Software - Practice and Experience, 29(7):577 – 603, 1999.

8. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. JavaFAN. fsl.cs.uiuc.edu/javafan.
9. J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT,

1996.
10. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. White.

Formal analysis of the remote agent before and after flight. In the 5th NASA
Langley Formal Methods Workshop, 2000.

11. K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller
using SPIN. IEEE Transactions on Software Engineering, 27(8):749 – 765, August
2001. Previous version appeared in Proceedings of the 4th SPIN workshop, 1998.

12. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. Software Tools for Technology Transfer, 2(4):366 – 381, April 2000.

13. G. J. Holzmann. The model checker SPIN. Software Eng., 23(5):279 – 295, 1997.
14. Jreversepro 1.4.1. http://jrevpro.sourceforge.net/.
15. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: ACL2

Case Studies. Kluwer Academic Press, 2000.
16. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations

and tools supporting detailed design in Java. In Object Oriented Programming,
Systems, and Applications, pages 105–106, 2000.

17. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science, pages 73–155, 1992.

18. J. S. Moore. http://www.cs.utexas.edu/users/xli/prob/p4/p4.html.
19. D. Y. W. Park, U. Stern, J. U. Sakkebaek, and D. L. Dill. Java model checking.

In Automated Software Engineering, pages 253 – 256, 2000.
20. G. D. Plotkin. A structural approach to operational semantics. Technical report,

Computer Science Department, Aarhus University, 1981.
21. J. Posegga and H. Vogt. Java bytecode verification using model checking. In

Workshop “Formal Underpinnings of Java” OOPSLA, October 1998.
22. G. Roşu. Programming Language Design - CS322 Course Notes.
23. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine - Defini-

tion, Verification, Validation. Springer-Verlag, 2001.
24. M. Stehr and C. Talcott. Plan in Maude: Specifying an active network program-

ming language. In Rewriting Logic and its Applications, volume 71 of Electronic
Notes in Theoretical Computer Science, 2002.

25. P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous
Pi-Calculus semantics and may testing in Maude 2.0. In Rewriting Logic and its
Applications, volume 71 of Electronic Notes in Theoretical Computer Science, 2002.

26. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 2031 of LNCS,
pages 299 – 312, 2001.

27. B. Venners. Inside The Java 2 Virtual Machine. McGraw-Hill, 1999.
28. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in

Maude. Manuscript, Dto. Sistemas Informáticos y Programación, Universidad
Complutense, Madrid, August 2003.

29. M. Wand. First-order identities as a defining language. Acta Informatica, 14:337–
357, 1980.

15

