
CSC 2414H (Metric Embeddings) - Assignment 2

Due Feb 27, 2006

General rules : In solving this you may consult books and you may also
consult with each other, but you must each write your own solution. In each
problem list the people you consulted. This list will not affect your grade.
special note: This assignment contains many questions, and so solving 5
questions will already guarantee full mark (but more worth more); notice
that question 7 is particularly challenging.

1. Consider the algorithm given in the lecture notes for solving Metrical
Task Systems using embeddings into distribution of trees (Theorem
2.1, Lecture note 3). Let us remove the dominance condition from the
definition of α-probabilistic embeddings (Definition 1.2 (1), Lecture
note 3), i.e. now the assumption on the embedding is

∀i, j d(i, j) ≤ Eτ∈T [dτ (i, j)] ≤ α · d(i, j).

By giving an example show that the randomized algorithm given in
the proof of Theorem 2.1 does not guarantee the performance ratio
of αβ (Define a problem by giving a metric space X and specifying a
proper cost function cost(q, u) for requests q and states u ∈ X).

2. Consider a set S consist of n points on a line, and the following
procedure for partitioning them with parameter δ: For every point
x ∈ S, let B(x, δ) be the interval of length δ centered at x. Let
Bδ =

⋃
x∈S B(x, δ). Start picking points a1, a2, . . . from Bδ uniformly

at random1 one at a time. For every i let Sai be the new points that
are covered by B(ai, δ), i.e.

Sai = S ∩

B(ai, δ) \
⋃
j<i

B(aj , δ)

 .

The nonempty Sai ’s form the partition.
1These points are not necessarily in S.
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(a) What is the probability that this partition splits two points x and
y with d := d(x, y).

(b) Use the above partitioning in a similar way to the proof of Theo-
rem 3.1 (in Lecture note 3) to prove that S isO(α)-probabilistically
embaddable into a distribution of 2-HST’s.

3. Suppose p ≥ 1. Show that if (X, d) embeds isometrically into `p, then

it also embeds isometrically into `Mp , where M =
(
n

2

)
, and n = |X|.

4. Find an example of an n point metric space X ⊂ R2 such that any
embedding of X into R requires a distortion of Ω(n). (Hint: show you
can embed the graph metric of Cn into `2 with constant distortion. In
addition to this fact you may also want to use theorems from previous
lecture notes.)

5. Show that it is not possible to embed the n-dimensional hamming
cube (i.e. {0, 1}n equipped with the `1 norm) into `k1, with constant
distortion and k = o(log n) .

6. We are interested in dimension reductions that maintain the area of
triangles. For x, y, z ∈ Rk denote by (x, y, z) the triangle with vertices
x, y, z. Consider a metric space X ⊂ Rn and a dimension reduction
f : X → R

m with distortion 1 + ε.

(a) We want to show that f does not guarantee any constant upper
bound on the distortion of the areas of the triangles: Show that
for every C > 1 there is an example such that

C <

(
max

area(xi, xj , xt)
area(f(xi), f(xj), f(xt))

)
×
(

max
area(f(xi), f(xj), f(xt))

area(xi, xj , xt)

)
,

where area(xi, xj , xt) is the area of a triangle with edges of length
d(xi, xj), d(xj , xt) and d(xi, xt).

(b) Suppose that f guarantees

A :=
(

max
area(xi, xj , xt)

area(f(xi), f(xj), f(xt))

)
×
(

max
area(f(xi), f(xj), f(xt))

area(xi, xj , xt)

)
< (1+ε)2.

Find a constant upper-bound for the distortion of the angles

B :=
(

max
∠(xi, xj , xt)

∠(f(xi), f(xj), f(xt))

)
×
(

max
∠(f(xi), f(xj), f(xt))

∠(xi, xj , xt)

)
,
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where ∠(xi, xj , xt) is defined according to triangle with edges of
length d(xi, xj), d(xj , xt) and d(xi, xt).

(c) Is the reverse true? More precisely does B < (1+ε)2 imply A ≤ c
for some constant c > 0?

7. In this question you are going to prove a classical result in the theory
of Banach spaces called “Dvoretzky’s theorem”. The theorem says
that an arbitrary norm on Rn is very similar to Euclidean norm when
restricted to a certain subspace of high dimension.

We will need to use Levy’s lemma. Denote by |A| the measure of a set
A ⊆ Sn+1. Note that |Sn+1| = 1.

Lemma 1 (Levy’s lemma) Let f : Sn+1 → R be continuous and let
A = {x : f(x) = Mf}, where Mf is the median2 of f . Then

|Aε| ≥ 1−
√
π/2e−ε

2n/2,

with
Aε := {t : ρ(t, A) ≤ ε},

where ρ is the geodesic distance on the sphere.

Recall that in a metric space (X, d) a θ-net is a set S ⊆ X such that
d(x, S) ≤ θ for every x ∈ X.

(a) Prove that for every normed space X of dimension k, there exists
a θ-net N in S(X) = {x ∈ X : ‖x‖ = 1} with

|N | ≤ (1 + 2/θ)k ≤ ek log 3/θ.

(Hint: Use a greedy algorithm to find the θ-net.)

(b) Consider an β-Liptschitz3 function f : Sn+1 → R
+.

Use Part (a) and Levy’s lemma (note that an β-Liptschitz func-
tion is continuous) to prove that there exists a subspace E ⊆ Rn+2

with dim(E) = ε2n/(2 log 4/θ), and a θ-net N in S(E) = Sn+1∩E
such that

i. |f(x)−Mf | ≤ ε for all x ∈ N , and
2i.e. |{x : f(x) ≥Mf}| ≥ 1/2 and |{x : f(x) ≤Mf}| ≥= 1/2.
3i.e. |f(x)− f(y)| ≤ β‖x− y‖2.
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ii. |f(x)−Mf | ≤ ε+ βθ for all x ∈ E ∩ Sn+1.

(Hint: Similar to the proof of Johnson-Lindestrauss theorem choose
E at random)

(c) Consider a normed space X = (Rn+2, ‖ · ‖). Let f(x) = ‖x‖, and
assume that |f(x)−Mf | ≤ βε for all x in a θ-net N of E ∩ Sn+1

for some subspace E of Rn+2. Prove that

1− 2θ
1− θ

Mf −
βε

1− θ
≤ ‖x‖ = f(x) ≤ 1

1− θ
Mf +

βε

1− θ
,

for all x ∈ E ∩ Sn+1.
(Hint: Do not use the previous parts; First prove the upper
bound; Find {yi}∞i=1 in N and {δi}∞i=1 in R with |δi| ≤ θi−1 such
that x = y1 +

∑∞
i=2 δiyi).

(d) Use the previous parts to prove that for any δ > 0 there exists a
c(δ) > 0 such that the following holds:
Consider an arbitrary normed space X = (Rn+2, ‖ · ‖), and let
f(x) = ‖x‖. From equivalence of norms in finite dimension, we
already know that there exists α, β > 0 such that

α−1‖x‖2 ≤ ‖x‖ ≤ β‖x‖2.

There exists a subspace E of Rn+2 with dim(E) ≥ c(δ)·n·(Mf/β)2

and
(1− δ) ·Mf · ‖x‖2 ≤ ‖x‖ ≤ (1 + δ) ·Mf · ‖x‖2,

for every x ∈ E. (This means that E is similar to a Euclidian
space or more precisely the identical embedding of E into `2 has
distortion 1+δ

1−δ .)

4


