
CSC2411 - Linear Programming and
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Lecture 10: Semidefinite Programming

Notes taken by Mike Jamieson

March 28, 2005

Summary: In this lecture, we introduce semidefinite programming (SDP).
We describe SDP as a generalization of linear programming (LP), and how
an LP and other problems can be written as an SDP. We present vector
programming (VP) as another form of SDP and discuss duality in the SDP
context. Finally, we note some important differences between LP and SDP.

1 Components of Semidefinite Programming

Today we go beyond LP into semidefinite programming (SDP). The development of
SDP was one of the major successes of the 1990’s. It is a special case of convex
optimization with many useful properties.

1.1 LP and Closed Cones

Recall that in standard form, and LP may be written as

min〈c, x〉 such that
〈ai, x〉 = bi, i = 1 . . .m

x ≥ 0

If we defineK = (R+)n = {x|x ≥ 0} then we can rewrite the last condition above
asx ∈ K.

Definition 1.1. A setK ∈ Rn is aclosed coneif ∀x, y ∈ K and∀α, β ∈ R+

αx+ βy ∈ K

andK is closed.
∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Science, University of Toronto.
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1.2 Positive Semidefinite Matrices

Definition 1.2. An n× n matrixX is positive semidefinite(PSD) if

∀a ∈ Rn, atXa ≥ 0

We can denote the set of all symmetricn× n PSD matrices asPSDn

PSDn = {X|X is ann× n symmetric matrix, X is PSD}

Claim 1.3. PSDn is a closed clone.

Proof. To see thatPSDn is closed under positive addition, consider that∀X,Y ∈
PSDn and∀α, β ∈ R+

at(αX + βY )a = αatXa+ βatY a ≥ 0

To show thatPSDn to be closed, it is sufficient to show that its complimentPSDn

is open. For everyX ∈ PSDn and anyY ∈ Rn×n (within finite elements), there exists
a ∈ Rn andε, k > 0 sufficiently small that

atXa+ ε < 0
katY a < ε

at(X + kY )a < 0

This illustrates that for anyX ∈ PSDn any sufficiently small perturbation is also
in PSDn. Therefore,PSDn is open and its complimentPSDn is closed.

In the LP formulation, we requirex ∈ (R+)n. In the next section, we describe
semidefinite programs in which the cone(R+)n is replaced byPSDn. For now, we
concentrate on the algebraic properties ofPSDn.

Claim 1.4. For a symmetric matrixA, the following are equivalent

(i) A is PSD

(ii) the eigenvalues ofA are non-negative

(iii) A can be written asV tV (V is ann× n matrix)

Proof. To show(iii)→ (i), consider that, given(iii),

∀V ∈ Rn×n,∀x ∈ Rn,
xtAx = xtV tV x = ‖V x‖2

2
≥ 0

For (i) → (ii), let λ ∈ R be an eigenvalue ofA andx ∈ Rn the corresponding
eigenvector, such thatAx = λx. Then∀A ∈ PSDn,

λ‖x‖2
2

= xtλx = xtAx ≥ 0

To demonstrate(ii) → (iii), we employ the fact that ifA is ann × n symmetric
matrix, it has a decomposition
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A = U tDU

whereU andD aren×nmatrices,U is orthogonal,D is diagonal and the diagonal
elements ofD are the eigenvalues ofA. If all eigenvalues ofA are non-negative,√
D ∈ Rn×n, so

A = U tDU = (U t
√
D
t
)(
√
DU) = V tV

Remark 1.5. To sketch how we can decomposeA, we note that a symmetric matrix
is made diagonal using symmetric row and column operations. One row operation can
remove a term below the main diagonal while the symmetric column operation removes
the corresponding above-diagonal term.

 1 2 · · ·
2 7 · · ·
...

...
...

 R2 = R2 − 2R1

=⇒

 1 2 · · ·
0 3 · · ·
...

...
...

 C2 = C2 − 2C1

=⇒

 1 0 · · ·
0 3 · · ·
...

...
...


These row and column operations are equivalent to modifyingI left and right and

applying toA 
1 0 · · · 0
−2 1 · · · 0

...
...

... 0
0 0 0 1

A


1 −2 · · · 0
0 1 · · · 0
...

...
... 0

0 0 0 1



Remark 1.6. (i) → (iii) says thatA is PSD if and only if∃v1, . . . , vn ∈ Rn so that
aij = 〈vi, vj〉

A ∈ PSD ⇔ A = (V t)(V ) =

 −v1−
...

−vn−


 | |

v1 · · · vn
| |

 = (〈vi, vj〉)ij

So each elementaij encodes the dot product of a pair of vectors, andA as a whole
can be thought of as encoding the relationships among a set of vectors. Note thatV
is not unique. We can rotate or reflect the set of vectors without changing the inner
products.

Remark 1.7. For x ∈ (R+)n, all elements ofx are non-negative.X ∈ PSDn does
not place such a constraint on the individual elements. Instead, from(i) → (ii), we
see that the eigenvalues of the matrix as a whole are non-negative.
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Example 1.8. Some instances of PSD matricesA with the correspondingV andvi.

(i) Let a1, . . . , an ≥ 0,A = diag(a1, . . . , an)

A =

 a1 0
...

0 an

 V =


√
a1 0

...
0

√
an

 vi =



...
0√
ai
0
...


(ii)

A =
(

2 −1
−1 1

)
V =

(
1 −1
1 0

)
v1 =

(
1
1

)
v2 =

(
−1

0

)

1.3 Matrix Inner Product (Frobenius Inner Product)

We would like to view matrices as vectors when we apply linear constraints, and op-
timize linear functions on them. The matrix inner product is SDP’s counterpart to the
vector inner product in LP.

Definition 1.9. Thematrix inner productof A andB is

A •B =
∑
∀i,j

aijbij = trace(ABt)

Notice that ifA andB are thought of simply as reshaped vectors, this definition is
equivalent to the usual vector inner product.

2 Writing Semidefinite Programs

An Semidefinite Program(SDP) has the form

minC •X such that
Ai •X = bi, i = 1 . . .m
X � 0

whereX, C and eachAi aren × n matrices. Whereas in LP we hadn variables, in
SDP the objective, constraints and solution matrices haven2 elements. Note that we
may also write SDPs where the objective is to maximizeC • X. The last condition,
X � 0, is an order relation in which0 represents then× n zero matrix.X � 0 means
thatX ∈ PSDn.

X � B ⇔ B � X ⇔ (X −B) � 0⇔ ∀x ∈ Rn, xt(X −B)x ≥ 0

Next we study some examples of semidefinite programs.
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Example 2.1.X is n× n wheren = 3, and there arem = 2 constraints.

C =

 1 1 1
1 1 1
1 1 1

 A1 =

 1 0 1
0 0 7
1 7 0

 A2 =

 0 2 0
2 6 0
0 0 4

 b1 = 0
b2 = −2

Writing the problem more compactly in terms of the elements ofX = (xij), we have

min
∑
i,j xij

x11 + 2x13 + 14x23 = 0
4x12 + 6x22 + 4x33 = −2

X ∈ PSDn

Example 2.2. Given the following incomplete matrix, 5 ? ?
−3 4 ?

? ? ?


We want to complete to a PSD matrix while minimizing the sum of entries. Repre-

senting the solution matrix asX = (xij), we write

min
∑
i,j xij s.t.

x11 = 5, x21 = −3, x22 = 4
X ∈ PSDn

Expressed in matrix form,

min

 1 1 1
1 1 1
1 1 1

 •X s.t.

 1 0 0
0 0 0
0 0 0

 •X = 5,

 0 0 0
1 0 0
0 0 0

 •X = 3,

 0 0 0
0 1 0
0 0 0

 •X = 4

X � 0
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Observation 2.3. LP is a special case of SDP

It is enough to consider the standard form:

LP =⇒ SDP

min〈c, x〉 =⇒ min

 c1 0
...

0 cn

 •X
x hasn elements =⇒ ∀i 6= j,Xij = 0

(by inner product constraints)

i = 1 . . .m, 〈ai, x〉 = bi =⇒ i = 1 . . .m,


a

(1)
i 0

...

0 a
(n)
i

 •X = bi

While we would not normally choose to write an LP in this form due to its ineffi-
ciency, it is useful to keep in mind that SDP is an extension of LP. Unfortunately, as we
shall see later, not all the nice properties of LP are maintained in the extension.

Example 2.4. Suppose you have two sets of points inRn. P = {p1, . . . , pr}, and
Q = {q1, . . . , qs}. In Figure 1, points inP are represented by o’s and points inQ are
represented by x’s. We wish to find an ellipse, centred at the origin, that includes all
pi ∈ P and excludes allqi ∈ Q (where we allowqi to lie on the boundary). Recall that
an ellipse centred at the origin is{x|xtAx ≤ 1} for someA ∈ PSDn. Here we use
then× n matrixX ∈ PSDn to represent the ellipse,

∀pi ∈ P, ptiXpi ≤ 1
∀qi ∈ Q, qtiXqi ≥ 1 (1)

We write the ellipse constraints (1) as matrix inner products using,ptXp = (ppt) •X,
where(ppt) is the outer product (which also happens to be PSD). Finally, we add slack
variablesspi andsqi to transform each constraint into an equality.

∀pi ∈ P, ptiXpi ≤ 1 ⇔ (pipti) •X ≤ 1 ⇒ (pipti) •X + spi = 1

∀qi ∈ Q, qtiXqi ≥ 1 ⇔ (qiqti) •X ≥ 1 ⇒ (qiqti) •X − sqi = 1

We can incorporate the slack variables by writing the augmented matrixX ′ as a block-
diagonal

X ′ =

 X 0 0
0 SP 0
0 0 SQ

 SP =

 sP1 0
...

0 sPr

 SQ =

 sQ1 0
...

0 sQs


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Figure 1: An ellipse centred at the origin, separating two sets of points.

Figure 2: A feasible region bounded by an infinite family of linear constraints.

Then∀pi ∈ P we have a constraint in matrix form: pip
t
i 0 0

0 Ei 0
0 0 0

 •X ′ = 1

whereEi is ann × n matrix with zeros everywhere except theith position along the
diagonal which is one. Similar constraints may be written∀qi ∈ Q. Note that the final
conditionX ′ � 0 ensures simultaneously thatX � 0 and thatSP , SQ � 0. This in
turn ensures that all slack variables are non-negative.

Remark 2.5. In the example 2.4, we rewrote the PSD property in terms of the outer
product of a vector with itself and the matrix inner product,

X ∈ PSD ⇔ ∀a, atXa ≥ 0⇔ ∀a, (aat) •X ≥ 0

For a specific vector,a, the constraint(aat)•X ≥ 0 acts like a single LP constraint,
a hyperplane inRn×n. The constraint holds foranya ∈ Rn, soaat defines an infinite
family of linear constraints. Thus in a senseX satisfies infinite constraints, and the
region of feasible solutions to an SDP is bounded by an infinite set of hyperplanes, as
in Figure 2, for instance.
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3 Vector Programming

RecallX ∈ PSDn iff ∃v1, . . . , vn ∈ Rn s.t.xij = 〈vi, vj〉. That is, instead of finding
the best matrixX that satisfies a given set of constraints, we can think of finding an
optimal set of vectorsV = {v1, . . . , vn} with constraints on the vector inner products.

We write avector programas

min
∑
i,j cij〈vi, vj〉 s.t.

∀k = 1 . . .m
∑
i,j a

(k)
ij 〈vi, vj〉 = bk

v1, . . . , vn ∈ Rn

Observation 3.1. This is identical to an SDP, just written in a different form. It is clear
that a feasible solution here translates to a feasible SDP solution, byX = (xij) =
(〈vi, vj〉) and vice versa, withC = (cij) andAk = (akij).

Definition 3.2. A metricd onn points{1, . . . , n} is a functiondij s.t.

dij ≥ 0 (non-negative)
dij = dji (symmetry)
dii = 0

dij + djk ≥ dik (triangle inequality)

Note thatd can be represented as ann× n symmetric matrix.

Definition 3.3. A metricd onn points isEuclideanif

∃p1, . . . , pn ∈ Rn s.t.
‖pi − pj‖2 = dij

(2)

The set{p1, . . . , pn} is referred to as the Euclidean embedding ofd.

Observation 3.4. Not every metric is Euclidean.

Proof. Consider Figure 3, for instance. Suppose{pA, pB , pC , pD} is the Euclidean
embedding. Since

‖pA − pB‖2 + ‖pB − pC‖2 = dAB + dBC = dAC = ‖pA − pC‖2
pA, pB andpC must lie on a line withpB at the midpoint. Similarly,pA, pB and

pD must also lie on a line withpB at the midpoint. This collapsespC andpD, implying
‖(pc − pd)‖2 = 0. However, this is inconsistent withdCD = 2.

We relax (2) and define thecostof the embedding as the minimumc such that

∀i, j ∈ {1, . . . , n}, dij ≤ ‖pi − pj‖2 ≤ cdij
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Figure 3: An example of a metric on four points that is not Euclidean.

The inequalities are preserved when squaring all terms,

d2
ij ≤ ‖pi − pj‖22 ≤ c

2d2
ij

Using the connection between the Euclidean norm and inner product,

‖pi − pj‖22 = 〈pi − pj , pi − pj〉 = 〈pi, pi〉+ 〈pj , pj〉+ 2〈pi, pj〉

In other words, takingC = c2, we can formulate the problem of finding the minimum
cost embedding as a VP instance.

min C, s.t.∀i, j ∈ {1, . . . , n},
d2
ij ≤ 〈pi, pi〉+ 〈pj , pj〉 − 2〈pi, pj〉 ≤ Cd2

ij

Observation 3.5. We can’t hope to add a dimension constraint to the above, for exam-
ple to ask for the vectors to be of dimension 5. Vector programming with restrictions
on dimension is NP-hard.

Example 3.6. Consider the Vertex cover problem. Given a graphG = (V,E), find the
smallest set of verticesS ∈ V such that for all edges{i, j} ∈ E either vertexi ∈ S or
vj ∈ S (or both).

Suppose we have a VP in which the vectors are restricted to dimension one. We have
variablesxi for verticesi ∈ V , andx0 (an indicator value).

min
∑
i〈x0, xi〉

‖xi‖2 = 1
∀i, j ∈ E, 〈xi, x0〉+ 〈xj , x0〉 ≥ 0

xi ∈ R1

Claim 3.7. A solution to the above translates to an exact solution to vertex cover, where
S = {vi | xi = x0} and

∑
i〈x0, xi〉 = 2|S| − n.
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4 Duality in SDP

As in LP, we should think of the dual as a linear method that bounds the optimimum.
To boundC •X from below, we want to:

(i) Find coefficientsyi for each of them constraints

(ii) Guarantee that∀X � 0, it holds that

m∑
i=1

yiAi •X ≤ C •X (3)

Having done so, since
∑
yiAi =

∑
yibi, we get a lower bound on the objective

of the primal:C • X ≥ 〈y, b〉. What restrictions must we put ony so that (3) holds?
Rewrite (3) as

∀X � 0, (C −
m∑
i=1

yiAi) •X ≥ 0

In particular, forx ∈ Rn, we have thatxxt � 0 and soC −
∑
yiAi must satisfy

∀x ∈ Rn, (C −
∑

yiAi) • (xxt) = xt(C −
∑

yiAi)x ≥ 0

Therefore, to satisfy (3),(C −
∑
yiAi) must bePSD.

On the other hand, ifX � 0 then

X = V tV =
∑
i

wiw
t
i , whereV =

 −w1−
...

−wn−


That is, everyX � 0 can be represented as the non-negative sum of outer-products

and so, if(C −
∑m
i=1 yiAi) satisfies (3) for everyxxt, it satisfies it for everyX � 0.

Definition 4.1. LetK be a cone. Thedual coneK∗ is defined

K∗ = {y | 〈x, y〉 ≥ 0,∀x ∈ K}

In formulating the dual of LP, we use((R+)n)∗ = (R+)n. We now need to under-
stand the dual ofPSDn

Claim 4.2. PSD∗n = PSDn

We write the dual as

Primal Dual
minC ·X max〈y, b〉

i = 1 . . .m,Ai •X = bi
∑
yiAi − C � 0

X � 0 y ≶ 0

Note that the constraint
∑
yiAi − C � 0 is equivalent to

∑
yiAi � C.
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5 Differences between LP and SDP

Many of the “nice” LP properties do not carry over for SDP.

• The optimum cannot always be attained, even if the problem is bounded

• Even if the optimum can be attained, it may be irrational, and so can’t be solved
exactly on a finite machine

• There is no analogue in SDP for LP’s Basic Feasible Solutions (BFS)

• Therecan be a duality gap. See theorem 5.1, below. Strong duality does not
neccessarily hold.

• Implied by the above, there is no natural bound on the size of the solution in
terms of input size.

Theorem 5.1. If there is a feasible solutionX � 0 (all eigenvalues strictly positive)
withC−

∑
yiAi � 0 then both primal and dual attain optimum and they are the same.
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