CSC2411 - Linear Programming and
Combinatorial Optimization*
L ecture 6: LP Duality, Complementary slackness,
Farkas Lemma, and von Neumann min-max
principle.

Notes taken by Pixing ZHANG
February 17, 2005

Summary: In this lecture, we further discuss the duality of LP. We prove
duality theorems, discuss the slack complementary, and prove the Farkas
Lemma, which are closely related to each other. At last, we discuss an
application: von Neumann Min-Max theorem.

1 Primal and Dual

Recalling the question 1 from the assignment, at the first step, we formalize it as:

min ¢
st |ami —b—y;i| <t,Vi

then we get the following LP as our primal linear programming:

min ¢
st. —ax;+b+t>—y;, Vi
ar; —b+t > y;, Vi
a,b,t 20 these variables are unconstrained

We use a figure in the following to illustrate the problem.
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Figure 1: The geometry representation of question 1 in Assignment 1

From our previous lectures and tutorials, we know how to get its dual as following:

max - oiyi+ Y Piyi

st. =Y oimi+ Y Bz =0, (1) this is for variable a
Z a; — Z B;i =0 (2) this is for variable b
Z ; + Z Bi=1 (3) this is for variable t
a;, B > 0,Vi

Let us define v; = 2a; and §; = 28;, then our problem can be transformed to:

max %(Z Siyi — Y Vii)
s.t. Z Yili = Z (SZ.CL'l
Z%’ = Z&' =1

7,6 >0



Notice that v, § are coefficients of convex combinations. This motivates us to define
p=>_7vi(zi,y;) and ¢ = Y §;(x;,y:), then the problem is transformed to:

max qy - py
st. qp =Pz
p,q € conv(S) where S is the convex hull of (z1,v1), ---, (ZTn, Yn)

The meaning of the above formulation is that p, ¢ range over all possible pairs of
points in the convex hull S generated by input points, and we want to find the convex
hull’s maximal height at some point z.

It is easy to find that min ¢ can not be smaller than half of the height found in the
dual problem. The half of the height here is a bound for the original primal problem.
It would be interesting to see a simple proof which shows us the above observation. In
the following section, we will discuss such proofs.

2 Weak and Strong Duality Theorem

From what we have known so far, the following figure gives us a rough idea of the
possible values for primal and dual’s solutions.
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Figure 2: The relationship between primal and dual solutions by assuming both being
feasible

This figure is captured by the following theorems. Before we start to prove the
theorems, we want to point out that we will prove most of our theorems for linear



programming in standard forms. But this does not prevent us from applying them to
other forms, since different forms can be defined by each other and the proofs can be
extended too.

Theorem 2.1. Weak Duality Theorem
If z isfeasible for the primal and y is feasible for the dual, then (¢, z) > (y,b)

Proof. By the construction of the primal and dual, we immediately get

(c,z) > yAzx = (y,b)
O

From the above theorem, we do not know whether there is a gap between the opti-
mal primal solution and the optimal dual solution when both problem are feasible, and
whether feasibility can be related to optimum. The following strong duality theorem
tells us that such gap does not exist:

Theorem 2.2. Strong Duality Theorem
If an LP has an optimal solution then so doesits dual, and furthermore, their opti-
mal solutions are equal to each other.

An interesting aspect of the following proof is its base on simplex algorithm. Par-
ticularly, we will utilize the property of simplex algorithm’s proof at termination.

Proof. Let the primal and dual be;

Primal Dual
min(e, ) max(y, b)
Az =b yA<c
z>0 yz20

Assuming that our primal problem has an optimal solution, then at the termination
point of simplex algorithm with a basis B and the remaining columns NV, we have the
following inequalities:

C=cCN — CBAEIAN >0
CBABIAN S CN -
Since cg Ag' Ap = cp, we have:

CBABIA S C



Indeed, let y = cpAg', then yA < c. Therefore, if the primal has an optimal
solution, then we can find a feasible solution cz A" for the dual. Since 2 = A5'b, we
can get the following equation:

(ya b) = CBA]_glb = (C, .’L')

Therefore, we can conclude that if primal has an optimal solution, the dual is fea-
sible and has a solution with the value equal to the primal optimum. O

2.1 Primal and Dual’s Possible Category

Considering the pair of primal and dual problems, our discussion up to now has in-
formed us three different possible combinations: infeasible, feasible but unbounded,
and feasible bounded. Table 1 represents their possible relationships.

Primal
Has Optimum Unbounded Infeasible
Has Optimum ,/*(Same Optimum) x0 x*
Dual | Unbounded x0 x0 Ve
Infeasible x* Va Vv

Table 1: "*” represents the conclusion of strong duality, ”0” represents the conclusion
of week duality corollary

As for the (Infeasible, Infeasible) entry, it is quite easy to see it is possible: suppose
the primal is infeasible, then we write its dual and add more constraints to make it
infeasible, and the primal obtained from the new infeasible dual still is infeasible.

We observe that the dual of the dual problem is the primal. Therefore the table must
be symmetric.

3 Complementary Slackness

For the following discussion, we will use the linear programming in canonical forms.
We consider the following primal and dual:

min (¢, z) max (y,b)
Ax >0b yA<ec
z2>0 y>0

Previously we have emphasized the special roles of the inequalities that holds as
equalities for a certain solution, particularly for the optimal solution. In the context of



primal and dual problems, the following theorem gives an ultimate expression of this
balance for z, y to be respective optima in the primal-dual.

Theorem 3.1. Complementary Slackness
Let 2,y be feasible solutions for primal and dual problems respectively, then they
are optimal solutionsiff:

Vi,z; =0 or (yA)i=c¢
Vi,y; =0 or (Ax); =1b;

Proof. Since z,y are feasible, then,
(c,x) > yAz > (y,b).

By strong duality theorem, z, y are optima iff (¢, z) = (y, b). Furthermore, (¢, z) =
(y, b) iff all the above three terms are the same.

What can we get from the above equations? Let us consider the first equation(c, z) =
y Az, which can be rewritten as

(c—yA,z)=0.

Since z > 0 and yA < ¢, we can conclude that (¢,z) = yAz iff for all 4, either
(y,a;) = ¢; (whenever z; > 0), or z; = 0.

Similarly, the second equation y Az > (y, b) can be rewritten as (y, Az — b) = 0,
from which we know that y Az = (y, b) iff either (a;,z) = b(whenever y; > 0), or
y; =0. O

4 Linear System’s Feasibility and FarkasLemma

Now let us discuss the question of whether a set of inequalities and equations is feasi-
ble. From our intuition,we know if we multiply the equations by any scalars and add
them up, and if we can not get a valid equation, then we know the linear system is
infeasible.

Consider the following example:

T1 + 229 =95 (1)
5173—.’172:—3 (2)
z>0

if we multiply first equation by 1, second equation by 2, and add them up, we get

T1+ 222 + 223 — 220 =5—2 %3



which is
xr1 +2x3 = —1.
Since x > 0, we know the linear system is not feasible.

This example demonstrates a simple way to prove the infeasibility of a linear sys-
tem. To formalize the above method, we write it as: if Jy,yA > 0 and (y,b) < 0,
then Ax = b,z > 0 is infeasible. Moreover, this can be strengthened to a sufficient
and necessary condition. That is, the reverse direction holds too: if a linear system is
infeasible, then there must be a "linear proof” to that. Farkas lemma captures this idea
formally.

41 FarkasLemma

FarkasLemma
Farkas Lemma was attributed to J. Farkas in 1894. It is useful to think of it as the
geometric version of duality theorem.

Theorem 4.1. Az = b,z > Oisfeasible, <= (Vy,yA > 0= (y,b) > 0).

Proof. The = direction is trivial: let 2 be a solution to Az = b,z > 0. If yA > 0,
then y Az > 0. Since yAz = (y,b), we have (y,b) > 0.

Now let us consider the other direction <=, which is more interesting and compli-
cated. In fact, this is not surprising as it is analogous to strong duality theorem.

For a set of vectors vy, va, ..., v, We define cone(vy,va, ..., vn) = {D; Aivi|A; >
0}. Figure 3 illustrates the definition.
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Figure 3: the illustration of the cone’s definition

If we take the columns of A as the vectors, then the infeasibility of z > 0 with
Az =bissame as saying b ¢ cone(A1, As, ..., Ay).

SinceyA > 0 & Vi(y, 4;) > 0, we can view y as a hyperplane that go through the
origin with all A; on one side and b on the other side.

Let K = cone(Ay, A, ..., Ay,), and let p be the closest pointto b in K. which must
exist since the distance from b is a continous function and K is a closed set. We first
argue that for every point z € K, (z — p,b—p) <0.

If the above claim did not hold, we could find another point 2’ with smaller distance
to b than the distance to p. In figure 4, we illustrate the relationships of b, p, z and 2.



) _Hyp'ér‘pl ane

Figure 4: the illustration of the claim and the relationship of z, p, b

Let Aw = p, and y = p — b. From the above fact, we know that Vz > 0, (Az —
Aw,y) > 0. In particular, for x = w + ¢;, we have

(notice that w > 0 and e; is a unit vector with entry ¢ equal to 1, therefore z > 0.)

As a result, y puts K on one side. Now we need to show that b is put to the other
side.

We know that (p — b,b — p) < 0. Moreover, since p is the closed point to b in K
and 0 € K, from previous discussion, we have (p — b,p — 0) < 0. Adding these two
terms together, we have:

(y,b) = (p—b,b) = (p— b,b—p) + (p— b,p— 0) <0,

which means b is put to the other side of y than the side of K.
Therefore, if Az = b,z > 0 is not feasible, we can find a y, such that y4 >
0, (y,b) < 0. This finishes the proof. O

5 Application: von Neumann min-max principle

A zero sum game is a game with 2 players, in which each player has a finite set of
strategies. The payoff to the first player is determined by the strategies chosen by both
players, and the payoff to the second player is the negation of the payoff to the first.
So the sum of their payoffs is zero. The following Paper-Scissor-Stone game is a zero
sum game.



Column Player
Paper Stone  Scissor
Paper 0 1 -1
Row player | Stone -1 0 1
Scissor 1 -1 0

Table 2; Paper-Scissor-Stone game’s strategy matrix

If the column player plays strategy ¢, and the row player plays strategy j, the payoff
to the column player is a;;. If column player plays first, she will get profit:

max min a;;
J K

If we reverse the order, she will get profit:

min max a;;,
2 J

For the above two terms, we have: min; a;; = —1,Vyj; max; a;; = 1,Vi. So it is
easy to know that there is a big advantage to play second in the above game.

Now what if the player exposes a probability vector that will determine her strate-
gies(i.e. mixed strategies). Since each player’s strategy is determined by a proba-
bility distribution, the order of playing game becomes less important. Let us define
A ={a € RFla >0,> a; = 1}.

For mixed strategy games, we compare the following two objects:

Column player play first: max min yAz,
TEA, YEA,

Column player play second: min max yAzx,
YEAL TEA,
where z, y are probability vectors and y Az = )" z;y;a;
It is easy to see that max, min, yAz < min, max, yAz. Is it possible that the
equality holds? The following theorem give a positive answer

Theorem 5.1. Von Neumann min-max Theorem(Principle) There exist z,y such
that

max min yAr = min max yAz
TENA, YEA, YEA, TEA,



