
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 12: Semidefinite Programming(SDP)
Relaxation

Notes taken by Xinwei Gui

May 1, 2007

Summary: This lecture introduces the semidefinite programming(SDP)
relaxation. We begin with the MAX-CUT problem, where we present
some simple approximation algorithms first and then Goemans-Williamson
Maxcut algorithm. This is a randomized algorithm that makes use of SDP
relaxation. And it is proved to have an expected approximation factor of
0.878, which is much better than the other approaches. Next, we discuss
the graph coloring problem, where we present Wigderson’s Graph Color-
ing algorithm. Also, we introduce the vector programming approach for
3-colorable graphs there.

1 Introduction
The fact that Linear Programming can be solved in polynomial time and also has a rich
geometric theory makes LP a powerful unifying concept in the theory of algorithms.
Naturally, when we are looking for algorithms for an NP-hard combinatorial problem,
one possible approach is to express the problem as a zero-one integer program, relax
it to a linear program, solve the corresponding LP and round the solution back to the
IP. In this way, we hope to get a good approximation factor with regard to the original
integer problem. However, for some problems including MAX CUT, LP relaxation is
not as tight as we expected. And it is under this situation that SDP relaxation arises as
an alternative approach.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

(a) G is a bipartite graph (b) G = C5

Figure 1: instances of MAX CUT

2 MAX CUT

2.1 Definition
In the MAX CUT problem, given an undirected graph G, our goal is to find a subset
S ⊂ V (G) that maximizes the total weight of cross edges between S and its comple-
ment Sc. In the unweighted case, MAX CUT is defined formally as follows:

Input: undirected graph G

Output: a subset S ⊂ V (G) so that |cut(S)| is maximized, where cut(S) = {e ∈
E(G)| |e ∩ S| = 1}.

Note that MAX CUT can be thought of a variant of the 2-coloring problem in which
we try to maximize the number of edges consisting of two different colors instead.

Example 2.1. G is a complete graph Kn, where n is even. In this case, a set S of size
k has cut-size equal to k(n− k). So the size of the maximum cut is (n

2)2.

Example 2.2. G is a bipartite graph. Considering the bipartite graph in Figure 1(a).
Obviously, to achieve the maximum number of cross edges, we should group the left
vertices into one set and the right ones into the other. So the optimum solution is the
total number of edges in graph G.

Example 2.3. G is an odd cycle Cn. Again, this instance of MAX CUT is trivial. An
optimum solution takes every other vertex on the cycle, but has to accept two consec-
utive ones. Therefore, the maximum cut has n − 1 edges. Take C5 for example, the
optimum solution is shown in Figure 1(b), in which one set contains two vertices and
the other contains the rest three.

2.2 Simple Approximation Algorithms for MAX CUT
In [Hås97], Håstad showed that it is NP-hard to get an approximation ratio of 0.942
for the problem. But it is easy to get a 1

2 -approximation. To achieve that, we have the

2

following algorithms:

Algorithm 2.4 (Greedy Algorithm with an Approximation Ratio of 1
2).

Input: undirected graph G

Output: a subset S ⊂ V (G) with the maximum |cut(S)|

1. start with any cut(S) of graph G

2. if we can improve the number of edges in the cut by moving a vertex from the
cut to its complement or the other way around, we do so

3. repeat step 2 until no such a vertex exists

Claim 2.5. The size of the cut in termination is greater than or equal to 1
2 |OPT (G)|,

where |OPT (G)| denotes the maximum number of edges for all possible cuts.

Proof. The second step of the above algorithm is equivalent to:

we move a vertex to the other side iff there are more neighbors in its set than outside.

Each time we move a vertex, the size of the cut increases by at least 1. Since the
size of the cut is upper bounded by E(G), the algorithm must terminate at some time .
And when it terminates, any vertex should satisfy that the number of edges outside is
not less than that in its set. Thus, |cut(S)| ≥ 1

2 |E(G)| ≥ 1
2 |OPT (G)|.

Algorithm 2.6 (Randomized Algorithm with an Expected Approximation Ratio of 1
2).

Input: undirected graph G

Output: a subset S ⊂ V (G) with the maximum |cut(S)|

1. start with S = φ

2. for each vertex in the graph G, put it in S with a probability of 1
2

Claim 2.7. Regarding this randomized algorithm, the expected size of the cut in termi-
nation is greater than or equal to 1

2 |OPT (G)|, where |OPT (G)| denotes the maximum
number of edges for all possible cuts.

Proof. Based on the algorithm, we know that the probability of a vertex being in S is
1
2 . Therefore, given an edge e, if we denote pe as its probability of being a cross edge,
pe = 2× (1

2)2 = 1
2 . And consequently, E(|cut(S)|) = 1

2 |E(G)| ≥ 1
2 |OPT (G)|.

3

2.3 Using SDPs to Design Approximation Algorithms
Recall that the general form of a semidefinte program is: Find n×n PSD matrix X that
satisfies Ai • X = bi, for i = 1, 2, ...,m and minimizes C • X . In other words, SDP
consists of finding a set of n vectors v1, v2, ..., vn ∈ Rn such that the inner products
〈vi, vj〉 satisfy some given linear constraints and we minimize some linear function
of the inner products. In the following, we first formulate MAX CUT as an integer
quadratic program (IQP), and then relax it to a vector program which is equivalent to
Semidefinite Programming.

In IQP, we introduce the variables xi ∈ {−1, 1} for each vertex in graph G. xi = 1
denotes that vertex i ∈ S and xi = −1 means vertex i ∈ Sc. Thus, we formulate MAX
CUT as the following IQP:

max
∑

(i,j)∈E(G)

1− xixj

2

xi ∈ {−1, 1}

Because it is NP-hard to solve the above IQP, we relax it to the following vector
program:

max
∑

(i,j)∈E(G)

1− 〈vi, vj〉
2

‖vi‖n = 1
vi ∈ Rn

Note that the above vector program is indeed a relaxation of the IQP because its
objective function reduces to

∑
i,j∈E(G)

1−xixj

2 in the case of vectors lying in a one-
dimensional space.

Besides, the above vector program has a good geometric meaning. The vertices
of graph G can be viewed as points in a unit sphere. And locally, if two vertices
are connected by an edge, we are trying to make them far apart in the unit sphere.
Regarding the objective function in the relaxed program, the inner product 〈vi, vj〉 is
equal to -1 when two vertices i and j are of opposite polarities and equal to 1 when
two vertices lies on the same point in the sphere. In other words, if two vertices are of
opposite polarities, they contribute most to the objective function.

Obviously, the VP(or SDP) relaxation above is not exact. Consider the following
example.

Example 2.8. G is a cycle graph C3. In this case, the optimum solution for the IQP
is 2. However, the optimum solution for the relaxed SDP is 3 × 3

4 = 9
4 , as de-

scribed in Figure 2, where the angle between each pair of vectors is 2
3π. Note that

this is indeed the optimum solution because (v1 + v2 + v3)2 ≥ 0, from which we get
〈v1, v2〉+ 〈v1, v2〉+ 〈v2, v3〉 ≥ − 3

2 . And this means the objective function

∑
(i,j)∈E(G)

1− 〈vi, vj〉
2

=
3
2
− 1

2
(〈v1, v2〉+ 〈v1, v2〉+ 〈v2, v3〉) ≤

9
4

4

Figure 2: Optimum solution for the SDP relaxation given G = C3

In order to get an algorithm finding the maximum cut, we need to round the solution
back. In [GW95], Geomans and Williamson proposed a rounding procedure which
guaranteed an approximation factor of 0.878 and we’ll discuss it in the following.

2.4 Goemans-Williamson MAX CUT Algorithm
Algorithm 2.9 (Rounding Procedure).

1. Solve the relaxed vector program, obtaining an optimum set of vectors vi

2. Let r be a vector uniformly distributed in the unit sphere Sn−1. In other words,
r ∈ Rn, ‖r‖

n
= 1

3. Set S = {i|〈vi, r〉 ≥ 0}

Note that the vector r actually defines a hyperplane which separates the vertices.
See Figure 3 for better understanding. As to the question of picking such a vector r, we
can choose r such that:

r = (X1,X2,...,Xn)
‖(X1,X2,...,Xn)‖n

, Xi ∼ N(0, 1)1, for i = 1, ..., n

Obviously, this rounding procedure is invariant to rotation. This is reasonable be-
cause the relaxed vector program is invariant to rotation. Now, we’ll show that this
rounding procedure actually guarantees a large approximation factor, which is stated
in the following.

Lemma 2.10. Goemans-Williamson MAX CUT algorithm gives an expected approxi-
mation factor of 0.878.

To justify this lemma, we have the following claim.

Claim 2.11. Pr[(i, j) is seperated]2≥ α(1−〈vi,vj〉
2), where α = 0.878.

1Gaussian distribution
2Namely, Pr[|{i, j} ∩ S| = 1]

5

Figure 3: Goemans-Williamson MAX CUT algorithm

Figure 4: Lower bound for the approximation factor

Proof. Suppose θ is the angle between vi and vj , θ ∈ [0, π]. Then, the probability of
the edge (i, j) being separated is equal to θ

π . This is obvious in the 2-dimensional
space. And for an n-dimensional sphere where n > 2, it also holds because when we
project the separating vector r onto the 2-dimensional space defined by vi and vj , its
direction is still uniform. Therefore,

Pr[(i,j) is seperated)]
1−〈vi,vj〉

2

≥
θ
π

1−cos θ
2

= 2
π × θ

1−cos θ ≥ 0.878.

This lower bound is reached at point A in Figure 4, where we denote g(θ) = θ and
f(θ) = 1− cos θ.

In the following, we prove Lemma 2.10 based on Claim 2.11.

Proof. We denote Goemans-Williamson randomized algorithm as A(G), the optimum
solution of the original quadratic program as OPT (G) and the optimum solution of
the corresponding vector program as OPT ∗(G). Then, we have:

E[A(G)] =
∑

(i,j)∈E(G)

E[1|(i,j)∩S|=1] =
∑

(i,j)∈E(G)

Pr[(i, j) is seperated)]

which is greater or equal to

6

∑
(i,j)∈E(G)

α· 1− 〈vi, vj〉
2

= α·
∑

(i,j)∈E(G)

1− 〈vi, vj〉
2

= α·OPT ∗(G) ≥ α·OPT (G)

And the lemma follows.

By Lemma 2.10, we know that Goemans-Williamson randomized algorithm guar-
antees an expected rounding factor and thus an approximation factor of at least 0.878.
But is this tight? In other words, can the rounding and approximation factors be equal
to 0.878 for some instance? In [FS00], however, Feige and Schechtman have shown
that the integrality gap of the SDP relaxation above is 0.878, which indicates that there
exist some instances for which the rounding factor is actually 0.878.

Another question should be whether we can add some additional constraints to
improve the rounding and approximation factors. For example, we may add the triangle
inequality: (xi − xj) + (xj − xk) ≥ (xi − xk), which corresponds to ‖vi − vj‖2

n
+

‖vj − vk‖2
n
≥ ‖vi − vk‖2

n
in the relaxed SDP. Interested readers may refer to recent

work of Subhash A. Khot and Nisheeth K. Vishnoi3.

3 Graph Coloring
In Graph Coloring problem, our goal is to color all vertices of an undirected graph G
with as few colors as possible so that no edge in G is homochromatic. In the following,
we denote χ(G) as the minimum number of colors needed to color the graph.

Example 3.1. We look at three simple examples first.

• χ(Kn) = n, where Kn is a complete graph with n vertices

• χ(G) ≤ 2 if G is a bipartite graph

• χ(G) ≤ 4 if G is a planar graph

It is already known that approximating χ(G) within n
1
7−ε is NP-hard. Here, we

only focus on the cases when χ(G) = 3. And the question is how well a polynomial
algorithm can color the graph G. In [Wig83], Wigderson provided a polynomial algo-
rithm coloring a 3-colorable graph using O(

√
n) colors. Their algorithm mainly makes

use of two observations.

Observation 3.2. In a 3-colorable graph G, the neighborhoods of every vertex are
2-colorable.

Proof. Suppose by contradiction the neighbors of a vertex v can only be colored using
at least 3 colors. Then, we have to use one more different color for coloring v, which
shows that G is not 3-colorable.

Observation 3.3. If a graph G has degrees ≤ ∆, it can be colored using no more than
∆ + 1 colors.

3One good resource is http://www-static.cc.gatech.edu/ khot/publications.html

7

Figure 5: A solution of the vetor programmming with χ(G) = 3

Proof. This is obvious because the degree of any vertex vi ≤ ∆ and we always have
at least one different color while coloring vi.

Now, we show Wigderson’s coloring algorithm.

Algorithm 3.4 (Wigderson’s Graph Coloring Algorithm).

Input: undirected 3-colorable graph G

Output: a coloring method using O(
√

n) colors

1. as long as there is a vertex v of degree ≥
√

n, color its neighbors in two colors
and never use those colors again

2. color with ∆ ≤
√

n colors the rest of the graph

By simple analysis, we know that Wigderson’s coloring algorithm uses at most
2 n√

n
+
√

n = 3
√

n = O(
√

n) colors.
However, there are better algorithms. Let’s consider the following vector program-

ming for 3-colorable graphs. We just present the VP and prove a related claim here.
We’ll continue this problem in the next lecture.

〈vi, vj〉 ≤ − 1
2 , for any edge (i, j) ∈ E(G)
‖vi‖n = 1
vi ∈ Rn

Claim 3.5. The above vector program is feasible with regard to any 3-colorable graph
G.

Proof. Since χ(G) ≤ 3, we can divide the vertices of G into 3 sets V1, V2, V3, where
V1, V2, V3 are disjoint and no edges exist between vertices in the same set. Therefore,
as decribed in Figure 5 where the angles between the vectors are 2

3π, we can embed
the vertices in these three sets as the vectors v′1, v

′
2, v

′
3 respectively. Thus, we get a

solution with 〈vi, vj〉 equal to − 1
2 for all edges (i, j) ∈ E(G).

8

References
[FS00] U. Feige and G. Schechtman. On the optimality of the random hyperplane

rounding technique for MAX CUT. Technical report, Rehovot, Israel, 2000.

[GW95] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Program-
ming. J. Assoc. Comput. Mach., 42:1115–1145, 1995.

[Hås97] J. Håstad. Some optimal inapproximability results. In Proceedings of the
29th Annual ACM Symposium on Theory of Computing, 1997.

[Wig83] A. Wigderson. Improving the performance for approximate graph coloring.
Journal of the ACM, 30:729–735, 1983.

9

