CSC2414 - Metric Embeddings*
L ecture 3: Embedding to Random Trees

Notes taken by Nilesh Bansal and Ilya Sutskever
Revised by Hamed Hatami

Summary: It is not always possible to embed a metric space in a tree
with low distortion. To overcome this, the metric space can be instead
embedded in a distribution of trees. We discuss the applicability of these
ideas in online algorithms, and prove that every finite metric space of n
points embeds to a distribution of trees with distortion O(logn).

1 Embeddingto Trees

Not every metric can be embedded into a tree isometrically. Embedding C,, into a tree
results in a distortion of at least n — 1 (for example, as in Figure 1, deleting an edge
from the cycle results in a tree metric with expansion n — 1).

Figure 1: Embedding Cj to a tree by removing an edge.

Theorem 1.1. Every embedding of C), into atree T incursdistortion 2(n).

Theorem 1.1 appears in [RR98], and it holds true even when the embedding of C,
to tree contains edges and vertices not in C), (Steiner points).

If C, is embedded into a tree which is result of removing one of the edges at
random from the cycle, one edge will have a large expansion while others will remain
intact. Therefore, we are more interested in finding the maximum expected expansion
between a pair of vertices in the embedding. We define a new measure
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which will also serve as motivation for Definition 1.2 below. It must be noted that this
is very different from the expected maximum expansion for the complete space, as that

it be d(z), ¥(y))
x), Yy
ﬂ%y d(z,y)

which is (n) according to Theorem 1.1.

The tree obtained by removing an edge from a cycle will “dominate” the original
metric, i.e., no distances can get contracted. Also, while computing the expansion in
a graph metric, it is sufficient to consider the expansion along the edges because the
expansion in distance between any two points will be bounded by the sum of expansion
of edges along the shortest path (as proved in the previous tutorial).
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Figure 2: The expansion of distance between z and y is bounded by the sum of expan-
sion of edges w1, ws and ws.

Definition 1.2. A set of metric spaces 7 a-probabilistically approximates metric space
(X,d)if

1. Every metric 7 in 7 dominates (X,d), i.e., d(i,j) < d,(i,j) Vi,j € X and
TeT,;

2. and, there exists a probability distribution over 7 such that the expected distance
is not too much larger than d(z, ), i.e.,
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It must be noted that the probability distribution over 7 may not be a uniform
distribution. Some metric spaces in 7 may be more favorable than others.

When a tree is obtained by removing an edge at random from a cycle, for any edge
zy, the distance will remain unaltered with probability ”T—l and with probability % the
expansion will be n — 1. The expected expansion therefore is,
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Hence, C), can be 2-probabilistically approximated by a distribution of trees.

2 Maetrical Task Systems

In [Bar96] Bartal introduced the notion of a--probabilistic embeddings and showed that
any metric with n points and with diameter® A embeds into distributions of dominating

1defined formally in Definition 2.1



trees with distortion O(log n log A). He also introduced many algorithmic applications
of his theorem. His result later was improved to O(log n) by [FRT03].

Definition 2.1. The diameter of a metric space is the least A such that the distance
between any two pair of vertices is less than or equal to A.

A = supd(z,y)
T,y

Embedding into distribution of trees has many algorithmic applications. This stems
from the fact that it is usually easy to solve or obtain a good approximation for an
optimization problem over the tree metric. For example it is very natural to use the
divide and conquer approach with trees, as trees allow the algorithm to reduce the
problem by processing one child at a time. In the following we discuss a general
framework for using a-probabilistic embeddings into distribution of trees in designing
randomized algorithms for certain class of online algorithms.

A task system (X, d) consists of a set X of states and a cost function d where
d(i, 7) is the cost of changing from state i to state j [BLS92]. In a Metrical Task System
(MTS), d is assumed to be a metric, i.e., it satisfies the triangle inequality and d(x, ) =
0, Vx € X. Requests arrive in an online fashion at every time step. Each request o;
associates a cost with each of the states € X. An online scheduling algorithm is one
that chooses the state s; of the system at time 4 only knowing o1, 02, ..., 0;. The aim
of the algorithm is to minimize the the cost function
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Figure 3: A representation of MTS online scheduling algorithm where each state is
represented as a point in space and the cost of changing states is proportional to the
distance between them.

The performance ratio is defined as the ratio of the cost of running the algorithm A
relative to the optimal performance that can be achieved if the future was known.

costa (o)

performance ratio = ——————
optimum(o)



Itis intuitive that simple metric space will make design of such an algorithm simple.
Hence we seek embeddings that can transform the input space to a simpler space and
still guarantee some bounds on the performance.

Theorem 2.2. If adistribution of treesT” a-probabilistically approximates d and there
isan algorithm A, for every 7 € T with performanceratio lessthan 3, then thereisa
randomized online scheduling algorithmwith performanceratio lessthan o - 3.

Theorem 2.2 holds true for any online MTS problem in which the performance ratio
is a weighted (positive weights) sum of the distances and cost with respect to requests.

Proof. To prove the theorem, we consider a simple randomized algorithm which selects
atree 7 at random from the the distribution 7~ and then runs the original algorithm (with
the objective function changed) on the new space 7. The performance ratio for this new
randomized algorithm will be

ETET [COSt%, (U)]
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where cost%f (o) is the cost of running algorithm A, (which assumes that the distances
are according to 7) while the cost is computed according to M.
From the dominance property of 7 over the original metric space M = (X, d),

cost (o) < costy (o) VT €T,

where cost’y (o) is the cost of running the algorithm A, when the distances are ac-
cording to 7. Also, by assumption of the theorem

costy (o) < foptimum_(o),Vr € T.
Therefore

B - E;erloptimum_(0)]
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3 Embedding to Random Trees

In this section we discuss Bartal’s theorem and its improvement by Fakcharoenphol,
Rao, and Talwar [FRTO3]:

Theorem 3.1 ([FRTO3]). Every metric spacewithn pointscan be O(log n)-probabilistically
approximated by a distribution of tree metrics.

Theorem 3.1 is a very useful result and can be applied to many optimization prob-
lems that can be defined in terms of some metric spaces. The MTS problem discussed
in the previous section is a good example where this theorem can be advantageous.



Remark 3.2. All tree metrics are £ (as proved in the previous tutorial). It is also easy
to see that £, metrics are additive, dy, d» are ¢; metrics implies that dy + ds is £1. Also,
if d; are £; and \; € Rt, then X \;d; is ¢; (left as an exercise).

Remark 3.3. Theorem 3.1 can be related to Bourgain’s theorem [Bou85]. Since all
tree metrics can be isometrically embedded into ¢; and every metric space with n
points can be O(log n)-approximated by a distribution of tree metrics, it follows from
Remark 3.2 that any metric space with n points can be O(log n)-approximated by ¢;.
This is Bourgain’s result, except that it does not guarantee any bound on the dimension.

First we state the intuition of the proof of Theorem 3.1. More details are given in
Section 4.

Main tool of the algorithm that constructs the distribution of trees for proving The-
orem 3.1 is probabilistic decomposition. This is a randomized procedure that given a
metric space (X, d) and parameter §, decompose the metric so that

e Each cluster is of diameter at most 6.

e Probability that an two points z and y land in different clusters is at most <
410g(n)@.

Figure 4 provides some intuition for the algorithm. The big metric space is decomposed
in three smaller subspaces with diameter at most §. The decomposition process is then
recursively applied on the three smaller subspaces. This process produces a rooted tree
with the big metric space as the parent node and subspaces produced as children.

Trees can very well capture the clustering properties of a metric space. The points
which are close to each other will have the common ancestor close to the leaf nodes and
the distance in the tree metric will also be small, while points belonging to different
clusters will have the common ancestor close to the root of the tree.

Example 3.4. To provide motivation for the chosen probability function, consider the
¢, space in R with n points placed along a line at equal distances, as shown in Figure 5.

If we remove edges independently with probability = c1°§", then the event of not

d
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cutting any of the § consequent edges is (1 — c%ﬂ) .
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For ¢ = log, 2, with probability, 1 — (n — §):L ~ 1, all segment of size § will
be cut. Hence the diameter of resulting subgraphs will be less then § with probability
> 1
-2



Figure 4: A big metric space decomposed in three smaller subspaces. The three sub-
spaces are further divided and a rooted tree is constructed.

4 Proof of Theorem 3.1

As we saw in Section 3 the main tool in the proof of Theorem 3.1 is the probabilistic
decomposition.

Definition 4.1. A distribution IT over the partitions of a finite metric space (X, d) is
called low-diameter solid partition with parameter § > 0 if

1. For every partition P of X, such that IT(P) > 0, weakdiam(P) < ¢
2. If P is chosen from distribution II, then for each z,y € X,

Pr[P splits z and ¢] < w‘

It is not obvious that such a distribution over partitions exists. But suppose it does.
How can we use it to get a good probabilistic embedding of (X, d) into a mixture of
trees?



Figure 6: A recursive use of the low-diameter solid partition

Let us suppose that we can find this low-diameter solid partition for every metric
space X and any choice of parameter 4.

1. Let 6 = diam(X)/2. In that case, the partition will most likely split points
whose distance is comparable to the diameter, or else the probability of the points
being split is small.

2. Having got such a partition, we apply this construction recursively on each set in
the partition, but using /2 as the parameter instead.

Then we recursively apply the this construction on each sub-partition with pa-
rameter §/4, and so on. Thus, on each recursion we divide the parameter by
2. (Note that § = diam(X)/2 is fixed and does not depend on the diameter of
sub-partitions.

We will get a family of laminar sets, where every two sets are either disjoint or one
is contained in the other. These laminar sets correspond to a rooted tree constructed by
the following recursive procedure with initial parameter A = diam(X')/2:



diam/2

Figure 7: The tree corresponding to the laminar sets in Figure 6

1. For each recursive call: start with a partition with parameter A. Recursively
create trees for each of the obtained sub-partitions, but with parameter A /2.

2. Connect the roots of these trees to a new root with edge-length A.
3. If there is only one element in the partition, we stop the recursion.

The tree obtained by the above procedure has certain properties. In particular: The
elements of X are mapped to the leaves of the tree. The height of the tree is at most

o (1o diam(X)
& \ min distance in the metric space X )

Moreover the tree is a 2-hierarchically well-separated tree:

Definition 4.2. A k-hierarchically well-separated tree (k-HST) is defined as a rooted
weighted tree with following properties

e The edge weight from any node to each of its children is same.

e The edge weight along any path from the root to a leaf are decreasing by a factor
of at least k.

Figure 8 demonstrates an example of k-HST. These trees have algorithmic impor-
tance, and both [Bar96, FRT03] embed the metrics into a distribution over the trees
which are k-HST.

We shall assume without loss of generality that the smallest distance in X is 12,
Under this assumption, the property of dominance is always preserved.

2See Remark 4.5
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Figure 8: Hierarchical clustering. Original space contains four clusters, a, b, ¢ and d,
each containing many points. Points in clusters a and b are relatively closer to each
other as compared to ¢ and d. The tree easily captures this, as points from same cluster
are siblings in the tree and points in clusters close to each other are close to each other
in the tree as well. It is natural to expect the distance between the nodes ab and cd to
be much larger than that between a and b. The property of k-HST makes this possible
as edge lengths increase by a factor of k£ as we move toward the root.

Claim 4.3. Dominanceispreserved: Let 7 be any tree that is constructed in the above
procedure. Then 7(z,y) > d(z, y).

Proof. Ifd(x,y) € (A/27,A/29~1], then Definition 4.1 (1) guarantees that z and y are
split in the recursive step with parameter A /27 or before that. Thus their tree distance
is at least twice the edge from their first common ancestor to its children. Therefore
their distance in the graph is at least A /271, O

4.1 Small Expansion

We saw that the dominance condition is satisfied. Next we need to show that the expan-
sion is small. On the most intuitive level, the expansion is small since points that are
close are unlikely to be split with large parameters. More formally, let 7 be a random
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Figure 9: 7(x,y) is no more than 4A

tree generated by the above procedure. Let us bound the expected expansion of 7(z, y).
First let us prove the following claim:

Claim 4.4. e have
T(2,y) <4-Agy,

where A, ,, isthe parameter valuein which z and y are split®.

Proof. This is due to the fact that the tree is 2-HST. The proof is best seen in Figure 9:

Now let us bound E[r(z, y)].

E[r(z,y)] < 4-APr[z,y split with parameter A]

A L
+ 4. §Pr[x, y split with parameter A /2]

+ 4- %Pr[x, y split with parameter A /4]

+ 4. %Pr[m,y split with parameter A /27]

350 Ag,y = A - 277 for some j
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Here j is [log Diam(X)] + 2. Note that Definition 4.1 (1) guarantees that =z and y are
being split with parameter A /2% for some i < j.

Now the second property of the low-diameter solid partition (Definition 4.1 (2))
will be crucial: If the partition has parameter 4,

Pr(z,y are split) < 4logn - d(z,y) /4.

Therefore, we can upper-bound Pr[z, y split with parameter A/27]. Applying this we
get

E[r(z,y)] < 4-A-4(logn) (»’Zy)
A d(z,y)

+ 4- 5 .4(10gn)A—/2

+ 4. % -4(logn) d(A'r}y)

- gt

Therefore
E[7(z,y)] = O(logn -log (Diam(X))),

where the log(Diam (X)) is the number of terms in the summation. Note that we have
the extra term log Diam(X), which will be taken care of later.

Remark 4.5. Remember that we scaled the metric space so that the minimum distance
between every two points is at least 1. So here Diam (X)) is not the diameter of the orig-
inal metric and in fact it is the diameter of the original metric divided by the minimum
distance in the original metric.

5 ThelLow-Diameter Solid Partition

This partition is based on the work in [CKR01]. We would like to have a deterministic
constraint that the diameter is always less than §. We will use a randomized construc-
tion that in addition will split close-by points only infrequently. The idea is that we
pick a radius, and then start placing balls one on-top of another with this radius.

We place one ball, and this is one set in the partition. Then we place another ball,

and let the new” points covered by this ball to be the second set containing and so on.
More formally,

Algorithm 5.1.

41f the set we place intersects another set that was placed before, the points remain in the “older” set.

11
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Figure 10: The making of the partition. Each ball is of diameter §

1. Pick arandom permutation o of {1,...,n}, and, independently, pick R € [6/4,5/2]

uniformly at random.
2. Define B; := B(j, R) \ Uy<_; B(k, R).
Notice that it might be the case that j ¢ B; and B; = ().

5.1 Why doesthisconstruction work?

It is evident that the diameter of this partition is less than 4§, since R, the radius of the
ball is less than §/2.

What is the probability that a pair z, y is split? For the analysis, number the rest
of the points by their relative distance to the set {z, y}. Thus, the closest point will be
called 1 and the second closest will be called 2. If two points are of the same distance
to {z,y}, then it does not matter how we denote them.

When is the first time 2 and y are split?

1. A ball can be disjoint from {z, y}, in which the points are not split.

2. Ahall can contain {z, y}, so the points are not split.

3. A ball contains precisely one of {z, y}, in which case the points are split.
Definition 5.2. For a fixed permutation o, we say that j settles z,y if {z,y} N B; # 0.

The probability that a pair x, y is split,

Pr lU z,y is split by z] = Prlz,yissplitby].

Note that we have equality since these events are disjoint; It is not possible for points
z and y to be split by both ¢ # j, for example.

12



Range of good radii
X for which 3 seperates x and y

N

Figure 11: The radius must be in the right range, between d(j, z) and d(j, y). With a
good radius, point 2 will settle points 2 and y, so if point 3 is to split these points, it
must come before point 2.

5.2 Themain analysis

Let us start by an example. Consider Pr[point 3 splits = and y], where the points are
schematically drawn in Figure 11.

1. The radius should be of the right size.

2. If 2is priorto 3 in o, then 3 cannot split 2 and y. This is because the radius is the
same for both points 2 and 3. Therefore, if the radius is such that it is possible
for point 3 to split z and y, then the radius is such that point 2 can either split or
contain both x and y.

Thus j settles {z, y} and separates them iff j is the firstamong {1, . . ., j } according
to o and the radius is in [d(j, z), d(4,y)] U [d(J,y), d(j, z)]. Therefore

Pr[j settles {z,y} and separates them]
-Pr{R € [d(j, 2), d(5,y)] U [d(4, y), d(4, 2)]]
 d(z,5) = d(y, j)|

d/4

d(z,y)
574

where the last equality follows from the triangle inequality. The denominators are 6/4,
since we sampled uniformly from [§/4,5/2].

IN
S S-S =
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The probability that points = and y are split is thus less than

1 d(z,y) d(z,y)
— . < .
E i o/a 4logn 5

as required from the low diameter solid partition. But we are not done yet, since we
have not handled the log Diam(X) term that arises.

5.3 Improving the result

Recall that we used the following identity:

Pr lU z,y is split by z] =Y Prlz,yissplitbyi],

and then bounded each term on the right hand side separately. However, for any given
value of the parameter §,

Pr [z and y is split by i] = 0,

if (i) /2 < d(i,{z,y}) since {z,y} will not be settled, or (ii) d(i, {z,y}) < §/8,
since {z, y} will both belong to the same set, and thus will not be separated. So it is
sufficient to sum over a smaller number of terms so the bound becomes

; 1 d
Pr(z and y are split) < | Z . (63742/)
J:6/8<d(j,{z,y})<d/2

Let us see what happens once we apply the above bound to 7(z,y). Recall the
equations

<

IN
i

E[r(z,y)] - APr[z, y split with parameter A]

+ 4 %Pr[w, y split with parameter A /2]

+ 4 %Pr[m, y split with parameter A /4]

+ 4. %Pr[aj,y split with parameter A /27]

14



By applying the improved bound, we obtain

Er(z,y)] < 4-A-4d(z,y)/A 3 1

#A/8<d( myh)<a/2
-4d(z,y)/(A/2)

3:(A/2)/8<d(G{=,y})<(A/2)/2

~4d(z,y)/(A/4) >

3:(A/4)/8<d(G.{=,y})<(A/4)/2

> o
SR S =

b ddn,)/(A)2) > :

J(A/20) [8<d(i ey D)< (A/29) f2 7

In the above bound, we sum each 1/; at most twice. We conclude that

Efr(z,)] < 32-d(z,4) 3 = = O(d(z,y) logn)

i<n

and thus the distortion is at most O(logn).
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