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Summary: Inthis lecture, we introduce semidefinite programming (SDP).
We describe SDP as a generalization of linear programming (LP), and how
an LP and other problems can be written as an SDP. We present vector
programming (VP) as another form of SDP and discuss duality in the SDP
context. Finally, we note some important differences between LP and SDP.

1 Components of Semidefinite Programming

Today we go beyond LP into semidefinite programming (SDP). The development of
SDP was one of the major successes of the 1990’s. It is a special case of convex
optimization with many useful properties.

1.1 LP and Closed Cones

Recall that in standard form, and LP may be written as

min(c, x) such that
<U,i,$>:bi, t=1...m
x>0

If we defineK = (R*)" = {z|z > 0} then we can rewrite the last condition above
asx € K.

Definition 1.1. A setK € R" is aclosed conéf Vx,y € K andVa, 3 € R™

ar+ Py e K

andK is closed
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1.2 Positive Semidefinite Matrices

Definition 1.2. An n x n matrix X is positive semidefinitePSD) if

VYa € R",a'Xa >0

We can denote the set of all symmetrick n PSD matrices a®SD,,

PSD,, = {X|X is ann x n symmetric matrixX is PSD
Claim 1.3. PSD,, is a closed clone.
Proof. To see thatPSD,, is closed under positive addition, consider thdf,Y <
PSD,, andVa, 3 € Rt
a'(aX + fY)a = aa'Xa+ pa'Ya >0

To show thatP S D,, to be closed, it is sufficient to show that its complimé&iD,,
isopen. Forevenk € PSD, and anyY” € R™*™ (within finite elements), there exists
a € R™ ande, k > 0 sufficiently small that

atXa+e < 0
ka'Ya < ¢
d(X+kY)a < 0

This illustrates that for an)X € PSD,, any sufficiently small perturbation is also
in PSD,,. Therefore,PSD,, is open and its complimeiSD,, is closed. O

In the LP formulation, we require € (R*)". In the next section, we describe
semidefinite programs in which the cofie™)" is replaced byPSD,,. For now, we
concentrate on the algebraic propertiestD,,.

Claim 1.4. For a symmetric matrix4, the following are equivalent
(i) AisPSD
(i) the eigenvalues ofi are non-negative
(iii) A can be written a¥ 'V (V is ann x n matrix)
Proof. To show(iii) — (i), consider that, givefiii),

vV € R"*" vz € R",
Az = 2'ViVa = |Vzl2 >0

For (i) — (ii), let A € R be an eigenvalue ofl andxz € R™ the corresponding
eigenvector, such thatx = Az. ThenvA € PSD,,,

AMlz||? = 2'Az = 2" Az > 0

To demonstratéii) — (iii), we employ the fact that il is ann x n symmetric
matrix, it has a decomposition



A=U'DU

whereU andD aren x n matrices[U is orthogonal D is diagonal and the diagonal
elements ofD are the eigenvalues of. If all eigenvalues ofA are non-negative,
VD € R™*™, so

A=U'DU = (UVD)(VDU) = V'V
O

Remark 1.5. To sketch how we can decompode we note that a symmetric matrix

is made diagonal using symmetric row and column operations. One row operation can
remove a term below the main diagonal while the symmetric column operation removes
the corresponding above-diagonal term.

O =

1 2 ... 1 2 ...
2 7 ... R2:R2—2R1 0O 3 --- 02202—201

These row and column operations are equivalent to modifyiledt and right and
applying toA

1 0 0 1 -2 0

-2 1 0 0 1 0
) Al . :

: 0 : : 0

0 0 0 1 0 0 0 1

Remark 1.6. (i) — (iii) says thatd is PSD if and only if3vy, ..., v, € R™ so that
aij = (vi, V)

= | \
AePSD & A= (VH)(V) = : v v | = ((05,05))i

o J T

So each element;; encodes the dot product of a pair of vectors, anals a whole
can be thought of as encoding the relationships among a set of vectors. Noké that
is not unique. We can rotate or reflect the set of vectors without changing the inner
products.

Remark 1.7. Forz € (R*)", all elements of: are non-negativeX € PSD,, does
not place such a constraint on the individual elements. Instead, ffpm (i7), we
see that the eigenvalues of the matrix as a whole are non-negative.



Example 1.8. Some instances of PSD matricéswvith the corresponding” andv;.

() Letas,...,a, >0, A=diagai,...,a,)

a 0 Jar 0 0
A: . V: '.. V; = \/a
0 an 0 /anp 0

(ii)
2 -1 1 -1 1 —1
=(271) v=(17) = (1) ()
1.3 Matrix Inner Product (Frobenius Inner Product)

We would like to view matrices as vectors when we apply linear constraints, and op-
timize linear functions on them. The matrix inner product is SDP’s counterpart to the
vector inner product in LP.

Definition 1.9. Thematrix inner producof A andB is
AeB=> a;b;; =trac§AB")
Vi,j

Notice that if A and B are thought of simply as reshaped vectors, this definition is
equivalent to the usual vector inner product.

2 Writing Semidefinite Programs
An Semidefinite ProgrartSDP) has the form

minC e X such that
X >0

whereX, C' and eachd; aren x n matrices. Whereas in LP we hadvariables, in

SDP the objective, constraints and solution matrices hdvelements. Note that we
may also write SDPs where the objective is to maxintize X. The last condition,

X = 0, is an order relation in which represents the x n zero matrix.X = 0 means

thatX € PSD,,.

X-B&B=X&(X-B)=-0&sVzeR, (X -B)z>0

Next we study some examples of semidefinite programs.



Example 2.1. X isn x n wheren = 3, and there are: = 2 constraints.
1 1 1 1 0 1 0 2 0
C=|111) A=[007] A=[2¢60 b o— 9
111 170 00 4 2T
Writing the problem more compactly in terms of the elementX o (z;;), we have

min Z” Zij
211 + 2213 + 14293 = 0
4x19 + 6190 + 433 = —2
X e PSD,

Example 2.2. Given the following incomplete matrix,
5 7 7
-3 4 7
777
We want to complete to a PSD matrix while minimizing the sum of entries. Repre-
senting the solution matrix as = (x;;), we write

min ), sz S.t.
11 =9, To1 = —3, X2 =4
X e PSD,

Expressed in matrix form,

1 1 1
min 1 1 1 o X S.t.
1 1 1

o

e X =5, o X =4

S O =
o O O
o O O

—

(an)

(e

[ )

Il

VC»J
o O O
o = O

o



Observation 2.3. LP is a special case of SDP

It is enough to consider the standard form:

LP = SDP
C1 0
min(c, x) = min X
0 Cn
Vi#j,Xi; =0

v hasn elements — (by inner product constraints)

az(-l) 0

While we would not normally choose to write an LP in this form due to its ineffi-
ciency, it is useful to keep in mind that SDP is an extension of LP. Unfortunately, as we
shall see later, not all the nice properties of LP are maintained in the extension.

Example 2.4. Suppose you have two sets of pointskfi. P = {p;,...,p-}, and

Q ={q,-..,qs}. In Figure 1, points irP are represented by o’s and pointsdrare
represented by x’s. We wish to find an ellipse, centred at the origin, that includes all
p; € P and excludes al}; € Q (where we allowy; to lie on the boundary). Recall that

an ellipse centred at the origin {s:|z* Az < 1} for someA € PSD,,. Here we use
then x n matrix X € PSD,, to represent the ellipse,

Vp; € P,piXp; <1 1)
Vg € Q¢! X¢q; > 1

We write the ellipse constraints (1) as matrix inner products ugingp = (pp') e X,
where(pp') is the outer product (which also happens to be PSD). Finally, we add slack
variabless,, ands,, to transform each constraint into an equality.

Vp, € P,piXpi <1 & (pipl)eX <1 = (pipl)eX +sp =1

Vg € Q,¢!Xqi>1 & (qig))eX>1 = (qig})eX —s, =1

We can incorporate the slack variables by writing the augmented niatrass a block-
diagonal

0 Sp, 0 S0, 0
0 SP — SQ = .
So 0 Sp. 0 so.

X
X' = 0
0

0
Sp
0
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Figure 2: A feasible region bounded by an infinite family of linear constraints.

ThenVp; € P we have a constraint in matrix form:

pipt 0 0
0 E 0 |eX' =1
0 0 0

whereE; is ann x n matrix with zeros everywhere except tié position along the
diagonal which is one. Similar constraints may be writtep< Q. Note that the final
condition X’ > 0 ensures simultaneously that > 0 and thatSp, Sg = 0. This in
turn ensures that all slack variables are non-negative.

Remark 2.5. In the example 2.4, we rewrote the PSD property in terms of the outer
product of a vector with itself and the matrix inner product,

X € PSD < Va,a'Xa >0 < Va,(aa’) e X >0

For a specific vecton, the constrainfaa’)e X > 0 acts like a single LP constraint,
a hyperplane ifR™*". The constraint holds faanya € R", soaa® defines an infinite
family of linear constraints. Thus in a sen¥esatisfies infinite constraints, and the
region of feasible solutions to an SDP is bounded by an infinite set of hyperplanes, as
in Figure 2, for instance.



3 Vector Programming

RecallX € PSD, iff Jvq,...,v, € R” s.t.z;; = (v;,v;). Thatis, instead of finding
the best matrixX that satisfies a given set of constraints, we can think of finding an
optimal set of vector¥ = {vy, ..., v, } with constraints on the vector inner products.

We write avector programas

miny_, ;cii(vi,v;) St
Vek=1...m Zi,,j a§5)<vi,vj> = by
Viyeoo, Uy €R?
Observation 3.1. This is identical to an SDP, just written in a different form. Itis clear
that a feasible solution here translates to a feasible SDP solutiony by (x;;) =

({0, v;)) and vice versa, witl' = (c;;) and Ay, = (af;).

Definition 3.2. A metricd onn points{1,...,n} is a functiond;; s.t.
d;; > 0 (non-negative)
d;j = dj (symmetry)

dij +dji > di;  (triangle inequality)
Note thatd can be represented as#arx n symmetric matrix.
Definition 3.3. A metricd onn points isEuclideanif

dp1,...,pn € R" sSLL
) ) 2
Ips — oyl = diy @
The set{p1, ..., p,} is referred to as the Euclidean embedding of
Observation 3.4. Not every metric is Euclidean.

Proof. Consider Figure 3, for instance. Suppdse:,ps,pc,pp} is the Euclidean
embedding. Since

lpa —pBl, +llpB —PCll, = dap +dpc = dac = |lpa — pcll,

pa, pg andpc must lie on a line withpp at the midpoint. Similarlyp 4, pg and
pp must also lie on a line with g at the midpoint. This collapsesg: andpp, implying

ll(pc — pa)ll, = 0. However, this is inconsistent witfyp = 2.
O

We relax (2) and define theostof the embedding as the minimusrsuch that

VZ,] S {1, .. .,n},dij S ||pz 7ij2 § Cdij



Figure 3: An example of a metric on four points that is not Euclidean.

The inequalities are preserved when squaring all terms,

d?j <|pi —Pi”f < Czdfj

Using the connection between the Euclidean norm and inner product,

Ipi — pill2 = (pi — pj,pi — p;) = (Pirpi) + (pj, p;) + 2(pi, ;)

In other words, taking = ¢2, we can formulate the problem of finding the minimum
cost embedding as a VP instance.

minC, s.t.Vi,j € {1,...,n},
43 < pi,pi) + (pj,j) — 2(pi, pj) < Cd3;

Observation 3.5. We can't hope to add a dimension constraint to the above, for exam-
ple to ask for the vectors to be of dimension 5. Vector programming with restrictions
on dimension is NP-hard.

Example 3.6. Consider the Vertex cover problem. Given a gréapk: (V, E), find the
smallest set of verticeS € V' such that for all edge§i, j} € F either vertex € S or
v; € S (or both).

Suppose we have a VP in which the vectors are restricted to dimension one. We have
variablesz; for verticesi € V, andx (an indicator value).

minzi(xo,xi>
”szz =1
V’LL] € Ev <I‘i,.170> + <.Tj,170> >0
x; € R!

Claim 3.7. A solution to the above translates to an exact solution to vertex cover, where
S ={v; | z; = xo} and_ (zo, z;) = 2|S| — n.



4 Duality in SDP

As in LP, we should think of the dual as a linear method that bounds the optimimum.
To boundC e X from below, we want to:

(i) Find coefficientsy; for each of then constraints

(i) Guarantee thatX > 0, it holds that

ZyiAingc%X 3
i=1

Having done so, sinc®_ y; A; = > y;b;, we get a lower bound on the objective
of the primal:C ¢ X > (y,b). What restrictions must we put gnso that (3) holds?
Rewrite (3) as

VX = 0,(C =) yid) e X >0
i=1
In particular, forz € R", we have thatz! = 0 and soC — Y y; A; must satisfy
Ve e R", (C — ZylAl) o (za') = 2'(C — ZylAl)x >0

Therefore, to satisfy (3YC — >_ y;A;) must bePSD.
On the other hand, iK' > 0 then

—wy—
X =VV = Zwiwﬁ, whereV =
i —w, —

That is, everyX = 0 can be represented as the non-negative sum of outer-products
and so, if(C' — Y"1 | y; A;) satisfies (3) for everyz!, it satisfies it for everyX - 0.

Definition 4.1. Let K be a cone. Thdual coneK™* is defined
K*={y| (z,y) > 0,Vz € K}

In formulating the dual of LP, we ug¢R™)™)* = (R™)™. We now need to under-
stand the dual oPSD,,

Claim 4.2. PSD} = PSD,

We write the dual as

Primal Dual
minC - X max(y, b)
X>0 ysO0

Note that the constrait’ y; A; — C = 0is equivalent tdy_ y; 4; < C.
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5 Differences between LP and SDP

Many of the “nice” LP properties do not carry over for SDP.

The optimum cannot always be attained, even if the problem is bounded

Even if the optimum can be attained, it may be irrational, and so can't be solved
exactly on a finite machine

There is no analogue in SDP for LP’s Basic Feasible Solutions (BFS)

Therecan be a duality gap. See theorem 5.1, below. Strong duality does not
neccessarily hold.

Implied by the above, there is no natural bound on the size of the solution in
terms of input size.

Theorem 5.1. If there is a feasible solutioX > 0 (all eigenvalues strictly positive)
with C -3 y; A; > 0then both primal and dual attain optimum and they are the same.
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