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1 abstract

In order to study a finite metric space (X,d), one
often seeks first an approximation in the form of a met-
ric that is induced from a norm. The quality of such
an approrimation is quantified by the distortion of the
corresponding embedding, i.e., the Lipschitz constant of
the mapping.

We concentrate on embedding into Fuclidean spaces,
and introduce the notation co(X,d) - the least distor-
tion with which (X,d) may be embedded in any FEu-
clidean space.

It is known that if (X,d) has n points, then
e2(X,d) < O(logn) and the bound is tight.

Let T be a tree with n vertices, and d be the metric
induced by it. We show that co(T,d) < O(loglogn),
that s we provide an embedding f of T'’s vertices into
Fuclidean space, such that
d(z,y) < ||f(2) = f(y)|| < Cloglogn -d(z,y) for some
constant C'. This embedding can be computed effi-
ciently.

2 Introduction

There has been a growing interest in finite metric
spaces and their approximations. Such considerations
have proved useful in a number of graph algorithms
[13], in clustering [11] and most recently in online com-
putation [2, 3]. To study a given metric space, one seeks
first an approximate metric from a better-understood
class of metrics. Thus, approximations by /; metrics
are instrumental in the study of multicommodity flows
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[13], Euclidean metrics - in the study of approximate
graph algorithms (ibid.), and tree-metrics are the key
to recent progress in online computations [2, 3].

When one metric space is to be approximated by
another, the quality of the approximation is quantified
by the distortion of the corresponding embedding.

Definition 2.1: Let (X,d) and (Y,p) be metric
spaces, and f : X — Y a mapping. The ezpan-

sion of f is sup, ,cx ﬁﬂd(ﬁx%ﬂl. The shrinkage of f

IS SUP, yex % and the distortion of f is the
product of its expansion and its shrinkage. Il

If (X,d) is a finite metric space, we denote by ¢3(X)
the least distortion with which (X, d) may be embed-
ded in Euclidean space ly (of any dimension). The
analogous quantity for [; will be called ¢;.

How large can c2(X) be, if X has n points? This
is answered by the following theorem. The existen-
tial part is due to Bourgain [4] and the tightness is
from [13].

Theorem 2.2: If (X,d) is a metric space with n
points, then c2(X) < O(logn). The bound is tight.

In view of this theorem, it is interesting to study
the parameter ¢y for various families of finite metric
spaces and to understand when it is small or large. In
particular, we would like to study this question for met-
rics that are derived from (edge-weighted) trees (T, w).
The weights w, viewed as edge lengths, induce a metric
on T’s vertices. We are also interested in the restric-
tion of this metric to 71’s set of leaves. Metrics of the
latter type will be called leaf metrics. Aside from the
inherent mathematical interest in such metrics, we are
motivated by the following two algorithmic problems:

1. The interesting discovery [2, 3] that for every n-
point metric (X, d), there are tree metrics (75, d;)
where each d; dominates d, while O(log? n)-d dom-
Inates some convex combination of the d;. Aside
from the interesting algorithmic applications, this
fact assigns an important role to tree metrics
within the realm of finite metric spaces.



2. Phylogenetic trees are the major object of study

in computational evolutionary biology. These are
rooted trees which depict the evolution of species
from their ancestors. The leaves correspond to
all currently known organisms, and edge lengths
in the tree measure the time elapsed between the
occurrence of major mutations. There is much re-
search activity on algorithms for the construction
of such trees [12, 8]. The main problem is that it is
hard to gather reliable metrical information. Bi-
ological considerations do tell us many properties
of the desired tree, but these statements can be
made only to a certain degree of certainty, and are
often even self-contradictory. A major advantage
in having a metric space approximated by a subset
of a Euclidean space, is that we can conveniently
compute centroids of subsets. A centroid can serve
as a “typical member” of the subset, which is very
useful in applications (e.g. [10]). A similar prop-
erty pertaining to trees is fundamental for a re-
cent work by Chor and Graur which we describe
below. Chor and Graur [7] try to ‘guess’ the evo-
lutionary tree, given local biological information.
Specifically, they extract the following statement
for quadruples 53,55, S5, 54 of species:The com-
mon ancestor of S7,Ss and that of S3, S, are in-
comparable in the tree (such a statement is made
based on comparing the variants of a protein that
all four have). They seek a Euclidean represen-
tation that is as consistent as possible with this
information. They find such a representation as
a solution of a positive-semidefinite programming
problem. At this stage, they already have a met-
ric on all species, which is assumed to be the
evolutionary leaf metric. Under this assump-
tion, the tree can be recovered as follows: Detect
a pair of nearest leaves, regard them as siblings,
and continue recursively with their common par-
ent instead of themselves. The common parent
being located at their weighted centroid. If Eu-
clidean space were not a good enough host for
tree-metrics, this method would fail, since the or-
der between the distances is likely to be distorted.
Indeed, Chor and Graur’s method turns out nearly
to minimize the number of inconsistencies.

. It is known that ¢1(X) < O(logn) for every n-
point metric space X. As observed in [13], metrics
that embed well in [; are closely related to net-
works with a small maxflow/mincut gap in multi-
commodity flow. This prompts the quest for met-
ric spaces with ¢1(X) < o(logn). Specifically, it
has been suggested that ¢1(X) < O(1) for every
metric that is derived from a planar graph. In the

more restricted case of trees, clearly ¢; = 1 (Trees
embed isometrically into {;.) While we improve
significantly the upper bounds on c¢s for trees, we
do not know the answers for general planar graphs.
Observe also that by standard results in this area
c1(X) < e3(X) for every metric space X.

Theorem 2.3: There is an algorithm which on input
(X,d), an n-point tree metric or leaf metric, embeds X
in Fuclidean space with distortion < O(loglogn). The
algorithm runs in time O(n?).

The bound on distortion is nearly tight as we
presently indicate. A great deal of work on finite metric
spaces and their approximations was conducted in the
context of the local theory of Banach spaces [4, 5, 6].
Specifically, the result below was discovered in an at-
tempt to develop a metric theory of superreflexivity. *
Throughout the paper we will denote the number of
nodes of the tree by n, and the number of leaves by .

Let T, be the complete binary tree with n vertices
endowed with the graph metric.

Theorem 2.4: (Bourgain)

ea(Ty) = O(/loglogn).

Two comments are in order: the leaf metric of
T, can be embedded in Euclidean space isometrically
(distortion = 1). This is because this leaf metric is an
ultrametric
(Vz,y,z  d(z,y) < max(d(z,z),d(y,z))) which is
known to be a subfamily of the Euclidean metrics.
However, a slight modification yields:

Corollary 2.5: There are trees with | leaves whose leaf

metric A satisfies ca(A) > Q(+/loglog!).

To see this, hang a leaf off every vertex in 7;,, and
assign o(1) lengths to the additional edges.

3 Constructing the tree from the tree-
metric

To prove Theorem 2.3, we first find a tree whose
(leaf) metric equals the input metric. To this end, we
employ the algorithm from [8]. The runtime of this al-
gorithm is quadratic in {, the number of leaves (resp.
in n, the number of vertices). Note that we are allowed
to assume that the realizing tree has no vertices of de-
gree 2, since an internal vertex with degree two can
be deleted, and the remaining distances do not change.

IMany relevant aspects of finite metric spaces are surveyed in
the recent book [9]. See also [1] and the references therein.



There is a sizable literature on this and closely related
subjects. It is noteworthy, that in the application of
[7], this phase is irrelevant: rather, we use just the up-
per bound guarantee of the distortion that might be
needed when embedding trees to Eucledean space.

4 Constructing a good embedding

It will be convenient to designate some (arbitrary)
vertex r as the tree’s root. We denote by m(z, y) the set
of edges on the path that connects  and y. We also
introduce the convention that if F' is a set of edges,
then )" . w(e) is denoted by w(f").

With this notation, dr . (z,y) = w(w(z,y)).Denote
m(x,r) by m(x). The vertices of T' are partially ordered
“from the root” in the usual way: x > y if  lies on the
path from y to r. A path that joins two >-comparable
vertices is a monotone path.

An embedding of 7" into R™ is a map ¢ from V(T')
to IR™. Since we can translate an embedding by any
fixed vector in R™ without affecting its distortion, we
will restrict attention to embeddings that map the root
to the origin. It is convenient to represent such an
embedding by a map ¢ on edges: for an edge (u, v) with
v u, Y(u,v) = ¢(u) — ¢(v). Clearly, ¢ is determined
uniquely by ¥ via:

= > (e (1)

een(x)

To construct a good embedding for 7', we will de-
scribe a map ¢ on edges; our embedding will be the
map ¢ = ¢y given by (1). Now, for any embedding f
of a weighted graph G into any metric space M, the
maximum of dus(f(2z), f(y))/de(z,y) is attained when
x and y are adjacent, for if x = xg,x1,...,
shortest path from z to y in G then

du(f(2), f(y)  20s dm(f (i), f(zi41)) _
da(z,y) = dda(@i,ziy1)

Ay (f(2:), F(@i41))

da(zs, zig1)

T = yisa

max;
In terms of the map ¢, we have:

Proposition 4.1: The expansion of the map g is the

6’)Ilz

mazimum of ”¢ over all edges e of T'.

To motivate our construction, we describe a se-
quence of three choices for the function ¥, the last
being the one that attains the bounds in the theorem.

4.1 A simple construction.

A simple choice for ¥ maps F into the Eu-
clidean space RE (whose coordinates correspond to
T’s edges) under the map ¥(e) = w(e)d® where u°
is the unit vector corresponding to e. By Proposi-
tion 4.1, the expansion of the corresponding map ¢
is 1. To bound the shrinkage of ¢, note that for

any two vertices z,y, drw(z,y) = EeEW(Ly) w(e),
while ||¢(z) — o(y)||2 = ZeEﬂ'(l‘,y) w(e)?. The ratio

Ycen(oy) WE€)/\/2cen(a,y) w(€)* 1s maximized when
all of the w(e) are equal, and this leads to an upper
bound on the shrinkage, and also on the distortion, of
\/diam(T). This is in general much worse than the
distortion that will be achieved.

It is easy to show that the above construction is an
isometric (distance preserving) embedding of the tree
into R¥ under the /; norm. On the other hand, paths
are the only trees which embed isometrically into Eu-
clidean space: Say that a set S in a metric space is
collinear if every three points in it satisfy the triangle
inequality with equality. In Euclidean space, this defi-
nition coincides with the usual meaning of collinearity.
If T is not a path, let  be a vertex with three distinct
neighbors y1, y2, y3. Suppose ¢ is an isometric embed-
ding of 7" into some Euclidean space. Since the sets
{z,y1,y2} and {z,y1,ys} are collinear in T, their im-
ages under ¢ are collinear as well. This implies that the
whole set {¢(x), #(y1),é(y2), ¢(y3)} resides on a line,
whence the metric on {y1,y2,ys} is distorted by ¢.

What we can do, however, is to employ the next
mechanism: take a decomposition of the tree’s vertices
to relatively few simple parts that intersect in at most
one vertex, map each part isometrically, and “glue the
parts together” in an efficient way. This is just what
we do in the next two constructions.

4.2 An improved construction

We start this construction by partitioning the edges
of T into a collection P of monotone paths. The de-
scription of this partition is given below. For an edge
e, let P, = P.(P) denote the unique path of P contain-
ing e. We map F into R” | i.e., there is one coordinate
corresponding to each member of P € P and @’ is the
unit vector corresponding to this coordinate. We de-
fine the mapping v via: ¥(e) = w(e)dt. As before,
the corresponding embedding ¢, has expansion 1. To
bound the shrinkage, we first introduce some notation:

e The set of edges common to a path P € P and
to the path @ (x, y) between z and y is denoted by

wp(z,y).



o Ay, = Ay y(P) is the set of paths P € P that
meet the path between x and y. The cardinality
|Ag 4| is denoted 6 .

e For a vertex z, we index the paths in A, , as
PY%z), PY(z),..., P%=r1(z) according to the or-
der at which they are encountered in traversing
from z to r.

e For a vertex z, we write mp(z) for np(z,r), A, for

Az and 6 for 65 ..
e The maximum of §; (over all vertices z) is called

5= 6(P).

e Ifeisanedge, b, denotes €’s vertex that is farthest
from r. We write A, for A;, and &, for &, .

e The depth of P € P is the number of () € P that
are either P or that lie “above it” (this coincides
with é, for any e € P).

To bound the shrinkage, consider any two vertices
and y:

$(y) —o(x)= Y w(zp(z,y))i’

PeAg y

whence

l16(y) = ¢()]]

¢ S [w(np(s,y)?

Pedg,y

1
—= w(mp(z,y))

dT,w (I: y)

/O,y

Thus the distortion of this map is at most
maxy/ 0z 4, where the maximum is over all pairs of ver-
tices x,y. Since 6, y < 6z + Oy, the distortion does not
exceed 1/26(P).

Thus, in order to minimize the distortion, we seek a
partition P in which §(P) is small.

v

Lemma 4.2: Every rooted tree T with | = I(T') leaves,
has a partition P into monotone paths with 6(P) <
log,(2U(T) — 2). If the tree has no vertices of degree 2,
then such a partition can be computed in time O(1?).

Proof: By induction on |E(T)|. If T is a path, the
result is trivial. Henceforth we may assume |E(1T")| > 1
and {(T) > 2.

Let s be the vertex closest to the root r (possibly r
itself) having at least 2 children, and let sy, s3,..., 84

be the children of s. Let 7; be the tree rooted at s
consisting of s together with the subtree of T rooted
at s;. By the induction hypothesis, the edges of each
T; have a partition P; into monotone paths such that
6(P;) < log(2I(T:)  2).

In the case s = r we define the partition P =
UiP; of E(T) and we have §(P) = max;6(P;) <
max; log(21(T;) — 2) < log(2U(T') — 2).

When s # r, say that [(71) = max;{(T;). The par-
tition P of E(T) is obtained by the following modifi-
cation of U;P;: Let @ be the path of P; that contains
the vertex s. Replace @ by the path @’ that is the
concatenation of ) and the path from s to r. Now, for
any vertex v of T1, 8,(P) = 6,(P;1) and for ¢ > 1 and
any vertex v of T;, 8,(P) = 1+ 6,(P;). Hence

8(P) max{6(P1),1 + max;>26(P;)}
max{log(2!(71) — 2), max;>» log(41(1;) — 4)}

log(21(T) — 2).

INIA

The last inequality follows from {(T") — 1 = >_,(I(T;) —
1) > 2max;»»l(7;) — 2.

This argument readily translates to an algorithm.
We assume recursively that the procedure returns a
partition, the path that contains the root and the num-
ber of leaves.

The run time is easily seen to be only O(I?). Note
also that a slight extension of this procedure also asso-
ciates with every edge of T' the unique path of P that
contains it. This fact will be useful later. |l

Corollary 4.3: The construction just described has

distortion O(\/logl(T)).
4.3 The final construction.

The construction that achieves the bound of Theo-
rem 2.3 is a modification of the previous construction.
Recall that previously (e) was defined as w(e) times
the unit vector @<. In the modified version, ¥(e) will
be w(e) times a weighted sum of unit vectors @ where
P ranges over all paths in A,. More specifically, we fix
positive constants ag,ay, as,...,a5-1 (to be specified
later) and define:

fo—1
P(e) = wle) Z a; " ()
i=0
As before, the embedding ¢ is induced from

via (1).

The time complexity of this procedure is only O(1?).
All we need to do is perform a depth-first traver-
sal of the tree. In a constant number of operations
per node, we calculate ¢ from . TFinding (e) is



easy, since, as mentioned at the end of the proof for
Lemma 4.2, associated with e is the member of P that
contains it. Since, by assumption, there are no ver-
tices of degree 2 in 7', the run time does not exceed
O(|E(T)| - height(T)) < O(F).

Note here that if € and €’ are in the same member
of P, then ¥(e)/w(e) = ¥(e')/w(e'), since Pi(b,) =
Pi(b.). Consequently, the restriction of ¢ to any path
in P is indeed an isometry (times some constant).

We proceed to bound the expansion of this map. Let
a=(ag,as,as,...,a5-1).

Lemma 4.4: expansion(¢) < |lal|s.

Proof: By Proposition 4.1, it suffices to find out the
expansion of edges e. But

be—1 6—1

[6(e)ll2 = w(e)( Y a)F < w(e)(Y a?)t = w(e)||all.

i=0 =0
1
Next we bound the shrinkage.

Lemma 4.5: shrinkage(¢) < /2||b||2, where b is the
(unique) vector satisfying

j

Zaib]'_i =1 (2)

i=0

V0<j<é

We refer to the above condition as the convolution con-
dition.

Proof:
Let W = W; ; be the following é by é matrix
- aj—g lfj Z 1
Wi _{ 0 otherwise.
and let C(W) = SUP{”I;[&LlﬁQ sz e (RY)\ {0}}).

To prove Lemma 4.5 we first prove:
Claim 4.6: shrinkage(s) < /2C(W).

Proof:

We first check the shrinkage of the distance be-
tween >-comparable vertices, say v and its descen-
dant v’. The supports of both ¢(v) and ¢(v') are con-
tained in A,/. Ignoring some zero coordinates, we view
é(v') — ¢(v) as a §-dimensional vector, where the coor-
dinate corresponding to a path P € A, is enumerated
by P’th depth. The remaining highest é — 6, coordi-
nates are zero.

Let U(®"?) denote the projection onto Ay, (viewed
as a linear transformation from R” to RP).
Now, let y and z be the vectors in R’ defined by

Y = Z We
e € (v, V')
be =J

Zj = E We

e € w(v,v')
be = J+ Sy — 61}’,1}

In words, for each path P of depth jin Ay, y; =
w(mp(v,v")), and Z'is just § when we shift the indexing
of the coordinates by 6,/ — 6y 5.

By definition d(v',v) = ||§]]1 = [|Z]]1. Also, it is not
hard to see that the nonzero coordinates of ¢(v') — ¢(v)
are the same as the nonzero coordinates of Wy and so
ll8(v) = (v')[l2 = [[Wl|2. ,

Similarly the nonzero coordinates of U ¥)(¢(v') —
#(v)) are the same as the nonzero coordinates of W2

and so [UC*)(6(v') = ¢(v))l2 = [|W 2.

Therefore:
d(v',v) < d(v',v) _
l6(v') = ¢(v)ll2 = [[UC" ) (&(v") — 6(v))|l2
ety < OO

Note that the above not only shows d(v', v)/||¢(v')—
é(v)]|l2 < C(W), but also that the inequality remains
true even when we replace the denominator by the
length of the projection of ¢(v') — ¢(v) on the coor-
dinates in A,:,. We will use this in proving the claim
for a pair of >-incomparable vertices.

Let v’ ,v" be two >-incomparable vertices, and let v
be their lowest (farthest from the root) common ances-
tor.

Since the paths of P are monotone, the vectors
U9 (6(v)— (")) and U2 (¢(v") = d(v)) have dis-

joint supports, and are therefore perpendicular. Now

CW)?lle(v') — o(v")ll5 >

> CW) UM (6(v) — 6(v)) — U (G(v")
CW (U ) ($(v') — 6(v))]I3
+ CWIUE" I (6(0") = d())]I3)
> A, v) 4+ &2 v) > %dQ(‘U/, v'")
|

Thus to prove Lemma4.5 it suffices to show C(IW) <
[|6]]2, where b is the vector satisfying the convolution

— o())II3



condition (2). Let us first note that C'(W) is the small-
est C for which

1
e (W'W — EJ);B >0 holds for all z € (R)?

(where J is the all-1 matrix). The matrix M = W*'W
is clearly positive definite (W is nonsingular), so the
minimal C' for which this condition holds, is at most
0~ %, where 6 is the smallest positive number for which
M — 8] is singular.

We thus proceed to consider the equation det(M —
0J) = 0. Let A and B be two n x n matrices, and let
S be a subset of {1,2,...,n}. We denote by Ag(A, B)
the n x n matrix whose i-th column is either the -
th column of A or the i-th column of B according to
whether i ¢ S or ¢ € S. It is easy to see that

det(A+B)= >

SCq{1,2,...,n}

det(As(A, B)).

In the present case A = M and B = —#.J. Since B has
rank 1, the only contribution in the sum is due to S
such that |S| <1, i.e.,

é
det(M — 07) = detM + ) _ det(A gy (M, —0.))

i=1

Recall Cramer’s rule, that if () is a square nonsingu-
lar matrix, and Qz = y, then z; = detQ¥(y)/detQ,
where Q) (y) is the matrix attained by replacing the
i-th column of ) by y.

This implies that det(A; (M, —0J)) is just —0-det M -
(M~ 1);.

Summing it all up, we conclude:

det(M —0J) = det(M) — 6 -det(M) - 1" M~ 1=

det(M)(1—6-T° M~' 1)

and so 0 = (TtM_lf)_l is the only value for which
M — 8] is singular. It follows that

Co) = (3 MH*

Now

QoM = (M = W,
¥

But T*W ! is just the (unique) solution to the system
bW =1

In other words, b is the vector satisfying the convolu-
tion condition (2), as claimed. 1

Lemma 4.7: The vectors ap, = by = (2kk)2_2k with
k=0,1,...6 — 1 satisfy condition (2). Purthermore

llall2 = [[b]2 = ©((log 6)*).

Proof: Consider the generating function for the (in-
. . . _ oo 2kN -2k .k
finite) series (ak)i ie, f(z) =3 i, (k)Q z®. But
f(z) = (1 — )~ 2, which can be viewed either as an
identity in formal power series, or as the Taylor se-

ries of a real function in the range |z|] < 1. Thus
fHz)=(1—2)~' =372, 2" which means

J
V]ZO Eaibj—izl

i=0

and in particular, if we let a and b be the first é terms
of the infinite series (zkk)Q_Zk, then condition (2) will
hold. Now, since (2kk)2_2k = @(/{7—%), the I3 norm of a
and b is ©((log6)2). I

Proof: (of Theorem 2.3) Combining Lemmas 4.4, 4.5
and 4.7, we conclude that ezpansion(¢) = O((log 6)%)
and shrinkage(s) = O((log8)?), and so the distortion
of ¢ is O(logé) = O(loglog I(T)).

|

Our mapping essentially reduces to Bourgain’s em-
bedding for complete binary trees [5]. In that case,
the members of P are the individual edges. Bourgain’s
construction uses ay = k=% which asymptotically is
the same as the present choice. Bourgain’s result that
the distortion is only O(y/loglog!(T")) in this special
case, may be attained by noting that the only vectors
z that arise in claim 4.6 are vectors of 1-s followed by
0-s.

How large can ¢3(T") get for n-vertex trees? The an-
swer lies between +/loglogn (Bourgain’s lower bound
for complete binary trees) and our present loglogn
bound. We are still unable to close this gap.

Note added in proof: After the completion of this
work, we were informed that J. Matousek has proved a
tight bound for this problem. Namely, he showed that

e2(T) < O(y/loglogn) for every n-vertex tree T
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