
CSC2411 - Linear Programming and
Combinatorial Optimization

�
Lecture 4: Simplex Algorithm (Contd.)

Notes taken by Chuan Wu

February 6, 2005

Summary: We continue our discussion of the simplex algorithm. We
give a high-level description of the algorithm and discuss the different
variations of the algorithm determined by the exact pivot rules they use.
We end by showing an exponential time lower bound for the simplex al-
gorithm that is due to Klee and Minty (1972).

1 Review

Let ��� be a BFS for a linear program and
�����
	���
�
�
���������	

be the corresponding basis.
Let � be the entering column when we move from one BFS to another. The new BFS
is calculated as: ���� ��� � � � �����
� � �! #"%$�'&�(� " �'& �
where �(� is defined as: �(�*)�+-,� .0/213 �54 6�798�: �<; � � �� �! � �>= �� = �
and the new basis is: � � � " 	 � � �?� " 	 "%$�'&@ " �'&BA
2 How do We Choose the New Basic Variable

When we move from one BFS to another (Figure 1), column � is inserted into the basis.
Let CD be the unit ”Change Vector” from the original BFS C� to the new BFS C� � . We have

D � �FEG H � � �! " � �?� " 	� " � �I J(K�L�M
N(O "-P MQ
Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

X

X’

Figure 1: A move step in simplex algorithm

Then the new BFS is: C� � � C��� �(� CD A
The new objective function is

� � � � C� � C� ���� � C� � C��� � ��CD �� � C� � C� � � �(� � C� � CD �� � � � � � � � �	 ��

� � � ����� ��� 	
If we have � ��� I

and � ��� ���

� � � ����� ����� I
, we can improve the objective

function by entering j to the basis. So when we are considering whether to let column
j enter the basis, we calculate

�� � � � �	 ��
�� � � ����� ��� A
If
�� � I

and � ��� I
, we know this move is profitable in that we get a decrease in

the cost of objective function. The next claim assures that when there is no j for which�� � I , we are in fact done.

Claim 2.1. Let � � be a BFS �>� , with

�� � I ! �#"$ ���-�(�� ���&% 	�� A�A�A ���?� � 	
. Then �>� is optimal.

Proof. Let
�

be the set of indices of the columns in the basis of � � . Let ' be the set
of indices of the rest of the columns. In matrix form, we have

(� � (� � � � (*) �) �,+ �
and so � � � (.- �� � + � () �) 	 A

2

Our goal now is to express the objective function as a function of �) only.

� � � � � � �� � � � � � �) �)� � � (- �� � + � () �) 	 � �) �)� � � (- �� + � � �) � � � (- �� () 	 �)
For the current BFS � � , we have �) � �� I
�
�
I

��
. So � � , the current value of the

objective function is � � (- �� + .
Further we notice that (- �� () � � � � 	<�

and so � �) � � � (- �� () 	 �) � 	 ��� � �� � A
For every feasible solution � , we have � � I

and as C� � I
for � "$ � , we get that for

every feasible solution � � � � � � � � (- �� +%� � � A
In other words, � � is the minimum and � � is an optimal solution.

A this point, we recall the case in which � � �� I
for all " shows that 	 is un-

bounded. We can now say that the objective function is unbounded below if � �
� I
for all " and

�� � I
. There is also another case in which

�� � I
and � � ��� . Then fea-

sible solution set P of the linear program is unbounded but the objective function might
still be bounded. However, the simplex algorithm will never encounter this second case
since when

�� � I
, j will never enter the basis.

3 Putting it all Together

3.1 Pseudocode for Simplex Algorithm

Algorithm 3.1 (Simplex Algorithm).

1. Start with a BFS �>� with basis
�?�-�
	<� A�A�A � ��� � 	 by found by the Start Phase

algorithm (sometimes called ’Phase I’). (Refer to section 3.1 in lecture note 2.)

2. Repeat:

For column � which is not in current basis, calculate � �! , " � � � A�A�A ��� , and
�� .

(a) If
�� � I

,
! � "$ � , then stop and report current BFS is optimal.

(b) Choose any j for which
�� � I :

3

i. If � �! � I
for any " , stop and report the objective function is un-

bounded.

ii. Calculate � � � .0/ 1 3 �54 6�798�: �<; 6 7��6
7!8 . Let & be any index with � � � 6�� �6 � 8 .

Pivot on � � & and move to the new BFS on the basis
� � which replaces��� & 	 with j.

3.2 Questions about Simplex Algorithm

1. Is simplex algorithm a polynomial-time algorithm? In fact, does it ever termi-
nate?

2. What is the rule we should apply to make the decision of the two ”any”s in
simplex algorithm?

3. Can we make the calculation of � � and
�� simple?

Discussion of the above questions:

1. There are a finite number of different vertices that the algorithm can visit. So if
it doesn’t visit the same vertex twice, it must terminate. If it does, then it will
repeat the sequence of vertices between the first and second visit to the repeated
vertex over and over again. In other words, the algorithm terminates iff it does
not cycle. We further notice that whenever � � � I

, we strictly decrease the
objective function; therefore � � � I

throughout the cycle.� � � I
can only happen when the current BFS is degenerated and in other words

it has more than � � �
zeros. Although we move from one basis to another,

the BFS we get is still the same. In the geometry of the linear program, the
corresponding vertex of the polytope lies on more than � � � facets. For example
in Figure 2, let A,B,C,D be the four facets corresponding to four constraints of
a linear program and each three of them decide a basis. If the move of basis in
simplex algorithm is

(����� (�
	�� ���
	�� (���
, we are moving in a

cycle in which the vertex (so the BFS) is still the same.

A B

CD

Figure 2: A vertex on the intersection of 4 facets in 3 dimension.
Cycling may occur on such a vertex for some pivot rules.

2. The pivot rules for simplex algorithm are discussed in the following section.

4

3. In each step, we can use the ”old” � �! and
�� calculated in the former step to get

the new � �� and
�� � . For column k in the former iteration, we have

(�� � �	 ��

� � � � (��� ��� A
Let j be the column entering the basis in this iteration and

�?� & 	 be the leaving
column. From last lecture, we know

(� � = � � (� � ���

��� ���
 = � �! (� � �����= A
So in the next iteration, we have

(� � �	 ��

� � � � (��� ���� 	 ���
 = � � � (��� ��� � � = � (� � = �
� 	 ���
 = � � � (��� ��� � ��= �

(� � ���
 = � �! (� � ���� = � 	 ���
 = � � � � � �>= � � �! � = 	 (� � ��� � ��= �� = (
Thus we have in the new iteration

� �� � � � � � � � 6 �	��6 7!86 � 8 "�$�'&6 �	�6�� 8 " �'&BA
Similarly, we can get C� � � from C� � . We mention that often the coefficients � �!
and � � are arranged in a structure called “Tablaux”.

3.3 Pivoting rules

1. (Largest coefficient rule) Choose the column � to enter the basis which has the
smallest

�� : � ��

��� .0/21 ����� 8�� � ��
This pivoting rule may lead to cycling.

2. (Greatest increase rule) Choose the column � to enter the basis which generates
the biggest gain toward optimality of the objective function.� ��
���� .�

� ����� 8�� � � � � � � 	
This pivoting rule may lead to cycling.

5

3. (Bland’s rule)Choose the lowest numbered column to enter the basis:� � .0/ 1�� ��� �� � I��
and the lowest numbered column to leave the basis in case of tie�?� & 	 � .0/ 1�� ��� & 	 � �>= ���= � . / 13 � 4 6
7!8�: ��; � � �� �! �
This rule guarantees no cycling.

3.4 Simplex is not a Polynomial-Time Algorithm

As we have introduced simplex algorithm as the most commonly used algorithm to
solve linear programs and discussed the uncertainty in the algorithm, it is natural to
come to the question of telling the ”goodness” of simplex algorithm based on mathe-
matical criterion and ask if simplex is a polynomial-time algorithm. We hope to show
simplex algorithm can come to the optimal solution in polynomial time by one of the
pivoting rules.

First of all, we may ask whether there are a polynomial number of vertices in the
polytope P of the feasible solutions. Unfortunately, the answer is ”NO”. There are
polytopes that have exponentially many vertices. An simple example of such a polytope
is the � -dimension � I ��� � cube defined by:I � � � � � � � � % � A�A�A � �
The � -cube has

%
� facets, one for each inequality, and

%��
vertices, one for setting each

subset of � � � � �	� � A�A�A � � � � to 1 and the rest to 0. The example of a 3-cube is shown in
Figure 3.

X3

X2

X1

(0,0,1) (0,1,1)

(0,1,0)

(1,1,1)
(1,0,1)

(1,1,0)
(1,0,0)

(0,0,0)

Figure 3: A 3-dimension � 0,1
�

cube

Having an exponential number of vertices is not necessarily a negative evidence to
the running time of simplex algorithm, since in general it does not traverse all vertcies.

6

A

B

C

 D

decreasing
objective
function

Figure 4: Path for simplex algorithm

For example in Figure 4, it may take the path
(� 	

instead of
(� � � � � 	

based on different pivot rules. To claim that the algorithm is indeed “in trouble” one
must show an example where the algorithm follows a long sequence of vertices, so that
the objective function decreases along this sequence. Such a sequence will essentially
show that if the algorithm take the most unfortunate pivot rule in each vertex it will
require many iterations. For this purpose, we have to come up with a polyhedron and
an objective function so that there is a long decreasing path. A first possible attempt
might be to take the � -cobe as the polyhedron. This, however, can easily be seen to be
fruitless effort : for any choice of objective function the longest decreasing path is of
size � .

We still wish to utilize the nice combinatorial structure of the � -cube. To this end
we perturb the cube in a special way that gives rise to such a long path. Here is a
precise way of how to do it that was suggested by Klee and Minty (1972). Let � be a
constant in

� I ��� " % 	 , and consider the following set of inequalities.I � � � � �
� � � � �	� � � � � � �

...
� � � - � � � � � � � � � � - �

...
� � � - � � � � � � � � � � - �

The example of a perturbed 3-cube is shown in Figure 5.
We define a linear program on these constraints as:� " � � � � (1)P A K A � � � I� � � �� � � � � � - � " � % ������
�
�
 � �� � � � � � � � - � " � % ������
�
�
 � �
When we solve this linear program with simplex algorithm, we have to make de-

cision on the entering and leaving columns at each step. We will show that we can
find a most unfortunate sequence of choices at each selection step, so that the sim-
plex algorithm uses an exponential number of pivots before coming to the optimal

7

Figure 5: A perturbed 3-dimension cube

solution. We do this by exhibiting an exponential sequence of basic feasible solu-
tions � � � � � � A�A�A � � ��� to the linear program defined in (1), such that � � ���
� � � � � for" � � � A�A�A � % � .

First we represent each vertex of the n-dimension � I ��� � cube with an encoding in
� I ��� � � . For example, in the 3-dimension cube shown in Figure 3, vertices are encoded
as
I I I

,
� I I

,
� � I

,
I � I

,
I � �

,
� � �

,
� I �

,
I I �

. We encode each vertex in the perturbed
n-cube in � I ��� � � too by mapping � to

I
. For example, in the perturbed 3-dimension

cube shown in Figure 5, the vertices and their corresponding encoding are:
� M
N(K-M � � � � J�� " �	�� I � I � I 	 I I I�-� �

�
�
�
� 	 � I I�-� ��� � �
�
� � �

� 	 � � I� I ��� �
�
	 I � I� I ��� ��� � �

	 I � ��-� ��� � �
��� � � � �

� 	 � � ��-� �
�
��� � �

� 	 � I �� I � I ���
	 I I �
So when � is mapped to

I
, we have that one vertex in the n-cube maps to one vertex in

the perturbed cube and the edge between two vertices in the n-cube maps to the edge
between the two corresponding vertices in the perturbed cube.

8

Now we want to find a Hamiltonian path in � I ��� � � and show that corresponding
vertices in the perturbed cube have increasing � � values. A gray code is a Hamiltonian
path in the cube and binary reflected gray code is a special type of gray code that is
defined recursively as in Figure 6.

Figure 6: Hamiltonian path � �

For example, the Hamiltonian path defined on the perturbed 3-dimension cube is:

��� � I I I � � I I � � � I � I � I � I � � � � � � � � I � � I I � A
Claim 3.2. The objective function of the linear program defined in (1) is decreasing
if we move from BFS to BFS by following the Hamiltonian path defined on binary
reflected gray code.

We first look at how we can calculate the BFS of the linear program defined in (1).
This linear program has

%
� constraints. Recalling from Question 2 of Assignment 1,

BFS is associated with n linear independent inequalities satisfied as equalities. From
each pair of inequalities � � � � � � - � and � � � � � � � � - � , we can only choose one to
satisfy as equality. So we have

% �
choices in total. It’s easy to show that in each of the% �

selections, the selected n inequalities are linear independent, for
� M
K � () 	 $� I

,
()

is the ��� � matrix composed of coefficients from the n selected inequalities. Thus we
can get

% �
basic feasible solutions, which correspond to the

%��
vertices in the perturbed

n-cube.
Then we go on to prove the claim.

Proof. We prove by induction.
Basis
If � � % , the Hamiltonian path is � � � I I � � I � � � � I �

. The linear program
is � " � � � � (2)P A K A � � � I� � � ��	� � � � ��	� � � � � � �

It is trivial to show the objective function is decreasing on the Hamiltonian path
� � .

9

If � � �
, the linear program is � " � � � � (3)P A K A � � � I� � � �� � � � � �� � � � � � � �� � � � � �� � � � � � � �

We first consider the first part of � � : I I I � � I I � � � I � I � I
. On this path, the last

coordinate is always
I
, which means we always take the equality� � � � �	� A (4)

If we only look at the first two bits, this path is the same as � � . Further we notice � �
doesn’t appear in the first 4 inequalities in linear program (3) and these 4 inequalities
are the same as those in linear program (2). As we have shown the objective function� " � � � � is decreasing by following � � , which means � � increases, we know � �
increases too based on Equation (4). So the objective function

� " � � � � in linear
program (3) decreases. Then we move from

I � I
to
I � �

. � � changes from � � � to� � � �	� . Since � � �� , we have � � � � � � � � � . So this is an improving step. Next we
look at the last part of � � : I � � � � � � � � I � � I I �

. On this path, the last coordinate
is always

�
, which means now we always take the equality� � � � � � �	� A (5)

If we only look at the first two bits on the path
I � � � � � � � � I � � I I �

, it is the
reverse of � � . So by following this path, � � decreases, then � � increases based on
Equation (5). Thus the objective function of linear program (3) continues to decrease.

Induction step
We assume the claim holds for � � � -cube and try to prove it for � -cube. The proof

is similar as what we did to show the claim holds for the case of � � �
based on the

result of � � % .
We start by moving from vertex

I
�
�
 I
to
I
�
�
<� I

by following the first part of � � .
By induction, this is an decreasing path for � � � -cube. Since the last coordinate of the
vertices on this part of path is always

I
, we know we should always choose� � � � � � - � A

Thus � � is increasing and the objective function of linear program (1) is decreasing.
Next we move from

I
�
�
<� I
to
I
�
�
<� �

. � � changes from ��� � - � to
� � � � � - � .

Since � � �� , we have ��� � - � � � � � � � - � . So this is a decreasing step.
Then we follow the last part of � � to move from

I
�
�
<� �
to
I
�
�
 I �

. The first � � �
bits on this part of path is the reverse of � � - � . So � � - � is decreasing on the path. The
last coordinate is always

�
here and so� � � � � � � � - �

10

for the corresponding vertices. Thus � � continues to increase, which leads to continu-
ous decreasing of the objective function. Then we can conclude our proof.

From the Klee Minty cube example, we have shown that by starting from some
vertex and choosing certain pivot rules in simplex algorithm, it takes exponential time
to achieve optimality. We state (without proof) that the largest coefficient pivot rule
will lead to the above long path. Noticing that there’s no guarantee which vertex to
start with when using simplex algorithm, we are able to assume that we start from this
very vertex which leads to an exponential length path to the optimal solution.

11

