Updates, View Maintenance and Time Management in Multidimensional
Databases

Alejandro A. Vaisman
avalsman@dc.uba.ar

Universidad de Buenos Aires

Copyright (¢) 2001 by Alejandro A. Vaisman
avalsman@dc.uba.ar

Universidad de Buenos Aires



ii

Abstract

Updates, View Maintenance and Time Management in Multidimensional Databases

Alejandro A. Vaisman
avalsman@dc.uba.ar

Universidad de Buenos Aires

2001

Usually, OLAP(On Line Analytical Processing) systems provide data visualization through a mul-
tidimensional data model according to which a data fact is viewed as a mapping from a point in a
space of dimensions into one or more spaces of measures. Moreover, dimensions are organized in
levels which conform a hierarchy, providing a way of defining different levels of data aggregation, a
central issue in data analysis. In a relational implementation of OLAP (usually called ROLAP), we
can think of facts as being stored in fact tables, while each dimension is described in a dimension
table. The industry solutions were built under the assumption that data in fact tables reflect the
dynamic aspect of the data warehouse, while data in dimension tables represent static information.
However, if we think of the data warehouse as a materialized view of data located in multiple
sources, it is usual to find situations in which the structure of these sources changes, a new source
is added, or an old one dropped. Any of these changes may require updates to the structure of
some dimensions. Further, as multidimensional views are designed according to requirements from
end users, a redefinition of the initial requirements may cause a dimension update.

In this thesis we argue that accounting for dimension updates is necessary in an OLAP tool
in order to avoid constantly rebuilding dimensions from scratch. Thus, we first characterize these
updates and study the view maintenance problem when they occur. We developed algorithms which,
taking advantage of the nature of the dimension updates, in some cases outperform well-known view
maintenance algorithms. We then propose an extension to the MDX language(a standard query
language for OLAP) and describe the implementation of TSOLAP, a multidimensional repository
which supports dimension updates and view maintenance, developed following the OLE DB for

OLAP standard. We discuss the experimental results of tests performed over a real-life case study,



il
a medical center in Buenos Aires.

In the second part of the thesis we embed our proposal in the temporal database framework,
introducing the Temporal Multidimensional Data Model, and a temporal query language for OLAP
which we called TOLAP. TOLAP allows expressing complex OLAP queries in an elegant and
declarative fashion. We discuss issues like syntax, semantics, safety and expressive power. We also
present an implementation including a graphic environment for temporal OLAP. Finally, we show

how the temporal approach can be applied to the case study mentioned above.



iv
Acknowledgements

This thesis would not have been possible without the help of many people. Although I have
tried not to forget anyone, I apologize in advance for any involuntary omission.

First of all I would like to thank my advisor, Prof. Alberto Mendelzon. I cannot think of
this thesis being finished without his guidance and help. I will always be thankful for the time he
devoted to my work, the invaluable advice he provided me with, and his patience with my mistakes.

I would also like to thank my counselor at the University of Buenos Aires, Prof. Irene Loiseau,
for encouraging me on my work, and for including me in the FOMEC project, which provided
funding for my staying in Toronto. Special thanks to Prof. Ken Sevcik at the University of Toronto
for his help during the course I took from him. Also thanks to my colleagues Prof. Juan M. Ale,
at the University of Buenos Aires, and Mauricio Minuto Espil.

I dedicate this thesis to my mother Berta, my father Manuel, and my sister Nora, for their
unconditional love and support.

I wish to thank my friends in Toronto, who made my staying in Canada more enjoyable: Patricia,
Gustavo, Flavio and Mariana, and my officemates Davood Rafiei, Attila Barta and George Mihaila.
I would especially like to thank Carlos Hurtado, with whom I shared a lot of valuable working time.

Special thanks my friends in Argentina: Daniel, Lidia, Jorge, Anabella, Ernesto and Cecilia.

Also thanks to Sergio Cymerman, Daniel Grippo, Walter Ruaro and Claudio Tirelli for their

collaboration with the implementations.



Contents

1 Introduction 1
1.1 OLAP and Materialized Views . . . ... .. ... . 2
1.1.1 OLAP . . o e 2
1.1.2  Materialized Views . . . . . . . . . . e 2

1.2 Multidimensional Modeling . . . . . ... .. .. 3
1.2.1 Fact Tables . . . . . . . . 3
1.2.2 Dimension Tables. . . . . . . . .. . 4
1.2.3 Dimension Hierarchies . . . . . . . .. ... . o 5

1.3 Data Cubes . . . . . . e 6
1.3.1 The Data Cube Operator . . . . . .. . . ... ... 6

1.3.2  Aggregate Functions . . . . . . . . ... o 8

1.3.3 Data Cube Maintenance . . . . . . . . . . . . .o 9

1.4 This Thesis . . . . . . o e 11
1.4.1 Our Approach . . . . . . . e 13
1.4.2  Thesis Organization . . . . . . .. ... . . 13

2 Multidimensional Updates and View Maintenance 15
2.1 Introduction . . . . . . . L 15
2.2 Multidimensional Model . . . . . .. .. oo 16
2.2.1 Dimensions and Fact Tables . . . . . .. . .. ... . 00 0oL 16
2.2.2 DataCubes . . . . . . .. e 19

2.3 Dimension Updates . . . . . . . . . . o 21
2.3.1 Structural Update Operators . . . . . . . . . ... .. 21
2.3.2 Instance Update Operators . . . . . . . . . . . o 25



CONTENTS

2.3.3 Complex Structural Update Operators . . . . . .. ... .. ... ... .. ..
2.4 Maintenance . . . . .. L. L e e e e e
2.4.1 Structural Updates . . . . . . . . .
2.4.2 Instance Updates . . . . . . . . . . . e
2.5 Complex Instance Update Operators . . . . . . . . . ... ... .. ... .. ...,
2.5.1 Reclassify . . . .. e
2.5.2  Split . ..
2.5.3 Merge. . . . e
2.5.4 Update. . . . . oo e e
2.6 SUMMATY . . . . . oL e e e e e e e e

3 Implementation of Dimension Updates

3.1 Mapping Dimensions to Relations . . . . . ... ... ... L oo 0.
3.1.1 Denormalized Relational Representation . . . . .. ... .. ... ... ....
3.1.2 Normalized Relational Representation . . . . ... ... .. ... ... ....

3.2 Denormalized vs. Normalized Representations . . . . . .. .. ... ... .. .....
3.2.1 Analytical Results . . . . . . ..
3.2.2 Description of the Study . . . . . . . ... o
3.2.3 Experimental Results . . . . . . .. ... o

3.3 OLEDB for OLAP and Multidimensional Expressions(MDX) . .. ... ... .. ..

3.4 MDDLX: an Extension to MDX . . . . . ... ... .. o
3.4.1 Architecture . . . . . ..
3.4.2 Data Structure . . . . . . . . L e e
3.4.3 Libraries . . . . . . L L e
3.4.4 Data Access . . . . . L L e
3.4.5 Adding Dimension Update Support to MDX . . . ... .. ... ... ....

3.5 Using TSOLAP . . . . . . e
3.5.1 Visualization: TSShow . . . . . . . . . . .

3.6 Conclusion . . . . . . . e

4 A Case Study: A Medical Data Warehouse
4.1 The Problem . . . . . . . e

vi

31
32
34
35
44
45
47
49
50
51

52
52
53
54
56
56
56
58
61
64
65
66
68
68
69
75
76
76

82



CONTENTS

4.2 What Can We Do with Dimension Updates? . . .. .. ... ... ... .......
4.3 Objectives and Description of the Experiments . . . . . . ... .. ... ... ....
4.3.1 Hardware . . . . . . .
4.4 Experimental Results . . . . . . . . ... L
4.5 Discussion and Summary . . . . . ... oL e e e e e e e
5 Temporal OLAP
5.1 Introduction . . . . . . . .
5.2 Previous Work . . . . . L
5.3 The Temporal Multidimensional Model . . . . ... ... ... ... ... ......
5.3.1 Temporal Dimensions . . . . . . . . .. . L e
5.4 Temporal Dimension Updates . . . . . . . ... ... .
5.4.1 Basic Temporal Structural Updates . . . .. ... ... ... ... .. ...,
5.4.2 Complex Temporal Structural Updates: TSpecialize . . .. ... ... .. ..
5.4.3 Basic Temporal Instance Updates . . . . . . . . .. ... ... .. ... ...
5.4.4 Complex Temporal Instance Updates . . . . . . .. ... .. ... ... .. ..
5.4.5 Temporal Multidimensional Model Revisited . . . ... .. ... ... .. ..
B.D Summary ... e e e e
6 TOLAP : Temporal OLAP Query Language
6.1 Introduction . . . . . . . . L
6.1.1 Our Proposal . . . . . . . . . e
6.1.2 Do We Need a Temporal OLAP Language? . . .. ... ... ... ......
6.2 Motivating Example . . . . . ... oo
6.3 TOLAP: A Temporal Multidimensional Query Language . . ... ... ... ....
6.3.1 TOLAP By Example . . . . . . . . ...
6.3.2 Data Warehouse Evolution in TOLAP . . . . . .. ... .. ... ... ....
6.3.3 TOLAP Programs . . . . . . . . o v v it e i e et e
6.4 TOLAP Syntax and Semantics . . . . . . ... ... .
6.4.1  Syntax . . . . . .. e e e e e
6.4.2 Semantics . . . . . . . L e e

6.4.3 Discussing Safety . . . . . . . ...

vii

84
86
88
88
94

95
95
97
98
98
103
104
107
109
110
113
114



CONTENTS

6.5 Expressive Power . . . . . . . L. e e e e
6.5.1 What Can Be Expressed in TOLAP? . . . . ... ... ... ... ...
6.5.2 Extending TOLAP . . . . . . . . . i

6.6 Summary . . ... Lo e e e

7 TOLAP Implementation
7.1 Relational Representation . . . . . . ... . .. .. o
7.1.1 Fixed Schema . . . . . . . . . L
7.1.2 Non-fixed Schema . . . . . . ... .
7.1.3 Fixed vs. Non-fixed Schemas . . . ... ... ... ... ... ... ..
7.2 Translating TOLAP into SQL. . . . . . . .. . . o
721 TOLAP Atoms . . . . . . . . e s s
722 TOLAP Rules . . . . . . . e
7.23 TOLAP Programs . . . . . . . . v v v v ittt e e i e e e e
7.2.4 Query Optimization . . . . . .. .. e
7.3 Implementation . . . . . . . . Lo
7.3.1 Implementation Tools . . . . .. . . ...
7.3.2 Architecture . . . . . .. L
7.3.3 Metadata . . . ... Lo
7.4 The Medical Clinic Case Study: a Temporal Approach . . . . .. .. ... ... ...
7.4.1 Goalsof the Study . . . . . . . . . ..
7.4.2 Data Preparation . . . . . . . ...
743 Queries . . .. e e e e
7.4.4 Hardware . . . . . . . L e
7.4.5 Discussion of Results . . . . . . . . ... L o
7.4.6 Visualization: a Walk-through . . ... ... ... ... .. ... .. ... ..
7.5 Summary ... e e e
8 Conclusion
8.1 Contributions . . . . . . ..
8.2 Future Work . . . . . o e

viii

131
131
132
134

135
135
135
136
136
138
138
140
141
141
142
142
143
143
144
144
145
147
148
148
151
154



CONTENTS

A MDDLX Operators for the Clinic Case Study
Al Testing sequence 1. . . . . . . L e e e e
A2 Testing sequence 2. . . . . . .. Lo e e e e

ix



List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3

A Star Schema for a retail data warehouse. . . . . . ... ... . oo L. 5
A Geography dimension . . . . . .. oL Lo e 6
Updated Geography dimension . . . . . . . . . . L L 12
(a) A dimension schema. (b) A dimension instance.. . . . ... .. ... ....... 17
(a)Schema after Generalization (b) Instance after Generalization. . . . . . ... ... 22
Dimension Product after Relate(Product,brand,category). . . . . . . . .. ... . ... 23
An example of DelLevel. . . . . . . . . .. 25
(a) Add Instance (b) Delete Instance. . . ... ... ... ... .. ... ... ... 26
All possible three-level dimensions. . . . . ... ... ... .. L. 31
(a) Schema after Specialization (b) Instance after Specialization. . . .. ... . ... 32
Dimension schemas for Example 11 . . . . . .. .. ..o o o oo 36
Refresh operator adapted from the summary-delta algorithm. . . . . .. ... .. .. 37
Maintenance expressions for instance updates. . . . . . .. ... .. o oL 38
A view lattice for the running example. . . . . . .. ... L Lo o oL 41
An optimized view lattice for the running example. . . . . .. .. .. ... ... ... 42
The plan generated for update Dellnstance(Product, [tem,i). . . . . . . .. . ... 44
Reclassification . . . . . . . . 0 L 45
Reclassification . . . . . . . . 0L 46
Split operator. . . . . .. L e e 48
Merge operator . . . . . .. L 50
Schema of a tested Dimension . . . . . . . . .. . L oo 58
Another testing dimension schema configuration . . ... ... .. ... ... .... 58
Results for Reclassify(1) . . .. . ... ... o 59



LIST OF FIGURES xi

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Results for Reclassify(2) . . ... ... .. o 59
Results for Reclassify(3) . . .. . ... ... 60
Results for Split on E - Configuration of Figure 3.1 . . . . . .. ... ... ... ... 60
Results for Split on D- Configuration of Figure 3.2 . . . . ... .. ... ... .... 60
Results for Split vs AddInstance/Dellnstanceon D . . . . .. ... ... ... .. .. 61
OLE DB for OLAP Architecture . . . . . . .. . ... . .. 62
CREATE CUBE statement in MDX . . . . . ... ... ... ... ... . ... .... 64
TSOLAP Architecture . . . . . . . . . . 65
System’s Catalog . . . . . . . . e 67
System’s Libraries . . . . . . . . L e 68
ODBC connection . . . . . . . . e e e 69
OLE DB connection . . . . . . . . . e e 70
A SELECT QUETY « « v v v e v e e e e e e e e e e e e e e e e 77
A GENERALIZE command . . . . . . . . . o v v vttt e e e 78
Connection Sequence . . . . . . . . . .o e e e e e 79
Execution steps . . . . . . . L L e e 79
Cube and Dimension information with TSShow . . . . . . . .. .. ... ... .. 80
Viewing instances with TSShow . . . . . . . . . ... . . .. 81
Case study: Dimensions Doctor and Time . . . . . . . .. ... .. 85
Case study: Dimensions Procedure and Patient . . . . .. ... .. ... ... .... 86
Data Sets . . . . . L e 87
Data cube creation time . . . . . . ... Lo 90
Performance results for Generalize(sequence 1) . . . . .. ... ... ... ... ... 90
Performance results for Generalize(sequence 1) . . . . . . ... ... ... ... ... 90
Performance results for Generalize(sequence 2) . . . . .. ... ... ... ... ... 91
Performance results for Generalize(sequence 2) . . . . .. ... ... ... ... ... 91
Performance results for DellLevel . . . . . . . . . .. . Lo 91
Performance results for Relate (sequence 1) . . . .. ... ... ... ... ...... 92
Performance results for Dellnstance. . . . . . . . .. ... 0 oo 92
Performance results for Generalize with no view materialization . . . . . ... .. .. 92
Full vs No Materialization . . . . . . . .. ... o o 93



LIST OF FIGURES xii

4.14 Data and Index disk space . . . . . . . . . L Lo L 93
4.15 Del Instance optimized vs. non-optimized . . . . . . ... ... ..o 93
5.1 A temporal dimension schema . . . . . .. ... . L L L L 0 o 100
5.2 A temporal dimension instance for Store. . . . . .. ... oo L0 101
5.3 A series of updates to dimension Product. . . . . . . ... ... ... 0. 102
5.4 A snapshot at fg. . . . . . . oL 102
5.5 Relating regions and provinces. . . . . . . ... L L o 105
5.6 A Temporal dimension before and after Specialization. . . . . . ... ... ... ... 108
5.7 Deleting level IdSalespersons at time 9. . . . . . . . .. ... ... L L. 108
5.8 (a)Temporal Add instance (b)Temporal Delete instance. . . . . ... ... ... ... 110
5.9 Temporal Reclassification . . . . . . ... . . 111
5.10 Temporal Split . . . . . . . . o 112
5.11 Temporal Merge . . . . . . . . . . e 114
6.1 Dimension Store for the running example . . . . .. ... ... ... .. ... ... 119
6.2 Dimension Product for the running example . . . . . ... ... .. ... ... 120
6.3 Data warehouse evolution . . . . . . ... L Lo 124
7.1 System’s architecture . . . . . . . . . L 143
7.2 Number of tuples in the temporal data warehouse tables . . . . . . . ... ... ... 145
7.3 Queries . . . . .. e e e 148
7.4 Query execution time . . . . . . .. oL e 149
7.5 Dimension updates execution time . . . . ... ... L L Lo oL 150
7.6 Dimension updates for dimension Patient, temporal and non-temporal . . . . . . .. 151
7.7 Translation of a TOLAP Rule with Negation . . . . ... ... .. ... ....... 152
7.8 Browsing dimension Patient (1) . . . . .. . .. .. ... . Lo 155
7.9 Browsing dimension Patient (2) . . . . . . . ... oo 156
7.10 Browsing dimension Patient (3) . . . . . . . .. ... .. o 157
7.11 Creating a new dimension . . . . . . . .. ... L o 158
7.12 Creating a new fact table . . . . . . ... ... L o 159
7.13 Describing a fact table . . . . . . .. .. L 160

7.14 Applying structural operators . . . . . . . . L L Lo 161



LIST OF FIGURES xiii

7.15 Attribute definition . . . . . . .. oL oL 162
7.16 Attribute instances . . . . . ... oL oL 163
7.17 Specialization of level doctorld . . . . . . . .. .. o 164
7.18 AddInstance operator . . . . . . . ..o L e 165

7.19 Merge operator . . . . . . . o o e e e e e e e e e e e 166



Chapter 1

Introduction

Since the late seventies, relational database technology has been gaining wide acceptance, to the
point that today most organizations rely on it to store their data. However, the needs of these
organizations are not the same as they used to be. Increasing market dynamics and competitiveness
are leading to the necessity to have the right information at the right time. Managers need to be
properly informed in order to take appropriate decisions for running businesses. On the other hand,
data possessed by such organizations are usually scattered among different systems, each one devised
for a particular kind of job. Traditional systems (usually called OLTP, for On Line Transactional
Processing) are not well - suited for these requirements, as they are oriented towards getting
the maximum number of transactions per second. As a consequence, new database technologies
have emerged in the last five years, namely Data Warehousing and OLAP(On Line Analytical
Processing). They involve architectures, algorithms, tools and techniques for bringing together data
from multiple databases or other information sources, into a single repository suited for querying
or analysis. This repository is called a Data Warehouse. Typical OLAP queries are concerned with
historical data, and involve the computation of aggregation and statistical functions. Examples of
these kinds of queries are: “Give me the total sales of toys in Christmas for each of the last five
years in California”, possibly followed by “Which were the four best-selling toys in the last five

Christmas in California?”.



CHAPTER 1. INTRODUCTION 2

1.1 OLAP and Materialized Views

1.1.1 OLAP

The OLAP Council White Paper [OLA97] states : “OLAP enables analysts, managers and ex-
ecutives to gain insight into data, through fast, consistent, interactive access to a wide variety of
possible views of information.” E.F. Codd defined twelve rules which should be accomplished by
an OLAP system [CCS93], considering characteristics such as data access, data definition, user re-
quirements and front-end accessibility. According to these rules, users should view data in the way
they view their business, data sources should be transparent to the user, and data manipulation
must be intuitive and graphic, among other desirable features.

OLAP systems provide data visualization through a multidimensional data model, according
to which, a data fact is viewed as a mapping from a point in a space of dimensions into one or
more spaces of measures. This multidimensional view of the data is orthogonal to how this data is
physically stored: data is perceived by the user as a multidimensional cube where each cell contains
a value or measure. According to the actual physical architecture, there are two mainstreams: RO-
LAP and MOLAP, standing for Relational and Multidimensional OLAP respectively. In ROLAP,
data is stored in relational databases, and an intermediate module translates them into a “cube”.

In MOLAP, data is stored in proprietary arrays, specifically conceived for dimensional analysis.

1.1.2 Materialized Views

A materialized view [GM99] is a view such that its tuples are stored in the database, improving
query performance, playing the role of a cache which can be directly accessed without looking into
the base relations. When the base data is updated, materialized views derived from that data also
need to be updated. This process is called view maintenance. Computing changes to a view in
response to changes to the base relations is called incremental view maintenance. This technique
avoids recomputing the whole view from scratch.

A view which can be maintained without addressing the base data is called self-maintainable
[GJM94]. A self-maintainable view can be maintained using only the materialized view and key

constraints(which are often available as system’s metadata). Formally:

Definition 1 A view V is self-maintainable with respect to a modification type (insert,delete, update)

to a base relation R if for all database states the view can be self-maintained in response to all mod-



CHAPTER 1. INTRODUCTION 3

ifications of the indicated type to the base relation R.
Two important results [GJM94], which we will not prove here, are :

e A SPJ (Select-Project-Join) view taking the join of two or more relations is not self-

maintainable with respect to insertions.

e A SPJ view is self-maintainable with respect to deletions in R if the key attributes from each
occurrence of R in the join are either included in the view, or equated to a constant in the

view definition.

When a view V is not self-maintainable in the terms of Definition 1, Quass et al [QGMW96]
showed that it is not always necessary to use the complete base relation to maintain such view. In
those cases, it is enough to define a set A of auziliary views which, along with the key and integrity
constraints, such that {V} U A is self-maintainable. Moreover, they define the notion of minimal
set of auxiliary views sufficient to maintain the view V.

The subject of materialized views is relevant to our work because a multidimensional database
suitable for OLAP involves different sorts of materialized views which pre-compute aggregates in
order to speed-up the complex queries often posed to the system. Incremental view maintenance in
OLAP has been extensively studied in several papers [LW95, GIM94, GHQ95a, Qua96, QGMW96,
GM99, Huy00].

1.2 Multidimensional Modeling

As queries submitted to Data Warehouses are of a different nature than the ones sent to an oper-
ational database, the data model supporting the repository should also be different. The Entity -
Relationship Model leads to a highly normalized database, which is not suitable for a Data Ware-
housing environment. Thus, a simpler model, denoted Star Schema [Kim96], is commonly used.
In this model, data is organized in two kinds of tables : (a) fact tables, which store facts like
sales or telephone calls;(b) dimension tables, which store data about dimensions (like Customers

or Products) through which users analyze facts.

1.2.1 Fact Tables

The main goal in fact table design is to get the smallest possible table without losing information.

Fact table characteristics are:



CHAPTER 1. INTRODUCTION 4

e They capture the interesting elementary transactions of the business in question.
e They are defined over a data retention period(time window for analysis).

e They define the fact granularity. For example, if we do not need to record every transaction,
some aggregation must be performed when populating the fact table, storing the daily sales

of each product, not every sale made.

e Some facts may not be added across every dimension. For example, it would be usually

incorrect to add account balances across time. These facts are called semi-additive.

e lact tables are usually in Boyce-Codd Normal Form [UlI88].
Examples of fact table schemas are :

e Sales(productld, storeld, timeld, qty)
o T'Vwatching(customerld, channelld, timeld, duration)

e Balances(customerld, accountNumber, month, amount)

In the first example, the fact table Sales stores a record for each sale of a product iden-
tified by productld occurred in store storeld on instant timeld. Analogously, a tuple <
1221,CNN,12/12/2000 3pm,1 > in fact table T'Vwatching means that customer number 1221
was watching CNN on December 12th, from 3PM to 4PM.

The terms gty, duration, and amount are the measures of the fact table. The other terms are
foreign keys referencing attributes in the dimension tables (see below). In a multidimensional view

of the data, the measure is the value stored in each cell of the cube.

1.2.2 Dimension Tables

The components of the fact tables described above are the foreign keys of the dimension tables
which store the characteristics of the objects represented by such keys. For instance, in the second
example of Section 1.2.1, productld is a foreign key referencing a dimension table Product with
a possible schema: (productld, description, category , brand, company) storing information about
different products. Dimension tables represent the axes of the multidimensional cube. Although

dimension tables are usually designed as 1IF'N relations, when dealing with large dimensions some



CHAPTER 1. INTRODUCTION
storeKey timeKey
address day
name week
class month
year
holiday
productK ey
storeKey
customerKey
: productKey
timeKey description
customerKey geographyKey category
name units brand
address discount company
type
age
ageRange
geographyKey
province
state
country
region

Figure 1.1: A Star Schema for a retail data warehouse.

authors [Sta96] recommend to normalize such tables, in order to reduce the storage cost. This leads
to the Snowflake Schema [Kim96].
Figure 1.1 shows an example of a Star Schema for a retail data warehouse, with five dimension

tables related to a single fact table.

1.2.3 Dimension Hierarchies

In multidimensional modeling, dimensions are usually organized in levels conforming a hierarchy,
providing a way of defining different levels of data aggregation. Several models have already been
presented [GL96, LW96, AGS*96], and the importance of hierarchies in dimensional modeling
has been extensively remarked [JI.S99]. In the present work we follow the work of Cabibbo and
Torlone [CT97], where dimensions are modeled explicitly through a hierarchy graph and the so-
called rollup functions.

Let us introduce the following example illustrating dimension hierarchies. Suppose we have data
about policies sold by an insurance company. We may have different kinds of measures (v.g. policies
sold, claims information), which can be analyzed through different dimensions as kinds of coverage,

customers, salespersons or geographic regions. Let us assume the “Geography” dimension to be



CHAPTER 1. INTRODUCTION 6

Al /a'\
Canada  Argentina
country /)&\
\ Eat Cuyo Ontario San Juan Mendoza
region province W /
city Toronto  SanJuan City  San Rafael

Figure 1.2: A Geography dimension

the one in Figure 1.1 (without the “geographyKey” attribute). The dimension’s hierarchy could be
organized as depicted in Figure 1.2. This figure shows what this classification looks like for three
Argentinian and Canadian cities. The hierarchy in Figure 1.2 means that the following functional
dependencies hold: {city — region, city — province, province — country, region — country}. In

Chapter 2 we will address dimension modeling in depth.

1.3 Data Cubes

Queries to a data warehouse may take a long time to complete due to their complexity and the size
of the repository. In order to keep response time within acceptable boundaries, some techniques

were developed, mainly making use of view materialization.

1.3.1 The Data Cube Operator

OLAP provides operations allowing users to navigate through data. The most typical ones are roll-
up and drill-down. Roll-up aggregates data at coarser levels while drill-down shows data at finer
levels. For instance, let us suppose a data warehouse with three dimensions, Product, Geography
and Time, and a fact table RegionSales as follows: RegionSales(productld, city, month, sales).
Here, “sales” is the measure of the fact table.

A typical user will probably want to view data aggregated by productld(roll-up operation),

and then refine the analysis finding out the monthly sales of each product(drill-down operation).



CHAPTER 1. INTRODUCTION 7

Moreover, aggregates like moving averages or rating are common in OLAP. The GROUP BY operator
provided by SQL brings little support to the former operations. Thus, a new operator, called DATA
CUBE was introduced [GBLP97].

Gray et al define the Data Cube Operator as follows [GBLP97]: Given a fact table I with N
dimensions, and an aggregate function f, the Data Cube Operator builds a table with all possible
aggregations over the dimensions in F. The total aggregate is represented by the tuple:

< ALL,ALL,ALL,..,ALL,f(*) >

In order to compute the CUBE operator, the power set of the aggregation columns must be
generated. The table is built taking the union of the 2V aggregations. If each attribute in the fact
table has cardinality Cj, the cardinality of the cube will be given by [](C; + 1).

A data cube for the former data warehouse (and an aggregate function f = SUM) would be

calculated with the following SQL statements :

SELECT productId, city, ‘‘All’’, sum(sales)
FROM RegionSales
GROUP BY productId, city

UNION

SELECT productId, ‘‘All’’, ¢‘ALL’’, sum(Sales)
FROM RegionSales
GROUP BY poductId

UNION

SELECT ‘‘All1’°’, city, ‘‘ALL’’, sum(sales)
FROM RegionSales
GROUP BY city

UNION

UNION
SELECT ‘‘Al11°°, €‘Al11°’, ¢“ALL’’, sum(sales)

FROM RegionSales



CHAPTER 1. INTRODUCTION 8

1.3.2 Aggregate Functions

We will review some basics about aggregate functions, because they will play a central role in
the present work. Gray et al [GBLP97] divide aggregate functions in three classes: distributive,

algebraic and holistic.
Definition 2 Consider aggregating a two-dimensional set of values, {X; |t =1,...,1;7=1,...,J}.

e Distributive : An aggregate function F'() is distributive if there is a function G() such that
FUXi)) = GUPEXigli = 1,0 T = 1,0, ).
This definition means that distributive functions can be computed partitioning their input
into disjoint sets. Fxamples of distributive functions are COUNT, SUM, MAX, MIN. For all
of them but COUNT, FF = G holds. However, if the statement DISTINCT is used, like in
COUNT(DISTINCT), these functions are not distributive. For instance, if we have the set
(8,3,5,8,3,3,4,4,7), and I’ =SUM, partitioning this set into (3,3,4), (5,8,4), (7,3,8), returns
a COUNT(DISTINCT) of 8 (obtained by adding the results from applying COUNT(DISTINCT) to

each subset), while there are only five different values in the set.

e algebraic : An aggregate function F'() is algebraic if there is an M —tuple valued function

G(), and a function H() such that
This definition means that algebraic aggregate functions can be expressed as a scalar function

of distributive aggregate functions. The average function AVG is an example, where AVG =

SUM() /COUNT() .

e holistic : An aggregate function is holistic if there is no constant bound on the size of the
storage needed to describe a sub-aggregate. In other words, there is no constant M such
that an M-tuple characterizes the computation F({X; ;|i = 1,...I}). Thus, holistic functions

cannot be computed by dividing into parts. Median is an example of this kind of function.

Definition 3 A set of aggregate functions is self-maintainable if the new value of the function can
be computed solely from the old values and from the changes to the base data. Aggregate functions

can be self-maintainable with respect to insertions, deletions, or both.

Some results on maintenance of aggregate functions are [MQM97]:



CHAPTER 1. INTRODUCTION 9

Aggregate functions must be distributive in order to be self-maintainable.

e All distributive aggregate functions are self-maintainable with respect to insertions, but not

to deletions.

The function COUNT(*) can help to make certain aggregate functions self-maintainable with
respect to deletions, by helping to determine when all tuples in a group have been deleted

(see Subsection 1.3.3).

e MAX and MIN are not, and cannot be made, self-maintainable with respect to deletions.

1.3.3 Data Cube Maintenance

A data warehouse will often store a number of materialized views that aggregate data in the
fact table, possibly joining this data with one or more dimension tables. In a data warehousing
environment, these views are called called summary tables. Thus, maintaining a data warehouse
becomes a special case of the problem of view maintenance. The problem can be characterized in

the following way:

1. As data at the sources is added or updated, the summary tables which depend on these data
must be also updated. Two options arise : to recompute the summary tables from scratch or

to apply incremental view maintenance techniques to avoid such recomputation.

2. While summary tables are maintained, they remain unavailable to the data warehouse users.

Thus, the time required for updates must be minimized.

Several works present different solutions [Huy00, MQM97, QW97, LW95, ZGMHW95]. Mumick
et al [MQM97] introduced one of the best-known algorithms for efficiently maintaining summary
tables in a data warehouse . Thus, we will focus on this algorithm, and in Chapter 2 we will present
a variation that improves it in the presence of updates to dimension tables. Another approach,
the 2VNL algorithm [LW95], addresses the second problem above, maintaining two versions of the
data warehouse in order to have it available 24 hours a day and 365 days a year.

The algorithm developed by Mumick et al, denoted summary-delta algorithm applies to dis-
tributive aggregate functions.

The summary-delta algorithm has two main phases, the propagate phase, and the refresh phase.

The idea is to create a summary-delta table in which the net changes to the summary table due to



CHAPTER 1. INTRODUCTION 10

changes in the source data are stored. This is performed in the propagate phase. Then, during the
refresh phase, these changes are applied to the summary table.
Let us suppose a fact table Sales(storeld,itemld, date, qty, price), and two dimension tables
Stores(storeld, city, region), and Items(itemlId, name, category) MQM97].
Let us consider the view STDsales defined as follows:
CREATE VIEW SIDsales AS
SELECT storeld,itemId,date,COUNT(*) AS TotalCount,sum(qty) AS Totalqty
FROM Sales
GROUP BY storeld,itemId,date
COUNT(*) is added in order to make the function SUM() self-maintainable with respect to dele-
tions(for instance, if COUNT (%) reaches 0, there is no other tuple in the group, so the group can be
deleted).

Let SalesIns and SalesDel be tables storing insertions and deletions to the source data. In
the propagate phase, a new table(view) is created, where the net changes to the summary tables
are stored. This is the aforementioned summary-delta table(in what follows, prefixed as sd).

CREATE VIEW sdSIDsales (storeld,itemId,date,sdcount,sdqty) AS

SELECT storeld,itemId,date,SUM(_count) AS sdcount,SUM(_gty) AS sdqty

FROM
(( SELECT storeld,itemlId,date,l as _count, qty AS _qty
FROM SalesIns)
UNION ALL
(SELECT storeld,itemId,date,-1 as _count,-qty AS _qty
FROM SalesDel))

GROUP BY storeld,itemId,date

During the refresh phase, the net changes, stored in the summary delta table, are applied to
the summary table itself. The only case in which base data must be accessed is when MAX and MIN

aggregate functions are involved and a deletion occurs. The refresh algorithm is described below :



CHAPTER 1. INTRODUCTION 11

For each tuple t in sdSIDsales do
if not exists
(SELECT * FROM SIDsales d
WHERE t.storeld = d.storeld AND
t.itemId = d.itemId AND t.date = d.date)
then insert t into SIDsales
else
(if t.sdcount + d.TotalCount = 0)
then delete t from SIDsales
else
d.TotalCount+= t.sdcount
d.Totalqty+= t.sdqty)

It should be remarked that if the aggregate function is MAX or MIN, the refresh algorithm
recomputes the aggregates from the base data, unless t is deleted or not found, in which case no
lookup into the raw data is required.

The main advantage of this approach is that propagate can be run without reducing warehouse
availability. Only the refresh phase must occur within the updating window. Further details on

the algorithm can be found in the original paper [MQM97].

1.4 This Thesis

As we explained in Section 1.2, in a relational implementation of OLAP(ROLAP) we can think
of facts as being stored in fact tables, while each dimension is described in a dimension table. A
common assumption is that data in fact tables reflect the dynamic aspect of the data warehouse,
while data in dimension tables represent static information. Furthermore, a data warehouse could
be regarded as a materialized view of data located in multiple sources [Wid95]. Thus, it is not
difficult to imagine a situation in which the structure of these sources changes, a new source is
added, or an old one dropped. Any of these changes may require updates to the structure of some
dimensions. Moreover, as multidimensional views are designed according to requirements from end
users (a point highly emphasized in many industrial white papers [Inf96, Pil96]), a redefinition of
the initial requirements may cause a dimension update. For instance, in Figure 1.2, regions are

defined within the same country. A business decision may relax this constraint, allowing regions



CHAPTER 1. INTRODUCTION 12

Al d
\ Canada Argentina
country

region Eat Cuo

\ Ontgrio Cordoba Mendoza
province

ay Toronto San Juan City San Rafael

Figure 1.3: Updated Geography dimension

to be spread across different countries. This may be represented in the lattice of Figure 1.2 by
deleting the edge joining the region and country levels, and adding a new edge from region to the
distinguished level All. Figure 1.3 shows the resulting dimension. Additionally, new salespersons
may be hired or fired, new kinds of coverage introduced or discontinued, regions may be reorganized,

merged or split, etc.

There is, then, a wide range of possible dimension updates, which the existing models fail to
capture. Kimball analyzes this problem [Kim96] to some degree, giving rise to the concept of slowly
changing dimensions, partially covering updates to dimension instances. Algorithms that perform
view maintenance, like the Summary-Delta method, focus on updates to fact tables, and must be

modified in order to be efficiently applied when a dimension update occurs.

Let us consider again the Geography dimension of figures 1.2 and 1.3. A user may be interested
in querying the multidimensional database as of the instant depicted in Figure 1.2. Moreover,
since the schemas of the fact tables are composed of attributes from associated dimensions, certain
updates may trigger schema evolution over such fact tables. Suppose we wish to collect data at
a granularity level finer than city, for instance neighborhood. Any fact table associated with the
Geography dimension would require its schema to be updated. We argue in this thesis that in an
evolving scenario like this, OLAP systems need temporal features to keep track of the different

states of a data warehouse throughout its lifespan.



CHAPTER 1. INTRODUCTION 13

1.4.1 Our Approach

We believe it is clear that dimension updates must be addressed by multidimensional models. Our

proposal develops in incremental steps as follows:

e we present a complete characterization of the possible dimension updates in a multidimen-

sional model, and define a collection of operators which perform them.

e We study the effect of these updates over a class of materialized views over the dimension
levels, and give algorithms for efficiently maintaining those views, which turn out to be more
efficient than the well-known summary-delta method when dealing with dimension updates.
We also present an implementation of the model, which extends Microsoft’s MDX proposal

[Mic98], and apply it to a real-life case study (a medical center in Buenos Aires).

e We then introduce a temporal multidimensional data model and a temporal query language
supporting it, which we called TOLAP (Temporal OLAP), combining some of the temporal
features of query languages like TSQL2 or SQL/TP [Sno95, Tom97] with some of the high-
order features of languages like HiLog or Schemal.og [CKW89, .SS93, L.SS97].

e Iinally, we present an implementation of the temporal model on top of an ORACLE database.

We also analyze the medical center case study using the temporal approach.

1.4.2 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 introduces a multidimensional model which accounts for dimension updates. We
present the set of update operators, as well as algorithms for incrementally updating the data cube.

In Chapter 3 we present a relational implementation of the model discussed in Chapter 2, ex-
tending the MDX language developed by Microsoft. We discuss different representation alternatives,
and describe the implementation of a multidimensional data provider which we called TSOLAP,
built using the OLEDB for OLAP standard. In Chapter 4 we present experimental results through
a case study in which we used real medical data taken from a health-care center in Argentina.

Chapter 5 discusses the need for a temporal model for OLAP. We argue that in the presence
of dimension updates which trigger changes on the granularity of the facts, a temporal model
supporting schema evolution is required. We discuss existing temporal data models and show that

they are not suitable for these requirements, and extend the model presented in Chapter 2.



CHAPTER 1. INTRODUCTION 14

In Chapter 6 we introduce a temporal query language called TOL AP supporting the temporal
model. Chapter 7 shows an implementation of the model we present in Chapter 5. A major
feature of this implementation is a visualizer allowing schema and instance browsing across time.
A TOLAP implementation is described, and experimental results are presented using the medical
center case study we introduced in Chapter 3.

Finally, in Chapter 8 we summarize the dissertation, highlighting our contributions and dis-

cussing possible future research directions.



Chapter 2

Multidimensional Updates and View

Maintenance

2.1 Introduction

Dimensions represent the framework within which factual data is summarized for analysis. There-
fore, changes in analysis requirements and/or in the structure of the data sources almost always
imply changes in the dimensions of the model. In Chapter 1 we showed that these changes are not
limited to the addition or deletion of tuples, but they may also involve the hierarchical structure
according to which dimensions are organized. All these kinds of dimension updates are poorly
supported (or not supported at all) in current commercial systems. In this chapter we introduce
the concept of dimension update, and propose a framework for its analysis. We also present a set
of operators performing structural and instance updates over dimensions, and algorithms for data
cube maintenance in a ROLAP environment.

We commented in Chapter 1 that Mumick et al [MQM97] proposed the summary-delta algo-
rithm for incremental maintenance of a set of materialized aggregate views defined over the same
base table. They apply this approach to generalized cube views, and addresses maintenance under
updates to fact tables, with a brief discussion of instance updates to dimension tables. In this chap-
ter we present an algorithm which improves the summary-delta algorithm by avoiding, whenever
possible, joins and aggregate computations.

This chapter is organized as follows: in the next section we introduce a multidimensional model

supporting updates to a dimension’s instance and structural updates to a dimension’s hierarchy.

15



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 16

In Section 2.3 a collection of primitive operators that perform these updates is defined. In Section
2.4 we study the effect of these updates over a class of materialized views defined over dimension
levels, and present an algorithm to maintain them, which turns out to be more efficient than the
summary-delta algorithm when dealing with dimension updates. Finally, in Section 2.5 we introduce
complex operators which encapsulate series of primitive operations.

Note Part of what we present here can be found in previous work [HMV99a, HMV99b].

2.2 Multidimensional Model

Cabibbo and Torlone [CT97] introduced a multidimensional model in which dimensions are orga-
nized as hierarchies of levels corresponding to possible granularities of data, and rollup functions
describing how data are related within those hierarchies. Factual data are represented in this model
through f-tables. The authors also propose a multidimensional calculus. We chose this model as a
starting point for our work, among several other multidimensional models which had been intro-
duced in the last five years [GL.96, LW96, AGS196]. Our model, however, defines a set of constraints
not present in the model of Cabibbo and Torlone, and makes a clear distinction between schema
and instances of the multidimensional database objects, as it is usual in relational databases.

We already remarked that dimensions can be organized into hierarchies which enable the defini-
tion of different levels of data aggregation. We argue that the usual assumption in relational OLAP
implementations, regarding fact tables as dynamic and dimension tables as static, turns out to be
not true in most practical cases. Changes in the data will often require updates to the dimension
tables. In the case study we will present in Chapter 4, we will show that in a Health Care clinic,
new doctors may be hired or fired, medical practices can be opened or closed, different kinds of
health insurance plans introduced or discontinued, etc. Structural updates could also occur, as cat-
egorization levels are added or deleted. For example, doctors may cease to be classified according

to salary ranges. In this section we will introduce a model accounting for these situations.

2.2.1 Dimensions and Fact Tables

Assume the following sets: a set of level names L, where each level | € L is associated with a set

of values dom(l); a set of dimension names D; and a set of fact table names F.

Definition 4 (Dimension Schema) A dimension schema is a tuple (dname, L, <) where:



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 17

all
/H\
company category \\
‘ MCZ

brand

itemid

(@
Figure 2.1: (a) A dimension schema. (b) A dimension instance.
e dname € D is the name of the dimension.

e I, C L is a finite set of levels, which contains a distinguished level name All, such that

dom(All) = {all}.

e < is a relation over levels, such that <*, its transitive and reflexive closure, is a partial order,
with a unique bottom level, called l;, ¢, a unique top level, “All”, and, for every level | € L,

Ling <% L and | <* All hold. Moreover, if l, and Iy are levels in L, and l, <* Iy, then [, £ ly.

Definition 5 (Dimension Instance) A dimension instance is a tuple (D, p) where:

e D is a dimension schema.

e p is a set of partial functions such that:

— for each pair of levels ly, Iy such that Iy < ly, there exists a rollup function (partial
. ls .
function) pi? = dom(l;) — dom(ls).
— for each pair of paths T(,7, in the graph with nodes in L and edges in <, 4 =<
Lo, lp_1, by >, and 5 =< 11,5, ... U1, 1, >, such that 1, = 1,,, we have
l ln U U'm
pio...op =pufo...op”
We denote this property Consistency.

— for each triple of levels l1,13,1l5 € L such that [y <1y and ly < 3, ran(pgf) C dom(pg).

From Definition 5 we infer that given a dimension instance, for each triple of levels /, " and 1",

such that [ < " and [ < 1", dom(p}') = dom(p}").



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 18

Example 1 Figure 2.1 shows an example of a simple dimension schema and instance for a di-
mension Product. Here, for the dimension schema, dname = Product, L. = {itemld, brand,
company, category, All}. Relation < contains the following pairs: itemlId < brand,brand <

company, company = All,itemld < category, category < All.

Notation In what follows, dimension will stand for dimension instance, except when noted. It
must be noticed that each dimension level can be described by level attributes. However, in order
to enhance clarity, we omit attributes at this time. We will consider level attributes in the next
chapters.

Given a dimension level [, the instance set of [, denoted instset(l), is the set containing the

elements in [.

Example 2 For the dimension instance Product given in Frample 1 and Figure 2.1, the instance

set of level Itemld, is {iy,12,13,%4}.

Definition 6 (Transitive Closure of a Set of Rollup Functions) The transitive closure of a
set of rollup functions p, denoted p*, is the set that contains a rollup function for each pair of levels
Ly ln € L, 1y, <% 1, such that if [, = [, p*g'jn = identity; otherwise, if < l, ...l, > is a path from

*ln m+1

ly to ly, in the graph with nodes in L and edges in <, p™" = pém o... opgz_l.

Definition 7 (Fact Table) A fact table schema is a tuple s = (fname, Lset,m), where
fname € F is a fact table name, Lset is a set of levels, and m is a level, called the measure
of the fact table. Moreover, given a fact table schema (fname, Lset,m), a point is a mapping
from each level l; in Lset to a value in dom(l;). Given a fact table schema s = (fname, Lset, m),

a fact table instance over it is a partial function which maps points of s to elements in dom(m).

Definition 8 (Multidimensional Database) A multidimensional database schema is a
pair MS = (DS, FS), where DS is a set of dimension schemas, and F'S is a set of fact table
schemas. A multidimensional database instance is a tuple M D = (D, F), where D is a set of

dimensions, and F a set of fact tables instances.

Notation A dimension set is a set of dimensions. Given a dimension set D, a level group is a set
of levels containing exactly one level for each dimension in D \ {Measure}, where Measure is a

distinguished dimension. Aggregation takes place over this distinguished dimension (see Subsection



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 19

2.2.2). GBp will denote the set of all the possible level groups, and G Bottomp a level group
containing the bottom levels of each dimension in D\ {Measure}. A base fact table is a fact table

with schema (fname, GBottomp, m).

2.2.2 Data Cubes

Several classes of aggregate views have been used to fulfill different requirements in OLAP systems.
We commented in Section 1.3 that Gray et al [GBLP97] introduced the data cube operator as the
union of a set of cube views that contains data from a base fact table, aggregated over all the
possible groups of attributes in it. We will extend the data cube operator in order to include
views computing aggregates over the levels of the dimensions and define the Cube View operator to
express them. Moreover, we will not require a unique view holding the union of all the possible
ones. Aggregation takes place over a level m in the distinguished dimension Measure. We also

define an aggregate function Ag over m as a function with signature Ag : 24m(m) _ dom(m).

Definition 9 (Cube View) Given a set of dimensions D, a base fact table fy,se, with measure
m, and a level group GB = {l'y,...l's.}, CubeView(foase, D, GB) yields a fact table f, with schema

s = (fname, GB, m), and instance defined as follows:

e given a point ¢, S(c) is the set that contains all points ¢’ in the domain of fiuse, such that
for each pair of levels Iy € GBottomp and l; € GB, belonging to the same dimension,

c(ly) = pgf(c'(lz)) holds, where pgf is in the set of rollup functions p* of that dimension.
e for the points ¢ such that S(c) # ¢, we have f(c) = Ag(S(c)).

Notice that m and Ag are not parameters of the CubeView, because they can be inferred from

the context(see Section 3.4).

In what follows we will assume that Ag is the function SUM. This can be easily generalized to

the other four basic SQL aggregate functions.

Example 3 Consider a set of dimensions D= {Product,Store, Time,Sales}. The schema and rollup

functions for Product are given in figure 2.1. Schemas for Time and Store follow from the rollup

region

Junctions given below . We defined the following rollup functions: p.7°%, = {s; — ri,s0 —

To,S3 v T3 }; pzjjsk =A{d; = wy,dy = wy,ds — wy,d; — wy} (we have omitted the rollups to

All). Let us consider the following fact table, call it DailySales:



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 20

itemlId storeld day sales

i 51 dy 10
iz 51 dy 20
iz e dy 20
iz e dy 40
i3 s3 ds 30

Assuming that the measure dimension is Sales (with measure level sales), the fact table

CubeView(DailySales, D,{itemld, storeld,week}), call it Sales_ ISW, is the following:

itemId storeld week sales

i $1 wy 10
ig S w1 20
ig S9 w1 60
i3 S3 (125} 30

In terms of the model introduced here, the Data Cube Operator, can be seen as a set of cube

views defined over a set of level groups, as the following definition shows.

Definition 10 (Data Cube Operator) Given a dimension set D, a base fact table fyu5. with
measure m, and a set of level groups GBSET, the data cube operator DataCube(D, fyase, GBSET),
gives a multidimensional database (D, F U{ fogse}), such that for every level group GB in GBSET
there is one and only one fact table f in F, where f = CubeView(foqse, D,GB).

Note that this is not the same data cube operator defined by Gray et al [GBLP97]. They define
the operator as the union of 2V aggregate views computed over the N attributes of the base fact
table(see Subsection 1.3.1). The data cube operator of Definition 10 generates a set of views over

all the level groups in the set of level groups GBS ET which the operator takes as an argument.

Example 4 For the dimension set D and the base fact table Daily_Sales of Frample 3, we want to
materialize views over the following set of level groups: GBSET = {{itemld,storeld, day, sales},
{itemlId, storeld, week, sales}, {brand, storeld, week, sales}, {brand,All,All,sales}}.
DataCube(D, fyase, GBSET) will contain a base fact table Daily sales, and four aggregate views,
one for each level group in GBSET.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 21

2.3 Dimension Updates

We will define a basic set of operators that will allow modifying either the schema or an instance

of a given dimension, classifying them into two subsets :
e Structural Update Operators
e Instance Update Operators.

Operators in the first set modify the structure of a dimension. Operators in the second set

modify the schema and the instance of a dimension.

2.3.1 Structural Update Operators

The Generalize operator creates a new level, [,,, to which a pre-existent one, [, rolls up. A function

f must be defined from the instance set of [, to the domain of [,,.

Operator 1 (Generalize) Given a dimension d = ((dname,L,=),p), two levels, | € L,
l, € L, and a function fll” s instset(l) — dom(l,), Generalize(d,!,1,, fll”) is a new dimension
((dname, L U {1}, < U{([,1,,), (I, AL} \ (I, All)),p"), where p’ is the set containing the rollup

functions p’gi, such that:

o _ pln .,
.pln_ ln;

o 0 ={(e;all) | € € ran(fj)};

° p’ﬁj = pﬁj, for all other levels I;,1;.

Example 5 Suppose we want to define a new level in the Store dimension of Frample 3, for
instance the type of store, with two possible values, t1 and ty. The operation would be defined
as: Generalize(Store, storeld, storeType, fjf;::};lype), where fjf;::};lype ={(s1,t1), (s2,t1), (83, £2) }.

Figures 2.2(a) and (b) show the structural and instance modifications triggered by the operator.

Notation We say that two levels are independent, denoted [, || {5, when [, 2 [y and [ A* [,.
The Relate operator links two independent levels in a dimension. A precondition for Relate is
the existence of a function f between the instance sets of the levels being related, such that the

dimension instance remains consistent. We call this function a consistency function.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 22
all
HWI r2
sl s2 s3

(@) (b)

All

storeType region

storeld

Figure 2.2: (a)Schema after Generalization (b) Instance after Generalization.

Definition 11 (Consistency Function) Given a dimension d, and two independent levelsl, and
Iy in d, a consistency function fll;’ between instset(l,) and instset(ly) is a function defined as follows:

L= i iy | 30 € Lingop™e,, (6) = day p0, (1) = 5}

Example 6 In Figure 1.2, we cannot relate level region to level province because we cannot map

two regions to three provinces. However, il is possible to relate province to region, as we can map

San Juan and Mendoza to Cuyo and Ontario to Fast.

When conditions for relating two levels [, and [, are met, we must delete all the redundant rollup
functions that may appear, as the model only includes direct rollups. For instance, in Figure 1.2 we

must delete the rollup functions between levels city and region when relating province and region.

Operator 2 (Relate Levels) Given a dimension, say d = ((dname, L, <),p), a pair of levels
lo € L, and ly € L, such that I, || I, and a consistency function fll: ; Relate(d, l,, 1) is the

dimension ((dname, L, <"),p"), where:

o ==X U{(la, b))} \ Ui )|l 22 la AL 23\ ey L) |la 20 AN Ty 22 1k}
« L=l
. p’gj = pgj, for all other levels I;, ;.

Note that we do not need to specify fll: in the definition of the operator, because it is uniquely
determined by the pre-existing rollup functions.
The Unrelate operator deletes a relation < between two levels [, and [y, such that [, < ;. The

operator must guarantee that levels below [, in the hierarchy, will still be able to reach the same



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 23

A A

category

bra”d bl B 3

AN

Figure 2.3: Dimension Product after Relate(Product,brand,category).

nemld

levels they reached before the unrelate operation. For instance, if [, < [ and [ < [, hold, we must
preserve [, < [. by making it explicit in case we delete [, < [;. Notice that [, cannot be “All” and
l, cannot be the dimension’s bottom level, unless levels parallel to (i.e. independent from) /; and
l, exist. These conditions are necessary in order to guarantee a graph with a unique source and a

unique sink.

Operator 3 (Unrelate Levels) Given a dimension d = ((dname, L,=<),p), and two levels,
ly € Landly € L, I, # ling Iy # All, such that l, < Iy, Unrelate(d,l,, ;) is a new dimension
((dname, L, <'), p'), where:

o <=\ (o b)) U )l = 0o A G 3y b} O (s 5)ll = 5 A L 2y 5}
L N N T S R
P, = P, 0P, il 2
e — plag gl srp < -
® Py, =P °P, if [; = g
° p’gi = pgj, for all other levels I;,1;.
Ifl, =l;ny or If Iy = All, the following holds:

e Unrelate(d, l; 7, 1) = Relate(d, ., l}), where [, is the level closest to |, such that Iy || . and
Relate(d, I, l3), is possible.

By closest level we mean that there is no path < li,g,...l; ...l > such that Relate(d,[;, 1),
is possible. If there exist two such levels within the same distance from l;, ¢, anyone can be

chosen.

'The last conditions prevent the addition of the arcs in case alternative paths between (I;,15) or (Ia,l;) (that is,
paths not including l.ly as a subpath) existed in <. The expression I; <}, I; means that there is a path between I;
and !; including the edge l415.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 24

e Unrelate(d, l,, All) = Relate(d,l,,14), where l; is the level closest to All such that lq || l, and

Relate(d, l4, lq), is possible.

By closest level we mean that there is no path < lq,...l;...All > such that Relate(d, [,,[;),
is possible. If there exist two such levels within the same distance from l;, ¢, anyone can be

chosen.

Example 7 Figure 2.3 shows the result of applying operator Relate(Product, brand, category),
to the dimension of Figure 2.1. Notice that relation itemld < category was deleted in order to
avoid redundant edges. Unrelating brand and category will take the dimension back to its previous
state(i.e., the state before Relate(Product, brand, category) occurred). Note that we could not

unrelate itemld and brand, because this would not yield a valid dimension.

The DelLevel operator deletes a level and its rollup functions. The level to be deleted cannot be
the lowest one in the dimension (/;,, ), unless it rolls up to only one level above it(for instance, we
could delete level “hour” in the schema corresponding to the instance of figure 2.7, but we could
not delete level itemld in figure 2.1). As it was the case with the Relate operator, taking into
account that we only define the direct rollups, when deleting a level we must add the functions

between levels above and below it.

Operator 4 (Delete Level) Given a dimension d = ((dname, L, <),p) and a level | € L, #
All,such that, if | = l;,¢, there is only one level l; such that | < ;, DelLevel(d,l) is a new dimension
((dname, L' = L\A{l}, =), p"), such that:

o <=2 \{(l,1) | (h=0V (L= DYUL(h 1) | (h <AL D) A (L 2% 1)
° plgz = pfi 0,0;], ifl; < landl < 1;;

. p’gj = pgf for all other levels I;, ;.

Example 8 If we delete level brand from the Product dimension, we would obtain the schema and

instance depicted in Figure 2./.

2this last condition, like in the previous operator, implies that no alternative paths between (I, 12) exist.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 25

A A

company category col co2 cl c2
itemld i1 i2 i3 i4

Figure 2.4: An example of DelLevel.

2.3.2 Instance Update Operators

The following operators add or delete instances to and from a level in a dimension. They also
impose some constraints on the way these updates can be performed. In simple words, elements
are inserted into levels “from top to bottom”, and are deleted “from bottom to top”.

The AddInstance operator inserts a new element, say z, into a level [,(i.e., an element not
belonging to the instance set of /,). We must provide the operator with all the pairs (I;, z;), such
that every /; is a level to which [, directly rolls up(l, < /;), and z; is the element in the instance

set of [; to which z will roll up (i.e. ,05;(:6) = z;).

Operator 5 (Add Instance) Given a dimension d=((dname, L,=<),p), a level l,, an element
z, € dom(l,), x4 & instset(ly), and a set of pairs P = {(l1,z1),...(ln, )}, where l; is a level, and

z; is an element in instset(l;), and the following hold:
o dom(P)={l; | l, 2 l;};

o for each pair {(l;,z;), (l;,z;)} € P, if there is a level | € L such that l; <1 and l; <[, then

L (i) = pi (25);
AddlInstance(d, !, z,, P) is a new dimension ((dname, L, <), p') where:
e p' is the set containing the rollup functions such that p’gi = pgiu{(xa, z)}, for each (I;,z) € P;
° p’gj = péj, for all other levels I;,1;;

o instset'(l,) = instset(l,) U {z,}.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 26

all all

/] \\ /]
AN AL
Sl N

i B W@ BB #i
(a) o)
Figure 2.5: (a) Add Instance (b) Delete Instance.

The Dellnstance operator deletes an element belonging to the instance set of a level [,. It is

only defined when no element of any level /; such that [; < [,, rolls up to the element being deleted.

Operator 6 (Delete Instance) Given a dimension d = ((dname,L,=<),p), a level I, € L,
and an element z, € instset(l,),z, & Ujer, ran(ps*), Dellnstance(d,ly,z,) is a new dimension

((dname, L, <), p',) where:

e o' is the set containing the rollup functions such that p'ii = pgi \ {(za, P;i(%))},
° p’gi = pij, for all other levels ;, 1;;

o instset’(l,) = instset(l,) \ {z.}.

Example 9 In order to add a new item, say is, to the Product dimension of figure 2.1, we should
apply: AddInstance (Product, itemld, is, {(brand, bs), (category,cs)}). Figure 2.5(a) shows the
result. After that, we delete 11 from level itemld. Note that in this case, we can only delete an
element belonging to instset(itemld), due to the operator preconditions. The operation is invoked
as Dellnstance(Product, itemld, i1). After this, it would be possible to delete by, because it is a leaf

in the graph. See figure 2.5(b).

Theorem 1 (Correctness of Update Operators) Operators 1 to 6 are correctly defined. That
is, given a dimension d = (D, p), and an update operator 8 such that 8(d) = d', d' is a dimension

satisfying Definitions 4 and 5.

Proof Theorem 1 For the sake of simplicity, we will use the following additional definitions :



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 27

Given a graph G = (L, =), representing a Dimension Schema (dname, L, <), a path
T =< lily...l,—1l, > in il, and a rollup function p associated with each pair of levels l;l;11, we
define the path composition with respect to this function as O(1) = ,05?0. . .0,05:_1.

Then, we can express the second condition of definition 5 (consistency property) in the following
way: for each pair of paths T =<1y ...l; > and 7y =< ly...l,, > in the graph, such that l; = I,,,
O(7) = O(m) holds.

We must prove correctness for each one of the operators defined in section 3. We will omit the

proofs of properties that follow straightforwardly from the operator’s definition.

Generalize We will show that consistency is satisfied by every p’k in p'.
By definition, every new path in the graph must include [,l,, and All. Thus, as f;™ is a
function, p’lA” ={(e,all) | e € ran(f;™)}, and l, has no incoming arcs except the one from I,

no new path could violate consistency, because for every new path T in G, O(7) = all holds.

Now, we must prove the third property in definition 4. We must show that =<' is a partial
order. We will do this by analyzing which pairs of levels, of the form (l;,1;) are added to or

deleted from <*.

By the operator’s definition, if (I;,1;) ¢=<*, then, (I;,1;) ¢=<" . On the other hand the only
pairs in <" not in <* are (I,1,), (I, All), and (I,,1,), while the only pair which may be
deleted is (I, All). Thus, as <* was anti-symmetric, so is <", because no tuple added can
prevent that (no (l,,1;) pair is added unless l; = All or l; = l,,). Moreover, adding (I,,,1,)
guarantees reflexiveness.

Finally, if (L, <) was a lattice, so is (L, ="). This follows from the fact that, by the definition
of <', every level that reached All through | in < L,<> , will do the same through [, in

< L', <">, and no sink or source are added to G.
Relate Levels A precondition for this operator is the existence of a consistency function. Thus,
as no rollup function is added, consistency is preserved.
We proceed now with the second part of the proof.
When 1, is related to ly, and because |, £* Iy and l, £* l,, the only pairs in <™ and not in

=<* (besides (l4,1p)), are of the form:

o (Lily), if li 2 Ly AL < 1y



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 28

° (lml]'), if Iy ﬁ* l]‘ Al <* l]';
L4 (12711)7 Zflz ﬁ* l]alz j* la/\lb j* l]7
Note that some pairs (I;,1;) may already be in the original dimension, if a path not

including an 1,1y subpath existed between l; and [;.

On the other hand, no pair is deleted from <* .

From above, it follows that no cycle could be induced by the new pairs. Thus, <" is a partial

order.

Unrelate Levels We will first prove that O(m) = O(r2), for every pair of paths 7 and T, with

the same extreme nodes, still holds after unrelating two nodes.

By the operator’s definition, we know that p’gj = pgi, for all pairs of levels l;,1; such that
lo & {li,1;} and Iy & {l;,1;}. In any other case, the rollup functions p;* and pgi, such that
l; and l; are levels directly below l, and above l, respectively, are composed with pgz Let us
analyze the case such that l; <* I, and Iy <* l;. No path from l; to l; in the new graph will
contain l,ly as a subpath, but every path from [; to l; in < will be associated to at least one path
from l; to l; in <'. If the original paths verified O(t1) = O(1y), the new ones will also satisfy

this condition, because by definition, if in the expression O(1) = péfo. . .,0520,0520. . ,o;]

we
replace pﬁ‘;opgz with p’éi, we have that O(r;) = O(r;) still holds in the new graph. Analogously

we could replace p?jopéz with p’gf.

For the second part of the proof, as only the arc (I, 1ly) is deleted from <, adding (I,,!;) and

(l;,1y) as indicated above, transitivity still holds.

By the operator’s preconditions, Iy # All and l, # l;p, s unless levels parallel to Iy or I, exist.
Thus, the new dimension will never have two top or bottom levels. In case l, = l;,5 or

ly = All, Unrelate becomes a Relate operation, which correctness we have already proved.

Delete Level Here, there is only one case to study. We claim that O(r) = O(12) still holds
when we replace péf by p’k. Let us suppose that T and 19 are two paths of the form O(r) =
péio. . .pfio ,05]0. . .,05;", and O(ry) = ,05:0. . .pfko ,05"0. . péT (it may occur that l; = I and
l; = 1,), where | is the deleted level. As both paths verify O(r) = O(r2), we could replace
the rollup functions including | according to the operators definition, by the functions in p'.

ls ! Im Iy In Im
Thus, O(m1) = pjo ...pjlo...p", = O(r2) = pjlo ...pjlo...p".



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 29

Now we show that <’ is still a partial order. By definition, the operator deletes the pairs of
the form (l;,1) and (I,1;). Thus, <" will still be reflexive(every pair of the form (;,1;) will
remain). As all non-redundant arcs such that Iy < | and | < Iy will be added, no cycles are

induced. Thus, <" will be a partial order.

It is easy to show that G' will have a unique top and bottom. This follows from the operator

preconditions, as | can neither be All nor be l;y, ¢ (if Ly only rolls up to one level).

Add Instance The schema conditions are preserved, as no schema change occurs in this operator.
The inserted element could only be the initial element in any path it belongs to, because of the
operator’s preconditions (recall that elements are inserted “from bottom to top”). Thus, for
every level I, in a path of the form T =<1ly,...l,l;...l,, >, when we add i, to the instance
set of l, we also add rollup function instances of the form (i,,1;),%; € instset(l;), and these
values must verify consistency. Then, for every pair of paths 1 and T2, O(my) = pgio. . .pglo

.. ,ok” =0(r) = péio. . .pgio .. p?;" in p', because i, cannot affect this property.

Delete Instance Again, the schema conditions are preserved, as no schema change takes place

here.

At the instance level, as deletions occur from “top to bottom”, 1,, the element to be deleted
element could only be the first element in a path. It is obvious that consistency cannot be

violated by such a deletion.

Theorem 2 Given an initial dimension d, and a target dimension d', satisfying definitions 4 and

5, there is always a sequence of the operators 1 to 6 allowing to build d' starting from d.

Proof Theorem 2 We will proceed by induction on the number of nodes. We will prove that given
a dimension d with N levels, we can build any dimension d’ with N+1, N —1 or N levels applying
operators 1 to 6. If this is possible, any dimension can be built with these operators.

Let us consider the minimal possible dimension, this is, a dimension with levels l;,; and All.
From this dimension, we can built only two possible ones, with N = 3. No new dimension with N =
2 could be built (we do not consider renaming the nodes, which is trivial). Figure 2.6 shows these
possible dimensions. Dimension in Figure 2.6(b) is reached applying Generalize(d, linfvlnvfl;;f)v
where fll;f is any valid rollup function. Dimension in Figure 2.6(c) is built applying the following

sequence: Generalize(d, l, ¢, [, fll;f)y DelLevel(d, l;, 1), Generalize(d, L, lin , le;nf)-



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 30

Suppose now a dimension with N levels. Any dimension with N 4+ 1 nodes can be built in the
following way: for any level I, apply Generalize(d, [, [, fll") in order to get a dimension with N + 1
nodes. This new level can be related (if there is a consistency function) with any other existing level,
because, by construction, the new level is independent from all the other ones. The only exception
happens to be the case in which the inserted node becomes the new bottom level. This is called an
specialization (Subsection 2.3.3). The following steps show the procedure: (a) delete all the nodes
but l;,¢. This is achieved applying exhaustively operator DelLevel(d, ) until a dimension with levels
All and ;5 is reached; (b) proceed like in the minimal case explained above in order to insert [,
below l;,¢; (c) rebuild the original dimension(by hypothesis, d was build with the operators, thus,
it can be rebuilt). Step (a) above also shows that any valid dimension with N — 1 nodes could be
reached starting from d, just by deleting one level. Finally, given a dimension d with N levels, we
can reach any other dimension d' with the same number of levels, applying the Relate and Unrelate
operators, which allows to add or delete edges if preconditions are met.

At the instance level the proof follows straightforwardly from the operator’s definition. Given
a dimension instance d, any possible valid instance could be built. Actually, for every element
i € instset(l;,s) we can apply Dellnstance(d,l;,¢,t) in order to delete all the elements in this
level. Proceeding in the same fashion we could build a dimension such that for every level | in
L\ {All}, instset(l) = ¢. From this empty dimension instance, we could exhaustively apply the
AddInstance operator, starting from every level | such that | < All, and populate the dimension

again.

Theorem 3 Operators 1 to 6 are minimal, meaning that no subset of them can define all possible

dimensions satisfying Definitions 4 and 5.

Proof Theorem 3 Let us analyze the structural operators one by one. We will prove that if one
of them 1is left out, there is at least one dimension which could not be built. Let us denote by O,
the set of operators 1 to 6 defined above.

Generalize. It is trivial to show that the set defined by {O,\ Generalize} cannot define a dimen-
sion, because Generalize is the only operator allowing to insert a new node in the Directed Acyclic
Graph (DAG) which represents a dimension.

Relate and Unrelate. In an analogous way, it can be proved that with the set {O,\ Relate} we

cannot build every possible dimension d' starting from a dimension d. Given a dimension d with



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 31

All All All

Linf I'n linf
linf In

@ (b) ©

Figure 2.6: All possible three-level dimensions.

two parallel levels |, and ly such that l;,y <* 1, and l;,p <* l.,1. <* 1}, there is not possible to add
the edge l,, Iy with the set {O,\ Relate}. In this case, the only way to this would be inserting a level
l, below ly, which would imply the deletion of all the dimension, except for the path < Iy, ... All > .
However, doing this prevents inserting . below ly. The proof for Unrelate proceeds analogously.
Delete Level. For this operator the proof is trivial, given that this is the only operator allowing

to delete a node in the graph. The same occurs with Add Instance and Del Instance.

2.3.3 Complex Structural Update Operators

The Grain of a multidimensional database is the finest granularity at which factual data is stored
in the database. For instance, in Example 3, the grain of the database is defined by the set of levels
{itemlId, storeld, day}. Thus, the set GBottomp defines the database grain.

Refining the granularity of a dimension would be a usual situation in a data warehousing
environment like the one we are proposing in the present work. For instance, in the example above,
we may want to record sales by hour instead of by day. Inserting a new bottom level in a dimension
can imply, in the worst case, deleting and rebuilding the whole dimension. Suppose a dimension
with just two levels, All and /;,¢. In order to insert a new level /,, below /;,f, we must generalize
lins to l,,, then delete l;, ¢, and finally generalize again /,, to l;,¢. It is clear, then, that an operator
capable of performing this task in a straightforward way is needed. Thus, we define the Specialize
operator.

The Specialize operator adds a new level [,, to a dimension. Level [,, will roll up to the lowest



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 32

All all

T/ \ A

i / \\ \\\
hour h2 h3 h4 h5 h6
(@) )

Figure 2.7: (a) Schema after Specialization (b) Instance after Specialization.

level of L, l;f, becoming the lowest level of the dimension. A function must be defined for this

rollup.

Operator 7 (Specialize) Given a dimension d = ((dname,L,=<),p), a level l,, ¢ L, and a
function flln : dom(l,) — instset(l;,f), Specialize(d, ln,fl‘"f) is a new dimension of the form

((dname, L U {1}, < U{(ln,ling)}),p’), where p' is the set containing the rollup functions p’gj,

such that:
ltTL lin
° plln f fn f

° p’gi = pk for all other levels 1;,1;.

Notice that ,0’ bnf can be the empty set, according to Definition 5

Example 10 Specializing the Time dimension of example 3 will result in the dimension depicted
in Figure 2.7. Note that the only level apt for specialization is day, and the operation is defined as

Specialize(Time, hour, f!fa";”) .

In Section 2.5 we will define a set of complex instance update operators.

2.4 Maintenance

When an update to a dimension occurs, and a data cube has been materialized in the data ware-
house, the cube views which conform this data cube must be updated in order to reflect the updates

over the dimension. We would like to incrementally maintain the data cube. In this section we



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 33

address this problem, treating separately structural and instance updates. We will assume a rela-
tional storage of the multidimensional database(ROLAP). The mapping from the multidimensional
to the relational model is defined as follows.

Fact tables are represented as relations such that there is an attribute for every level in the
level group in the fact table, and an attribute for each measure (Definition 7). The relational
representation of a dimension d is a pair Ry = (S4,T4), where Sg = (rname, A, F) is the schema
of the relation; rname is the name of the dimension, and also the name of the relational schema,
A is the set of attributes of the relational schema, and F is a set of functional dependencies such
that dom(F)Uran(F) C A. Ty is the set of tuples in the relation representing d. The components

of S and T are detailed below.

Schema The schema Sy = (rname, A, F) of the relation is such that:

e rname is dname;
e A contains an attribute [ for each level [ € L;

e F contains a functional dependency [, — [, for each pair of levels [,,l, € L such that

ly = 1.
Instance The set of tuples T, in the relation is defined as follows:

o Let us define the leaves of a level [ € L, Leaves(l), as the set of elements in instSet(l)
not reached by any other element below them in the dimension instance. Formally:
Leaves(l) = instSet(l) \ (ran(pfl) U...ran(p} )), where Iy, ..., 1, are the levels directly

below [ in the hierarchy.

e lor every level [, and for every element e € Leaves(l), there is a tuple ¢ in Ty defined as

follows:

l.
* If 1 <* [,
null otherwise

The definition above implies that the number of tuples in the relation is given by

Z card(Leaves(l));

l
In order to specify the maintenance algorithms, we will use the relational algebra with bag

semantics, extended with the generalized projection operator to express aggregation [GHQ95b].



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 34

The generalized projection operator will be denoted as 114, where A is a set of attributes which can
include aggregate functions. Then, computing CubeView(D, fyus.,GB) is equivalent to computing
the relation:

Hepy\(any, ag(m) foase X di ... X dy,

where dy,...,d, are the dimensions corresponding to the levels that are in GB \ {All U
G Bottomp }.

The algorithms presented in this section were implemented. The details of the implementation
are given in Chapter 3. Experimental results are discussed in Chapter 4.

Notation When using the generalized projection, we will use GGB instead of GB \ {All}. In
this way, the cube view of example 3 can be expressed as:

Witem1d,storeld week,Sum(sales) Daily-Sales XM Time

Also, in what follows, although it is not a basic operator, we will include the Specialize operator

in our discussion.

2.4.1 Structural Updates

When a dimension level is generalized, new views are generated as a consequence of the level being
added. Thus, these new views must be computed from scratch. When a bottom level of some
dimension is deleted or specialized, the base fact table must be updated in order to reflect these

changes. To address this problem, we propose the following data cube adaptation:

e if a DelLewvel is specified over the bottom level of a dimension, recompute fps. as the cube

view of the old base fact table grouped by the bottom level group of the new dimension set

D'

e If the update is Specialize, fpqse Will not longer be a base fact table of D', and the new base
fact table over D’ of which fp,,. is a cube view is not uniquely determined. We will not
address the problem of finding an appropriate new base fact table, but it is easy to prove that
one always exists. The determination of a new base fact table is related to the reconstruction
problem [FJS97], which consists on the estimation and computation of a fact table based on

an aggregate view of it.

The following algorithm performs incremental maintenance when a structural update occurs.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 35

Algorithm 1
Input: A data cube dc, and a structural dimension update u over a dimension d. We assume,
w.l.o.g. a fully materialized data cube.

Output: A data cube incrementally maintained reflecting u.

1. if u = Relate, or u = UnRelate, no maintenance is required. We call these updates irrelevant

with respect to data cube maintenance.

2. If u=Generalize, the new views which are generated (due to the presence of a new level) must

be computed from scratch.
3. If the update is uw = DelLevel(d, 1) :

e if | € GBotlomp, compute a new base fact table as Gp,itom,, Ag(m)foase X d ( where
D' is the new set of bottom levels);
e drop every table f in dc such that | belongs to the schema of f.

4. Ifu = Specialize(d, l, péfnf), compute a fact table f'y, . such that frase = 1 GBottomp, Ag(m) S pase ™

d', and drop fy,se.

In Section 4.4 we show the results of applying Algorithm 1 to a case study.

2.4.2 Instance Updates

An instance update in a relational OLAP implementation reduces to the insertion and/or deletion
of some tuples in the dimension tables. We could therefore apply existing incremental maintenance
algorithms for materialized relational views with aggregates [GMS93, Qua96, MQM97]. However,
we will see that we can do better by exploiting the special form of these updates. In particular, we
will show how to improve on the summary-delta algorithm introduced by Mumick et al. [MQM97].

In general, as we commented on Chapter 1, incremental maintenance involves:

1. computing the set of changes, sometimes called the delta table(propagation phase);

2. applying the changes represented in the delta table to the materialized view(refresh phase).

In the case of views with aggregations, this approach applies only if the aggregate functions

are self-maintainable MQM97]. Again, we will assume in what follows that the aggregate operator



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 36

All All All
brand week
itemld day storeld
() (b) ©

Figure 2.8: Dimension schemas for Example 11

Ag is SUM, and that we extend the tables and the cube views storing the count value required to
make SUM self-maintainable with respect to insertions and deletions. The implementation to be
described in Chapter 3 supports the five classic SQL aggregate functions.

In the next subsections we show in detail how that we can improve the summary-delta algorithm
if we take advantage of the particular features of the kinds of instance updates proposed in this
chapter.

In what follows, we will use a reduced version of the data cube of Example 3 in order to make

it easy to understand the proposal.

Example 11 To show the ideas depicted in this section, we will be considering the set of dimensions
D={Product, Store, Time, Sales}, with the schemas specified in figure 2.8. The rollup functions
are the following (the rollups to All are omitted, where possible): pba"% = {i; v+ by, ig +> by, iy
bo,i; — bs}; pﬁlolre[d ={s; = all,ss — all}; pzd”;;k ={d; = w;,ds = wy,ds — ws}. We will use
the base fact table of Frample 3, called DailySales, so we will not repeat it here. The data cube is
defined as dc=DataCube(D, fyase,GBSET), and each cube view will be denoted as “Sales” appended
with the initials of the levels in the group level defining it (e.g. Sales_ASD represents the cube view

such that GB = {All, storeld, day}).

Maintaining Cube Views Independently

Under instance updates in a dimension, we can proceed as in the summary-delta algorithm, i.e.,
separately compute a maintenance expression for each Cube View with the rules presented by

Quass [Qua96]. The maintenance expression produces the change to each cube view, which is then



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 37

Consider a cube view f = CubeView(D, foase, GB), where GB = {l1,...l,}, and a fact table Af
with the same schema of f; Refresh(f, Af), computes f’ as follows:

For every tuple 6t € Af:
o Let t = HaBoy, =51(1),...ln=5t(1n) ]
e If ¢ is not found, insert tuple ¢ into f
e Else

— If t(count) + &t(count) = 0 delete ¢ from f

— Else t(count)+ = t(count), t(m) = Ag({t(m),dt(m)}), where m is the measure of the
fact table.

Figure 2.9: Refresh operator adapted from the summary-delta algorithm.

applied to the cube view itself using a refresh algorithm. We define Refresh(f, Af) to be the result
of applying the refresh algorithm to a cube view f, given a set of changes Af, yielding a new cube
view f' = CubeView(D', fyuse, GB), where D' is the set of dimensions after the update.

The approach in the summary-delta algorithm is focused on a deferred maintenance under a
large delta change, which is not the case for the operators defined in this chapter. Thus, we can
derive efficient maintenance expressions in order to compute changes to the cube views. First, let

us define the meaning of the change to a cube view computed with the summary-delta algorithm.

Definition 12 (Cube View Change) Given a cube view f = CubeView(D, fyuse, GB), and an
instance update u, such that D' is the updated dimension set, the cube view change of f with
respect to u, denoted Af, is the fact table which satisfies: f' = Refresh(f,Af), where ' =
CubeView(D', foase, GB). The refresh operator is shown in Figure 2.9.

Lemma 1 (Irrelevant Updates) Given a dimension d, a dimension update AddInstance(d, 1,1, P)
or Dellnstance(d,l, ) is irrelevant(i.e. the dimension updates do not have an effect over any cube

view) if | is not the bottom level of d, or 0i=; frase = ¢.

Proof Lemma 1 Consider an update Dellnstance(d, [, ). According to the way in which elements
are deleted from d, if | # l;,y no fact could be associated with i, because by the preconditions of the

operator there could be no element j such that p*fmf(j) =14. If 01— frase = ¢, then i does not affect



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 38

Given a instance update u, and a cube view f = CubeView(D, foase, GB)

1 If u = Delinstance(d, !, i), and there exists another view f1 = (D, foase, GB1), where GB; \ GB = {l},
then:
Af =Tlgp\ (13,1 =5-d("),m=-mOi=i f1, Where I' = GB\ GB,

2 If u = Delinstance(d,l,i) and GB; \ GB # {l} then Af = Tlgp\(1/},1=5- d(1'),m=— Ag(m) Ti=i foase X d1 X
... X d,, where I’ is the level in GB that belongs to d, and d; ...d, are the dimensions such that the
levels in GB\ {d} \ GBottomp, belong to.

3 If u = Addinstance(d,!,i, P) then
Af =Tlgp\{1},1r=6+d(1),m=Ag(m) Ti=i foase X d1 M ... X dp, where !’ is the level in G B that belongs to
d, and d; ...d, are the dimensions such that the levels in GB\ {d} \ GBottomp, belong to.

Figure 2.10: Maintenance expressions for instance updates.

any element in the fact table. Thus, element i € instset(l) does not contribute to any view derived

from fyase. The proof proceeds analogously for AddInstance(d,l,1, P).

If an update is relevant, the delta changes that have an effect over the cube views are: Atd =
o1—;d’, in case of an AddInstance, and A~d = o;—;d, in case of a Dellnstance, both containing a
single tuple, which we will denote 67d and 6~ d respectively.

Figure 2.10 shows a set of rules for independent view maintenance under instance updates in a

dimension. Notice that if Rule 1 holds, no aggregation is required.

Example 12 Consider the data cube of Example 11, and an update Dellnstance(Product,itemld,iy)
in the Product dimension, represented by A~ Product. Also consider the fact table DailySales of
Fzample 3. The maintenance expression for the cube view Sales-BSW =CubeView(D, fyqse, {brand,
store, week}), would be:

ASales . BSW = llpand=b, storeld week,sales=—sales Obrand=b2 Daily_Sales X A~ Product X Time.

The new cube view, CubeView(D', Daily_Sales, {brand, store, week}), is computed, in the refresh-
ing stage, from Sales_ BSW and the delta change of f, using the Refresh algorithm. Thus,
Sales_.BSW'=Re fresh(Sales_.BSW,ASales_.BSW). This is done separately for every cube view

in dc.

Finally, the incremental maintenance algorithm can be stated as follows:



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 39

Algorithm 2
Input: A data cube dc, and a dimension update u over a dimension d. We assume, w.l.o.g. a fully
materialized data cube.

Output: The updated data cube.

For each cube view cv in dc
If u is irrelevant skip
FElse
compute the changes Adc using the rules in figure 2.10;
Refresh(dc,Adc)

Example 13 Consider the data cube of Fxample 11 and the update Dellnstance(Product,Itemld,is).
Using rule 1, we can compute the delta change associated to a cube view DeltaSales_BSW, from the
already materialized cube view Sales_ISW (see Fxample 3), with the following expression, avoiding
any aggregate computation. The resulting table is also shown.

ASales_.BSW = Hbrand:bg,store[d,day,sales:—sales OitemId=is Sales_ISW.

brand storeld week sales

by S1 w1 -20
by So w1 -60

After this, the new cube view could be computed using the Re fresh operator.

Maintenance Using the View Derived Lattice

In the former section we showed how to compute a cube view change from cube views which
were already materialized. We would like to compute cube view changes from other cube view
changes, leading to a more efficient implementation. For instance, in Example 13, we would compute
ASales_ BSW from ASales ISW.

Below, we present an algorithm for incremental view maintenance in the presence of instance
updates, by adapting the view lattice introduced by Harinarayan et al [HRU96], to our specific
needs.

The changes to the base fact tables, under dimension instance updates, are given by:

o Afiuse = LLGBottomp,m=—m0i=i frase, if the update is Dellnstance(d,!,1);



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 40

® A fiuse = 01=; frase if the update is AddInstance(d,l,1, P).

Then the expression Adec = DataCube(D\{d}UAd, A foqse, GBSET), where Ad = 6~d = 01=;d
for Dellnstance, and Ad = §td = o—;d’ for an AddInstance, defines a delta cube.

The delta cube defined in this way contains the cube view changes to the data cube dc =
(D, frase, GBSET). Thus, we can apply the summary-delta algorithm to compute the delta cube
Ade, taking advantage of the fact that Ad contains only one tuple.

Again, we will assume that GBSET = GBp, i.e., the data cube is fully materialized. The
algorithm that we propose can be extended to a partially materialized data cube.

We define the view lattice as follows:

e there is a node, denoted N (G B), for each level group GB in GBp.

e given two nodes N(GB); and N(GB)g, for each 1-1 function co between GB; and GB; such
that for each level [ in GBy, [ < co(l), there is an edge from N (GBy) to N(GB;), and this
edge is labeled by the dimensions dy, ..., d, of each level [ in GB; such that [ # co(l). We
denote this edge N(G'By) <4,,...4, N(GBy).

o cach edge N(G'B1) =4,..4, N(GBg) is associated with a bag algebra expression which com-
putes the cube view change A f; associated to G By from the cube view change A f; associated

to GBll Afg = HGBg,Ag(m)Afl X dl M., N dn

Figure 2.11 shows a view lattice for a base fact table with LSET = {itemId, storeld, day}. We
have labeled each node with the initials of the levels in each level group G B. We have omitted the
edges’ labels, for the sake of the figure’s clarity.

We now present a set of rules that, given an update to level [ in dimension d, modify the algebra
expressions associated with the edges of the view lattice. We only consider “direct” edges, that is,
those edges between sets GBy and GGB; that differ only on one level. It is worth noting that the
optimization depicted in rule C below is also present in the work of Mumick et al.((MQM97]), and
avoids repeating joins along the lattice paths, by means of performing the join with dimension d
the first time it is required and preserving the levels of the dimension for computing the cube view

changes upward in the lattice.
Given a dimension update over a dimension d and a level [, the rules which modify the lattice

are:



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 41

AAA

AAW ASA AA

AAD ASW BAW BSA TAA

ASD BAD BSW AW ISA
ISD

Figure 2.11: A view lattice for the running example.

RULE A For the direct edges N(GB1) <4 N(GB3) such that [ € GBy, GB; \ GB2 = {l},
Afy = Hapo\ {11} 1, =6d(1),m A J1;
Afy' =TlaB\{1} 1 =5d(lh),.. L =6d(1,),m A1,
where §d is §td, if the update is AddInstance(d,l,i, P) or §~d if it is DelInstance(d,l,i), and m is
considered as —m in case of a Dellnstance; l; are the levels in d, and ' = GB,y \ GB;.
Afy' is computed in order to propagate the view change upward in the lattice without performing any
join (see explanation below).

RULE B For the direct edges N(GB;1) =<¢ N(GB3) s.t. 1 € GBy and GB; \ GBy, = {I'},}l' € d, Afy =
g, Afr'.

RULE C The remaining direct edges, of the form N(GBj) <4, N(GBz2)( for instance, edges linking views
that differ in levels belonging to dimensions other than d, the dimension being updated), are modified
in the following way :

For each level ; € d, consider the nodes N(GB) such that l; € GB, and the edges between these nodes.
These edges form a sub-lattice of the view lattice (see Figure 2.12). Let 7 be a path including the
bottom level of this sub-lattice and two nodes N(GB;) and N (G Bz) such that N(GB;1) <4, N(GBa3).
If the join with d; was already performed in 7(i.e., 7 =< ..., N(GB;) <q4; N(GB;),..., N(GB1) =g,
N(GB3)... >), change the expression corresponding to the edge to:

Afs = HGBz’Ag(m)Afll, where Af;’ has the same meaning as in Rules A and B.

If not (i.e., this is the first occurrence of d; in the path), then change the derived expression to

Afs =g, ag(m)Af1 M d;, and also generate Afy' with all the attributes, in order to propagate the

join upward in the lattice.

In Rule A all the attributes of the tuple added or deleted (dd) associated to the dimension

change are stored in the cube view change(Afy’). Thus, further derivations using rule B just



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 42

AAA

/\ | BAA
e
= W/ Y

Tlme Tlme
|
T~ Time

Store

Figure 2.12: An optimized view lattice for the running example.

require copying the previous delta view. The view is updated using A f;, without computing any
aggregation or join.

In Rule B, the delta view is obtained as a projection of the previous view change, over the view
attributes. Observe the use of Af,’, i.e., the cube change propagated from views below f; in the

lattice.

Example 14 An optimized lattice for our running example is depicted in figure 2.12. The dashed
lines represent the derived expressions changed using rule A; the dotted lines represent the derived
expressions changed using rule B; the solid lines represent the derived expressions changed with rule
C. Here, the edges are labeled with a dimension name when the join with the dimension must be
included in the expression.

Consider for example an instance update Dellnstance(Product,itemld,iy). For our running
data cube, the delta view ASales_BSW would be computed using Rule A. The delta view at the
bottom of the lattice, ASales_ IS D, will be:

itemld storeld day sales

19 S1 dy -20
ig S92 d1 -20
io 52 dy -40

Thus, applying Rule A, ASales_BSD would only require to replace every 1o in the first column,
by by. Recall that we still store the tuple < i9,be, all >, thus, we can apply Rule B for computing
the view ASales_ASD, from ASales_.BSD. In this case, ASales_ISD" will be:



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 43

brand All storeld day sales

b2 all S1 dl -20
b2 all S9 dl -20
b2 all S9 dg -40

It is worth noting that computing the view ASales_ ASW in Example 14 does not require a
join with the Time dimension, as it is in a path including ASales_ BSD <r;ne ASales_ BSW, and
we can choose the delta view ASales_ BSW as a predecessor. The only views in Example 14 which
require a join, are the ones inside a box in Figure 2.12.

It is now straightforward to devise an algorithm which generates a plan leading to reduce the
number of joins and aggregate computations while performing view maintenance due to instance

updates.

Algorithm 3
Input: A data cube dc, its view lattice, and an instance update u.

Output: A plan (a subgraph of the optimized derived lattice), that chooses one direct predecessor

for each node.
e [or each node N(GB) such that | € GB:

— if u = Dellnstance(d, 1, 1)
* For each node N (G B) such that | € GB, derive its view change using the expressions
of Figure 2.10 and Rule C;
— if u = AddInstance(d,l,1, P)
¥ choose a node GB', immediately below G B, using one of the well-known methods for

computing aggregates (v.g. [AGST96]). As a default, the predecessor with the least

estimated size could be used;

e For each node N (G B) such that | ¢ GB, choose as predecessor the node N(GB'), immediately
below (i.e., connected by a direct edge), which differs with GB in only one level in d, giving

priority to changes which can be computed using Rules A or B.

Note that Algorithm 3 only in the case of an AddInstance, and for the nodes N (G B) such that

[ is in G B, computes the cube view using derived expressions containing aggregations and joins.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 44
AAA
AAW ASA\BAA
ASW BAW BSA
e
ASD\ BAD BSW
\ \

50 [mp] (W]

AAD

Figure 2.13: The plan generated for update Dellnstance(Product, Item,i3).

In Chapter 3 we compare the performance of this algorithm for a Dellnstance operation and the

SUM aggregate function, against the plain summary-delta algorithm.

Example 15 Figure 2.13 shows the graph for the plan derived for the data cube of example 11,
for a Dellnstance(Product, Itemld,i3) update. The nodes inside a box represent the cube views
such that | € GB. The sub-lattice indicates which predecessors must be chosen. We can proceed

analogously for the case of an AddInstance operation.

2.5 Complex Instance Update Operators

In Section 2.3 we introduced a set of operators which allow updating dimensions in the multidi-
mensional model presented in Section 2.2. Moreover, in Section 2.3.3 we introduced the Specialize
operator, which can be defined in terms of the basic structural update operators. At the instance
level, many common updates to dimensions would result in long sequences of primitive updates, as
we will show below. Thus, a set of complex instance update operators is needed in order to capture
such common sequences and encapsulate them in a single operation.

Although the set of complex operators we will introduce is not the only one we could devise,
we will show through examples in this section, and through a case-study in Chapter 3, that they
represent quite accurately many usual real-life situations.

The complex instance update operators we will define are:

e Reclassify

e Split



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 45

Region
Category

Subregion gl 92 93 &
Sdesperson
@ (b)

Figure 2.14: Reclassification

o Merge

e Update

2.5.1 Reclassify

Let us add a dimension Salespersons to our running example, with schema and instance depicted
in Figure 2.14. Salespersons are grouped into subregions and regions. An orthogonal classification
also groups salespersons into different categories. Initially, as Figure 2.14 shows, subregion srs
belongs to region r3. At some time it is assigned region ry. It is clear that this could be performed
in a data warehousing environment like the one introduced in Section 2.2 as a transaction involving
a series of Dellnstance and AddInstance operations. Due to the preconditions of the primitive
operators, six such operations would be necessary. Let us analyze how many graph operations
this entails on the graph representing the dimension instance. Dellnstance(d, salespersons, s3),
and Dellnstance(d, salespersons, s4) require two edge deletions each. Dellnstance (d, subregion,
sr3) takes an additional edge deletion. AddInstance (d, subregion, srs,{ry}) takes one edge ad-
dition, and finally AddInstance (d, salespersons, s3,{srs,cz}) and AddInstance (d, salespersons,
s4,{srs, cs}) take two edge additions each. This gives a total of ten graph operations over the dimen-
sion Salespersons. On the other hand, it is clear that this could be done in just two steps: deleting
the edge (srs,r2), and adding the edge (srs,r3). This operation is denoted Reclassification, and

we will express it as Reclassify(Salespersons, subregion region, srs, r3).

Operator 8 (Reclassify) Given a dimension d=((dname, L, <), p), a pair of levels |, and I}, a

pair of elements x, € instset(l,) and zy € instset(ly); Reclassify(d, la, b, Xa, Xb) is a@ new dimension



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 46
all
/\fl -~
da
4 \A/ -
vr | ez ;Ax
‘ a3

Figure 2.15: Reclassification
((dname, L, <), p') s.t.:

o 00 =i \{(za, 2))lpp(20) = 2} U{(20, 20) }3

° p’gf = péj, for all other levels I;, ;.

o The new dimension remains consistent.

Reclassifyis not defined for every possible dimension, as is shown in Figure 2.15. In this abstract
dimension, if we reclassify a9 from b; to by, consistency would be violated, because element i3 in the
bottom level could reach different elements in level C'. However, note that as level B is the only one
that rolls up to level F, the fact that by and by roll up to different elements in instset(F) does not
prevent reclassification. This observation leads to a general condition under which a reclassification

may always be performed.

Definition 13 (Conflicting Levels) Let us suppose we have a dimension d, two levelsl,, ly, such
that [, < Iy, and two elements x, € l,,xy € lp, defined as in operator 8. We say a level Iy € d
s.t. Iy =% Iy, is conflicting w.r.t. reclassification, if there exists a level [; s.t. [; <* [, there is an
alternative path between l; and l; not including (1, 1), and z, is reached by at least one element in

instset(l;). A conflicting level is minimal if it is not reachable from any other conflicting level.

Lemma 2 (Definiteness of the Reclassify Operator) Reclassify(d, |, b, Xa, xp) is defined if
and only if:

e there are no conflicting levels in d;

o for every minimal conflicting level Iy, p*g’g(.r) = p*gl’j(mb) holds, where P;Z(%) =z.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 47

Proof Lemma 2 . For the “only if,” suppose that l is a conflicting level, ; is defined as in
Definition 13, and there exists an element e € instset(l;) s.t. e reaches x,. Moreover, suppose that
p*§§($b) = el,p*§:(m) = ey,€1 # e3. In this case, it is clear that Reclassify(d, la, lb, Xa, xp) would
lead to an inconsistent graph, because p*gf(e) = ey, and p*gf(e) = €9, through two different paths.
For the “if,” suppose that Reclassify(d, la, Ib, Xa, Xp) is defined; thus, it must lead to a consistent
dimension. There are two possible cases: (1) no conflicting levels exist, in which case, nothing else
is required, and the reclassification only implies adjusting the rollup function ,052(%) from z to xp,
or (2) ly, is a conflicting level w.r.t the proposed reclassification. In this case, let us suppose, again,
that e € instset(l;) exists, and p*?j(e) =z, . Asly is conflicting, if p*gf(e) = ey through a path
not including (14, ly) because, by hypothesis, reclassify is defined, this must hold through any path,

including one passing through l,,1, or both. Thus, p*j’; (z)= p*ﬁf(mb) must hold.

From Lemma 2 it follows that in a relational implementation, a reclassification is always more
efficient than the equivalent sequence of primitive operators, because when the preconditions hold,

updating the rollup function takes only one tuple insertion and one tuple deletion (see Chapter 3).

2.5.2 Split

Suppose for instance, some country is divided into four regions, north, south, east, west, in order to
assign salesreps, and someone decides that the northern region should be divided into two or more,
because it is getting too crowded, and more salesreps must be assigned to it. We need an operator
that can address this situation, this is, an operator which lets the user specify which salesrep is
assigned which region, and automatically reorganize the dimension while keeping its consistency.

Formally:

Operator 9 (Split) Given a dimension d=((dname,L,=<),p), a level l,, an element z, €
instset(l,), a list £ of the form {xqy,...%.,}, where z,; € dom(l,) \ instset(l,), another list
P of the form P = {z,[(l1 : listy) ... (L : listy)];. . s zan[(lh 2 listy) ... (Ln @ listy,)]}, where
li X lgyi = 1.m, list; is a list of elements in instset(l;), of the form (z1,...,2x) s.t. py(2:) = 243

Split(d, la, Xa, E, P) is a new dimension ((dname, L, <), p),where :
° p’gf = p?j \ {(xz,:va)|p§:‘(:vz) =2, U{(25,24;)|2a; € E,x; € list; s.t. x44l; : list;] € P};

l i i _ .13 i _
o P = pga \ {(za, $i)|p§a(%) =z} U{(2aj, zi)|2q;[li : list;] € Pz € EN péa(aca) =a;}



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 48

Figure 2.16: Split operator.

l {
° p’lf = p;}, Jor all other levels I;, ;.
o The new dimension must remain consistent.

Example 16 Figure 2.16 shows an abstract dimension. Suppose we want to split element d
into two elements dy and dy in the domain of level D. The operation will be denoted as:
Split(dname, D, d, {dy,ds},{d1 : (B : (b1,b2)), (C : (c1,¢2));d2 : (B : (b3)),(C : (e3))}). This
expression assigns a set of elements in every level reaching directly level D (i.e. B and C), to each
new element into which d splits (i.e. dy and dy). Note that the user must assign the rollup functions
corresponding to the new values dy and dg, and this assignment must be s.t. the dimension remains

consistent. In this example, by, by, c; and co, were assigned to d;.

Definition 14 (Conflicting Levels for Split) A levell, is conflicting with respect to Split(d, l,, 24,

E, P) if there exist at least two levels l; and l; such that l; <[, and [; < [,.

Lemma 3 (Definiteness of Split) Given a split operation Split(d, l,, xa, E, P), if I, is not a con-
flicting level with respect to split, any list P defined as in Operator 9 will leave the dimension

consistent after the operation.

Proof Lemma 3 [t is trivial to see that if there is at most one level | such that | < 1,, any valid
mapping defined by P will yield a consistent dimension. For every level | such that [, < [, by
definition, every element in E will roll up to the element in instset(l) to which z, rolled up before
the split. Thus, no consistency violation could be possible “upward” in the lattice. If there is at
most one level lg such that lg < 1, (by hypothesis there are no conflicting levels), no consistency

violation could occur “downward” in the lattice.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 49

The former property is relevant when implementing the Split operator, because it makes it
possible to avoid the costly consistency checking. For instance, in Figure 2.16, the only conflicting

level is D. If a Split over any other level occurs, no consistency checking must be performed.

2.5.3 Merge.

The Merge operator performs the inverse of Split, i.e., it merges two or more elements in a dimension
level into a single one. For example, several airlines could become a single one as a result of a
corporate fusion. Or, in our salespersons example, two subregions(e.g. north east and north east)

could become a single one(e.g. north).

Operator 10 (Merge) Given a dimension d=((dname, L, <), p), a level l,, an element zn such
that xn € dom(l,) A xn & instset(l,), a set of elements X = {z1...2,} € instset(l,) s.t. all the
elements x; € X rollup to the same element in every level | s.t. |, < [; Merge(d,l,, X, zn) is a new

dimension ((dname, L, <), p'),where :

la la a 4 a .
Pt = ot \ (i, 2)lpp (i) = 25,25 € XYU{(2i,2n) o (2i) = 25,25 € X

l { {
Pl =p \{(ziyz;)} U(an, 25) ), 20 € X, p) (20) = 25, 1o 2 13

p’gi = péj, for all other levels [;, ;.

o The new dimension remains consistent, i.e., verifies all the properties stated in definition 5.

Example 17 Figure 2.17 shows an example of the above definition. The operation

Merge(d, E, {eg, e3}, X,) keeps the dimension in a consistent state.

Note that, for a somewhat more general definition, we could have omitted the condi-
tion stating that every element in X must rollup to a single element in all the levels above
l, in the hierarchy. However, this condition makes Merge and Split symmetric, that is,
Merge(Split(d)) = d. For instance, in Figure 2.16, if after the split we perform a merge of the
form Merge(dname, D,{d;, ds}, d), this operation would turn the dimension back to its original
configuration.

Let us now give the intuition of why Merge may be more efficient than the equivalent sequence
of AddInstance and Dellnstance operations. Consider the following merge operation in our run-

ning example: Merge(Salespersons, subregion, s, {srs, srs}). This operation would take three edge



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 50

A

/
f1 13

Figure 2.17: Merge operator

additions and five deletions, after checking that the preconditions for the operator hold. On the
other hand, performing sequences of basic updates, it would take eight edge deletions over the
graph, plus seven edge additions to obtain the same result. This pattern remains valid for most

dimension schema and instances configurations.

2.5.4 Update.

Finally, we need an operator which only changes the value of an element, keeping the structure
and rollup functions unchanged. For instance, suppose a brand name changes, say, for marketing
reasons, but the Company owning the brand remains the same, as well as the set of products holding
the brand. Again, all these changes could be reflected by a sequence of individual insertions and

deletions, but simply renaming the brand would be a more efficient solution.

Operator 11 (Update) Given a dimension d=((dname, L, <),p), a level l,, an element z, €

instset(l,), and an element z,, € instset(l,); Update(d, la, Xa, Xn) is a new dimension ((dname, L, <

), p') s.t.:
o 07 = pp \ A (@as 2) 0 (2a) = 23 U { (20, ) 07 (2a) = 25} )5
o 010 =i \ (g wa)lpp?(2)) = 2} U{ (25, 20) 012 (27) = 24} };

o p,) = pij, for all other levels I;, ;.



CHAPTER 2. MULTIDIMENSIONAL UPDATES AND VIEW MAINTENANCE 51

2.6 Summary

In this chapter we have introduced the concept of dimension updates in a multidimensional model.
We have presented the model and given an algorithms for efficient data cube maintenance in the
presence of these updates. We also introduced a set of basic and complex operators which update
the structure and instances of a dimension. We claim that, although usually overlooked, allowing a
dimension to evolve instead of rebuilding it from scratch when an update occurs, is a feature that

adds value to a data warehouse implementation.



Chapter 3

Implementation of Dimension

Updates

In this chapter we present a relational implementation of the model introduced in Chapter 2. The
system was built following the OLEDB for OLAP standard. The syntax for the update operators is
an extension of MDX, the emerging standard language proposed by Microsoft for multidimensional
databases [Mic98]. This choice was made taking into account the wide set of client tools which can
interact with OLEDB for OLAP providers, and the growing number of opinions considering MDX
as a potential standard for access and manipulation of multidimensional data [TBG199]. Thus, we
implemented an OLEDB for OLAP provider which we called TSOLAP, and a data visualization
tool, TSShow, allowing to graphically display the structure and instances of a set of dimensions.
This chapter is organized as follows: in Section 3.1 we discuss the mapping from the multidi-
mensional to the relational model. In Section 3.2 we report experimental results comparing how
two relational representations of the multidimensional model perform with respect to dimension
updates. Section 3.3 presents a short review of OLEDB for OLAP and MDX standards. In Section
3.4 we describe the implementation of TSOLAP. In Section 3.5 we describe how TSOLAP could
be used by OLE DB for OLAP consumers, and introduce TSShow. We conclude in Section 3.6.

3.1 Mapping Dimensions to Relations

In this section we discuss different ways in which the dimensions described in Chapter 2 can be

represented in the relational model. We study two possible implementations:

52



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 53

e dimensions stored as a single table(denormalized representation);

e dimensions stored as a set of normalized tables(normalized representation).

3.1.1 Denormalized Relational Representation

In Section 2.4 we defined the relational representation of a dimension d as a tuple Ry = (Sq,74),
where S; = (rname, A, F) is the schema of the relation and 7} is the set of tuples in the relation
representing d. The set F contains a functional dependency [, — [ for each pair of levels [,, [, € L
such that [, < [, and A contains an attribute [ for each level [ € L. We call this representation

denormalized. Let us describe the denormalized relational representation in more detail.

Definition 15 (Weak Dependency) Given a relation schema R, and a functional dependency
F, we define I as weak if for every instance r € R, F holds only over tuples in r that do not include

null values.

The functional dependencies in F are weak, because the model allows dimensions where a level
l # lins could be such that card(Leaves(l)) > 2 (i.e., dimensions where at least two elements in

instSet(l) are not reached by any element in a level below [ ).

Example 18 The denormalized representation of the dimension depicted in Figure 2.5(b) is the
following:

itemld brand company category
null by co1 null
19 b coy c1
13 b3 co9 Co
14 b3 co9 Co
15 b3 co9 co

The following functional dependencies hold: F = {itemld — brand, brand — company,
itemld — category}. Inserting a new brand, e.g. bs for company coy, will add a tu-
ple <null, bs, coy,null>.  Thus, a null value will be associated with two different brands

(card(Leaves(brand)) = 2). This shows that the functional dependencies above are weak.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 54

Lemma 4 Given a dimension d = ((dname, L, <), p), and its relational  representation

Ry = ((rname, A, F),Ty) built in the fashion described above, the following hold:
o The set F is a minimal cover of itself, and it is the only possible one.

o T, represents the transitive closure p* of the set of rollup functions p.

Proof Lemma 4 . For the first part of the lemma, we have that, by construction, no side of any
dependency has more than one attribute, each one representing a dimension level. Moreover, as <
does not include redundant edges, the mapping defined in Section 2.J implies that no dependency
can be redundant. These conditions define a minimal cover of a set of functional dependencies. If
we now consider a pair of levels l; and l; in a dimension d, such that l; < [;, this relation defines
the dependency l; — l; (by Definition 3.1.1). We cannot delete any dependency and still have the

same dimension being represented.

For the second part of the lemma, let us suppose a dimension d including levels [, 1y, 1;,1;, where
D= L= G0 =20, L=y G =0y L A%, and 1 A% 1. According to the mapping
defined above, these levels are represented in the relational model as attributes of a relational schema
Saq, named Ay, Ay, Ay, and A,. Let us suppose now that p}‘li(aj) = ag,p?lj(aj) = 037p};ll((13) =
ay, pzll (az) = a4, satisfying the consistency condition. This will be represented in Ty by a tuple of
the form (ay,..,az, .., as,...as). This tuple includes all the possible paths from ay to as, which are

< ay,ag,aq4 > and < ay,as, aq > . Furthermore, this holds for every tuple in Tj,.

3.1.2 Normalized Relational Representation

In an environment in which dimension updates are supported, it is worth to compare the denor-
malized approach against one in which dimension tables are normalized. We propose a normalized
mapping from the multidimensional to the relational model, and then compare it against the de-
normalized representation described in Subsection 3.1.1.

The basic idea is the following: for each functional dependency implied by the dimension hier-
archy, build a table with the attributes in both sides of the dependency.

The normalized relational representation of a dimension d is a pair (Sg, 74) where Sy is the

schema and 7; the instance of the representation. S; and 7y are defined below.

Schema S; = (rname, Sc, F) is defined as follows:



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 55

Instance

rname is dname.

For each level /; such that [; < All there exists a relational schema name(l;, All)[l;] in Sc
(name(l;, All) denotes the name of the relation). Moreover, name(l;, All) is a relation

of arity=1 (“All” is dropped out).

For each pair of levels [;,1; € L such that /; < [;, and I; # All, there is a relational

schema name(l;l;)[l;,1;] in Sec (i.e., name(l;l;) is a relation of arity=2).
For each pair of levels /;,1; € L such that [; <[; there is a weak functional dependency

ril;—1;in F.

Ti is a set of relations defined as follows:

For each relation schema name(l;, All)[l;] € Sc there is a relation with the elements in

InstSet(l;) as tuples.

For each relation schema name(l;,1;)[l;,l;] € Sc we have a relation with the pairs in pgf

as tuples. Thus, if pk(a) = b, then < a,b>€ name(l;,1;)[l;,;].

Example 19 A normalized representation for the dimension of Figure 2.5 will have the same

functional dependencies of Fxample 18. The relational schemas in S, will be the following:

S. = {IB(itemld, brand), IC(itemid, category), BC(brand, company), CO(company),
C AT (category)}.

Relations CO and C' AT represent the edges company — All and category — All, respectively.

The instance of relation I B(itemlId, brand) will be:

itemld brand

null by
ig by
i3 bs
iq bs

i5 b3




CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 56

3.2 Denormalized vs. Normalized Representations

In a previous work [HMV99b] we described the algorithms which compute the update operators in
a ROLAP implementation, either normalized or denormalized. In that work we compared how the

normalized and denormalized relational representations perform with respect to dimension updates.

3.2.1 Analytical Results

The results presented in the work mentioned above showed that, in general, Generalize, Specialize
and DelLevel are more expensive in the denormalized representation. The reason for this is that in
the normalized representation, a generalization or specialization reduces to the addition of a table,
while in the denormalized representation a schema update of the relation is required(an attribute
must be added to the table representing the dimension). The deletion of a level in the normalized
representation is implemented by dropping the tables containing attributes representing such level,
while in the denormalized representation table updates must be performed (implemented as a DROP
COLUMN statement). On the other hand, relating and unrelating levels have a higher cost when the
dimension is represented as a set of normalized tables, because the checking of the preconditions
operates over the transitive closure of the rollup functions, which must be computed through a join
of the relations representing the dimension, while in the denormalized representation, as we showed
in Lemma 4, the relation itself represents the transitive closure of the set of rollup functions in the
dimension. For the same reason, instance updates, either single or complex, should perform better

in the denormalized representation.

3.2.2 Description of the Study

Given the theoretical results described in the previous subsection, the main objective of the experi-
ments was studying how the complex instance update operators performed under the denormalized
and normalized relational representations. The experimental results, along with the already com-
mented theoretical ones, would define which representation adopt for our implementation. As an
additional result, we wanted to confirm the intuition on the better performance of the complex
instance update operators over the equivalent sequence of basic ones.

We defined six different dimension configurations, in order to study the influence of the dimen-
sion schema over the performance of the operators. These schemas ran from simple ones to complex

graphs like the one depicted in Figures 3.1 and 3.2. The intention was to test the application of



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 57

the operators at different dimension levels, with different numbers of incoming and outgoing edges.
The structure of the dimension influences the consistency checking the algorithms must perform.
Thus, we wanted to find out how the number of conflicting levels affects the reclassify and split op-
erators in both representations. We focused on these two operators because the merge and update

operators do not require checking complex preconditions.

Normalized and denormalized relations representing the dimensions to be tested were created,
and populated with synthetic data. The algorithm for generating the synthetic data works as
follows: the number of elements in each dimension level (i.e. the cardinalities of the instance sets)
is specified by the user. In each pass, an element ¢ in the bottom level /;,¢ is chosen, and assigned
an element j in every level [; above [;,f in the hierarchy. The same step is then repeated for each
l; until the top level is reached. At each step, consistency is checked. Elements are assigned as
evenly as possible, meaning that in every step, a different element in [; is chosen if it leads to
a consistent dimension. When all elements in a level were chosen, the sequence is re-started. If
eventually some nodes cannot be assigned, they are discarded. The resulting dimension verifies
consistency. The algorithm populates both relational representations with the same information.
As we wanted to simulate real situations, the number of elements in each level decreased as we
populated levels upward in the dimension hierarchy. The number of elements in the bottom level

ran from five hundred to four and a half thousand.

Then, for each dimension configuration, and each dimension instance, reclassification was ap-
plied over different dimension levels(for both relational representations). For instance, considering
the dimension in Figure 3.1, we reclassified an element 7 in level A initially assigned to element j in
level B, to a different element in B. We repeated this procedure for diferent elements in A, taking

the average performing time as a result.

In order to test the split operator, the variables we considered relevant were the cardinality of
the split(the number of new elements resulting from the operator) and the number of elements
currently assigned to the element being split (i.e., the elements which must be reassigned). Thus,
for each dimension configuration and for each level, we chose and element and split it into different
numbers of elements, and repeated the test with a different element(and a different number of

assigned elements).

The chosen metric was the response time for each operator. The reason for this is that response

time is a critical issue in OLAP.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 58

All

Figure 3.1: Schema of a tested Dimension

All

Figure 3.2: Another testing dimension schema configuration

The implementation language was Visual Basic 6.0, and the database, SQL Server 7.0 running

on a Pentium II1 500 Mhz desktop computer, under Windows NT 4.0 Operating System.

3.2.3 Experimental Results

We will describe the results we obtained for the reclassify operator applied over the dimension of
Figure 3.1, and for the split operator applied over the dimensions of Figures 3.1 and 3.2. These
results are representative of the overall experimental results. Figures 3.3 to 3.5 show the results
for the reclassify operator. The interpretation of these charts is as follows. Let us consider for
instance Figure 3.4. A point in each curve in this figure was obtained as follows: for the dimension
depicted in Figure 3.1, and for an instance such that such that the number of elements in level B
is indicated in the horizontal axis, several reclassifications were performed from elements in B to
elements in level C, in both representations. Each point represents the average response time for
these reclassifications.

We can observe that the denormalized representation performs better than the normalized one,



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 59

RECLASSIFY FROM A to B

Time(msec)

700 +

500

300 +

denormalized

# elements in A

t
500 1500 2500 3500 4500 5500

Figure 3.3: Results for Reclassify(1)

RECLASSIFY FROM B to C
Time(msec)

700 1

500 +

Normalized

300 —

wo | =

250 500 750 1000 1250 1500

denormalized

# elements in B

Figure 3.4: Results for Reclassify(2)

no matter the level in the graph at which the updates occur. Response times in Figure 3.5 are
much better than the ones in Figures 3.3 and 3.4, and times in Figure 3.4 are slightly better than
in Figure 3.3, denoting the influence of the number of elements in the levels. Also note that at
higher levels in the hierarchy, the curves get closer to each other, meaning that both representations
perform similarly as the number of elements in the level to be reclassified decreases.

Figure 3.6 shows results for the splitting of elements in level E of the dimension depicted in
Figure 3.1. Figure 3.7 shows the results obtained splitting elements in level D in the dimension
of Figure 3.2. In both cases, the results, again, favored the denormalized representation. As we
explained above, the variables here are the number of elements to assign to the newly created nodes,
and the number of new elements to be created. For instance, in Figure 3.6 we can see that when
we split an element into 15 in level E of the dimension of Figure 3.1, and assigned 30 elements in
the levels below E, the operation was completed in 1320 and 2416 milliseconds in the denormalized

and normalized representations, respectively.

Finally, we compared the performance of the complex operators against equivalent sequences



CHAPTER 3.

IMPLEMENTATION OF DIMENSION UPDATES

RECLASSIFY FROM C to E

Time(msec)

200 +

150 +

Normalized

| denormalized |

100 |,

50+ !

# elements in C

Figure 3.5: Results for Reclassify(3)

card(Split})  #telements to assign

Time(denormalized)(msec)

Time(normalized)(msec)

3
5
7
11

15

6
10
14
22
30

164
272
440
772
1320

1364
1444
1600
1916
2416

Figure 3.6: Results for Split on E - Configuration of Figure 3.1

card(Split})  #telements to assign

Time(denormalized)(msec)

Time(normalized)(msec)

3
5
7
11

6
10
14
22
30

220
552
880
1488
2420

820
1096
1436
1984
2860

Figure 3.7: Results for Split on D- Configuration of Figure 3.2

60



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 61

Type Time(denormalized)(msec) Time(normalized)(msec)
card(Split)= 2 108 858
Add + Del (card(Split)=2) 1524 2636
card(Split)=3 220 820
Add + Del (card(Split)=3) 1850 2926

Figure 3.8: Results for Split vs AddInstance/Dellnstance on D

of basic ones under both representations. All the tests favored the complex operators and the
denormalized representation. For the dimension of Figure 3.2 the results are shown in the table
of Figure 3.8. For instance, splitting an element in level D into two new elements using the
split operator, took 108 and 858 milliseconds in the denormalized and normalized representations,
respectively. Performing the equivalent sequence of AddInstance and Dellnstance operations we
obtained response times of 1524 and 2636 milliseconds. Figure 3.8 shows that similar results were
obtained for a split into three elements.

Based on the results presented above, in the implementation we will describe in Section 3.4 we

adopted the denormalized representation.

3.3 OLEDB for OLAP and Multidimensional Expressions(MDX)

In order to allow a thorough understanding of the implementation we will present in Section 3.4, we
give a very short description of OLE DB for OLAP, the multidimensional extension to Microsoft’s
OLE DB data access layer [Mic].

Roughly speaking, OLE DB is a set of low level interfaces allowing access and manipulation
of different data types using the OLE Component Object Model (COM). Thus, OLE DB is more
powerful that the well-known ODBC because it is not restricted to relational data. The explosive
growth of Internet led to applications accessing heterogeneous data, like multimedia data, semi-
structured data and so on, requiring tools allowing to handle them efficiently. Microsoft provided
OLE DB as an answer of the database industry to such requirements. In an OLE DB architecture, a
consumeris any object consuming an OLE DB interface, while a provider is any software component

which offers OLE DB interfaces.

OLE DB for OLAP is an OLE DB extension allowing to access and manipulate multidimensional



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 62

‘ Application ‘

ADO

‘ OLEDB for OLAP

I

Relational Non-Relational |Multidimensional
ISQL Server Mail Microsoft DSS
Oracle Video Informix Meta Cube
Sybase, etc. other other

Figure 3.9: OLE DB for OLAP Architecture

data like cubes, dimensions, levels and measures, no matter how these data is physically stored.
This is the reason why this standard is expected to represent for data warehousing what ODBC
represents for relational databases. The OLE DB for OLAP architecture is depicted in Figure 3.9.
In this figure, we can see that an application may access the data sources either via OLE DB for
OLAP or via ADO, a set of high-level functions which allows users to work at a higher abstraction
level.

For querying multidimensional data, OLE DB for OLAP employs multidimensional expressions
(MDX). In this section we will just give the flavor of the language. In Section 3.4 we will show how
we extended MDX in order to add statements for updating dimensions.

An MDX expression has the following basic form:

SELECT [<axis specification> [,<axis specification> ...] ON COLUMNS,

[<axis specification> [,<axis specification> ...] ON ROWS
FROM <cube specification>
WHERE <slicer specification>

If only one dimension is required in the output, only the ¢ ‘0N COLUMNS’’ part is displayed
in the SELECT clause. The cube specification in the FROM clause indicates the cube on which the
multidimensional expression query will run. MDX supports a unique cube in each MDX query.
The slicer specification on the WHERE clause restricts the extracting of data to a specific dimension
or member. A member in MDX is a component of a dimension level. In terms of the model we
introduced in Chapter 2, a member is an element of the instance set of a level. If we want to
retrieve all the members in a dimension level, the MEMBERS keyword can be used in MDX. Also, in
MDX there is a distinguished dimension called MEASURES, containing the measures of the cube.

For instance, let us consider the data warehouse of Example 3, and the following query over a



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 63

cube based on the fact table DailySales :
SELECT {Store.brand.MEMBERS} ON COLUMNS,
{Time.day.MEMBERS} ON ROWS
FROM [Sales]
WHERE ([Measures].[sales])

The query returns the table:

by by bs
dy |10 40 0
dy | 0 40 O
d; | 0 0 30

The data cube specified in the FROM clause can be created in MDX using the DDL(Data Defini-
tion Language) statement CREATE CUBE. Before going into the description of this statement, let us
make some remarks about how the model introduced in Chapter 2 addresses dimension hierarchies.

In Example 3, the level itemld in dimension Product is related to levels brand and category,
defining two ways for reaching the distinguished level All. We call this hierarchy a multiple-path
hierarchy.

Definition 16 A dimension hierarchy is called multiple-path hierarchy if there exist at least to
different paths between l;,; and All. A dimension hierarchy such that there is a unique path from

ling to All is called a single-path hierarchy.

Figure 3.10 shows the MDX’s CREATE CUBE statement for the multiple-path hierarchy of Exam-
ple 3. On the other hand, Dimension Store in Example 3 is an example of a single-path hierarchy.
The model we introduced in Chapter 2 supports multiple-path hierarchies in a natural way. On the
contrary, MDX does only support multiple-path hierarchies in a limited way, although it is clear
that these kinds of hierarchies are present in most real-life situations. Let us show this limitation of
MDX by creating a cube DatlySales based in the dimensions and the fact table of Example 3 using
the CREATE CUBE statement. The command is depicted in Figure 3.10. Notice in this figure that,
in dimension Product, level itemld belongs to two different hierarchies, in this case called ProdCat
and ProdBrand. The data cube and the dimensions are populated with an INSERT INTO statement

[Mic98]. Thus, MDX does not support the concept of rollup functions. Moreover, integrity and



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES

CREATE CUBE DailySales (
DIMENSION TIME TYPE TIME,
HIERARCHY [Weekly],
LEVEL [all] TYPE ALL,
LEVEL [day] TYPE DAY ,
LEVEL [week] TYPE WEEK,
DIMENSION PRODUCT,
HIERARCHY [ProdCat],
LEVEL [ProdCat alll TYPE ALL,
LEVEL [ProdCat itemId] TYPE YEAR,
HIERARCHY [ProdBrand],
LEVEL [ProdBrand all] TYPE ALL,
LEVEL [ProdBrand company],
LEVEL [ProdBrand brand],
LEVEL [ProdBrand itemId],
DIMENSION STORE,
LEVEL [all] TYPE ALL,
LEVEL region,

LEVEL storeld,

MEASURE [Sales] FUNCTION SUM )

Figure 3.10: CREATE CUBE statement in MDX

64

consistency checking is not performed. The implementation we will show in the next section, based

on our multidimensional data model, gives a solution for the limitations described above.

We will not go any further into MDX description. Its complete syntax could be found in the

references [Mic98, Mic].

3.4 MDDLX: an Extension to MDX

MDX does not provide update statements for dimensions. Once dimensions and data cubes are

created, they remain unchanged “forever”. This is reflected in the CREATE CUBE statement described

in Section 3.3, where all the dimension levels must be defined at cube creation time. If a situation

requiring a dimension update arises, the dimension must be rebuilt from scratch, along with the

data cube. We would like to be able to update dimensions and data cubes as soon as it is required,



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 65

-/

[ Application

ADO

[ OLEDB for OLAP + Dimension Updates }

l

Multidimensional +
Dimension Updates

oDBC

Relational

Oracle, Sybase,
SQL Server, other.

Figure 3.11: TSOLAP Architecture

without throwing away any current data.

We showed in Section 3.3 that in OLEDB for OLAP, a multiple-path hierarchy is seen as a
set of single-path hierarchies, which seems to be an unnatural approach. For example, in order
to build a dimension like the one depicted in Figure 2.1, we would have to define two different
hierarchies, denoted ProdBrand and ProdCat respectively: itemlId — brand — company — All,
and itemlId — category — All. We believe that from the analyst’s point of view, it is important

to address multiple hierarchies in a more natural way, providing a higher level of abstraction.

In order to give a solution to these drawbacks, we developed an OLEDB for OLAP data provider
called TSOLAP, which supports dimension updates and manages view maintenance under these
updates implementing the algorithms presented in Chapter 2. In this section we discuss this

implementation.

3.4.1 Architecture

The system’s architecture is depicted in Figure 3.11. A multi-layered architecture was designed in
which a ROLAP repository is built on top of a Relational Database, which is accessed either via
ODBC or OLE DB (see Subsection 3.4.4). We introduced a layer between OLE DB for OLAP and

the data source. Moreover, we extended OLE DB for OLAP with dimension update operators.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 66

3.4.2 Data Structure

We will classify the tables in the system as catalog tables and non-persistent tables. The latter ones

are tables which are created or deleted with each data cube.

e Catalog tables.

Figure 3.12 depicts the data structure supporting the multidimensional repository. This
catalog is stored in the same relational database as the data cube (Figure 3.11), and is
accessed by the TSOLAP routines when an update or query is submitted (see Figure 3.19).
We briefly describe each table in the catalog.

— TSCUBESS$. Contains a row for each one of the cubes in the system. Stores the cube
name, number of dimensions and measures, and a value informing if the cube was created

with the MATERIALIZE option(see below).

— TSMeasures$. Stores a row for each measure of each cube. This row stores the data
type and the kinds of aggregation for the measure (1-SUM, 2-COUNT, 3-MIN, 4-MAX,
5-AVG).

— TSDimensions$. Contains a row for each dimension of each data cube in the system,
informing name, dimension type, representation type (0-Denormalized, 1-Normalized),
and the name of the dimension table, of the form cubename_dimension$, for example
salescube_geography$. The dimension type allows defining different kinds of dimensions.
In the present implementation, as we will explain below, the Time dimension has special

features, so it must be distinguished from the other ones.

— TSLevels$. Stores information about all the levels of each dimension of each cube in the
system. For each dimension level [, besides the basic data, it stores the number of levels

above and below .

— TSLevelsd$. Stores the dimension schema, i.e., every edge in the graph representing a

dimension schema.

— TSHierarchies$. Defines every hierarchy in the dimensions in the system. Recall that
MDX does not support multiple hierarchies. Thus, in order to be compliant with OLE
DB for OLAP, hierarchies must be exported as if they were single-path ones. For in-
stance, attribute hierarchy_name is the name of each single-path hierarchy, like the ones

shown in Figure 3.10.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 67

t scubes$ t sdi nensi ons$
cat al og_nane cat al og_nane
schenma_nane schenma_nane
cube_nane cube_narme
cube type representati on_type
di mensi on_count di mensi on_t ype '
measur es_count di nensi on_cardinality
descri ption di nensi on_nast er _t abl e
materi ali ze_opti on

t

t sneasur es$
cat al og_nane

tsl evel s$

schema_nane cat al og_nane
cube_nane schema_nane
measur e_namnme cube_nane

dat a_t ype di nensi on_nane
descri pti on I evel _nane

dat a_t ype

t shi erarchi es$ T

cat al og_nane

schema_nane tsl evel sd$

cube_nane cat al og_nane

di nensi on_nane schema_nane

hi er ar chy_nane cube_nane

| evel _nane di nensi on_nane

I evel _nunber source_| evel _nane
|l evel _cardinality target _I| evel _nane

Figure 3.12: System’s Catalog

e Non-persistent tables

These tables are created when a data cube is created, and they are eliminated as soon as the

data cube they are associated to is dropped.

— Dimension tables. As we said above, for each denormalized dimension there is a table
denoted cubename_dimension$. This table is created on-the-fly, and a row is inserted

into the table TSDimensions$.

— Materialized View Catalog. A catalog for materialized views is created on-the-fly for each
data cube. Each catalog is denoted vmt <cubename$> . For instance, for a SalesCube
data cube, the catalog for its materialized views will be denoted vmtSalesCube$. This
table stores information about the name and the grouping level of the view. The fact

table has grouping level zero.

— Materialized View Tables. Each table name is given by the System and stored in the

catalog. The table name is of the form ts <random number$> .



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 68

TSCOLAP. dlI | ‘ TSMDXPar ser . dl | ‘
CCl assFactory
Cl Unknown ggbﬁﬁc
CDat aSour ce
CSessi on
CRowset
CCommand
CDat aset
CTSProperties TSCube. dl |
CTSCube
CTSDi nensi on
CTSDag
CTSLevel
CTSMeasur e
CTSRepr esent ati on TSDATA. dl|
CTSDat a
TSHel pre. dl | ‘
Common use libraries

General Functions

Figure 3.13: System’s Libraries

3.4.3 Libraries

The software components of the system (i.e., those components which manage the data cube, the
parser and the materialized views) where grouped into different libraries, depicted in Figure 3.13.

The basic functionalities needed to comply with the OLEDB for OLAP specifications were
implemented in a library named TSOLAP.dIl. The classes which implement the connection between
a consumer and a provider are stored in this library. Thus, this class implements the methods
which detect a data source, create a new session, create a new command, etc. Library TSCube.dll
contains the classes which manage every aspect of the data cube. Every MDDLX command is
applied to an object of the class CTSCube, which demands tasks from other objects in the system.
CTSRepresentation implements the update operators, CTSDag manages the dimension schema
(i.e. adds and deletes edges, verifies if two levels are parallel, detects conflicting levels, etc.).
CTSLex and CTSYacc implement the MDDLX parser(implemented using PCLex and PCYacc),
and CTSData.dll manages the creation and maintenance of materialized views. In Figure 3.19 we

show how all these libraries interact.

3.4.4 Data Access

The provider connects to a data source in order to retrieve and store all the data managed by

the system. Two connection methods are supported: (a) ODBC Connection; and (b) OLE DB



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 69

OLEDB for OLAP
consuner
application

OLEDB for OLAP
pr ovi der
TSOLAP. dI

ODBC dri ver

MSORCL1. dl | (ORACLE dri ver)
DBODBC6. dl | ( SYBASE Dri ver)

dat a source
Figure 3.14: ODBC connection

Connection. Different vendors provide a wide range of ODBC drivers. Figure 3.14 shows the
schema for an ODBC connection. For the OLE DB connection we used Microsoft’s OLE DB
providers for ODBC, MSDASQL for SQL Server and MSDAORA for ORACLE. Note in Figure
3.15 that this OLE DB driver adds a new layer, but allows to reach any DBMS via OLE DB.

3.4.5 Adding Dimension Update Support to MDX

With the support of the architecture described in the previous sections, we developed a Multidi-
mensional Data Definition Language which we called MDDLX. It constitutes an extension to MDX
supporting the model of Section 2. We provide statements for the primitive structural and instance
update operators, as well as for the complex operators. We remained as faithful as possible to the
formal definition of these operators. We also provide a limited SELECT statement for displaying

the results, although this is not the focus of our work. The syntax is described below.

e The SELECT statement
SELECT axis_specification ON COLUMNS
FROM cube_name

WHERE slicer_specification



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 70

CLEDB for OLAP
consuner
appl ication

OLEDB for OLAP
provi der
TSOLAP. dI |
OLE DB OLE DB
MSDAORA ( ORACLE OLEDB VMSDASQL (SQL Server OLE DB
provi der) provider )
ODBC dri ver
MSORCL1. dl | (ORACLE dri ver)
DBODBC6. dl | ( SYBASE Dri ver)
data source data source

Figure 3.15: OLE DB connection

e Creating data cubes
CREATE CUBE cube_name (
DIMENSION dimension name BOTTOM LEVEL level name TYPE data_type
[REPRESENTATION TYPE [ NORMALIZED | DENORMALIZED ] 1]
[,DIMENSION dimension name BOTTOM LEVEL level name TYPE data_type
[REPRESENTATION TYPE [ NORMALIZED | DENORMALIZED ] ,... ]

[ [,TIME DIMENSION dimension name TYPE time type FROM time value TO time_value]
s eel]

MEASURE measure name TYPE data_type FUNCTION measure_type

[,MEASURE measure name TYPE data type FUNCTION measure type , ...] )
FROM TABLE table_name

[WITH MATERIALIZE]

In the statement above, table_name is a table such that each column name in it is the name

of a dimension in the cube. This table is the one from which data is downloaded into the



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 71

data cube. It is assumed that this table has gone through the data extraction and cleaning
processes. More, table_name may include columns that will not be loaded into the cube. The
base fact table for the cube will be generated at cube creation time as a materialized view with
the least level of aggregation (grouping level=0 in table vmt <cubename$> above). A new
dimension is created for each DIMENSION dimension_name statement, such that a value in the
corresponding column of table_name becomes a value in the bottom level of dimension_name.
In summary, after CREATE CUBE is executed we will have one dimension for each DIMENSION
dimension name clause, each one with just one level (plus the distinguished level All). The

other levels are created with the update statements described below.

The TIME dimension is generated on-the-fly, taking into account the time column in the table
table_name, which is mandatory. Then, the base fact table will be populated with data facts

in the interval defined by the clause FROM time_value TO time_value.

The WITH MATERIALIZE clause specifies if cube materialization is required. This implies that
any subsequent dimension update will also require view maintenance. We only support full
view materialization at this time. This means that all possible aggregations are created either
at cube creation time, or when a dimension update occurs. Moreover, although the syntax
allows normalized and denormalized representations, only the latter is currently supported.

The total number of materialized views is given by:
M = (H]’:Lnkrdj),
where Ky; are the number of levels in each dimension d; (including All).

e Dropping data cubes

DROP CUBE cube_name

e Creating dimensions
ADD DIMENSION cube name.dimension name
BOTTOM LEVEL level name TYPE data_type [REPRESENTATION TYPE
[ NORMALIZED | DENORMALIZED ] ]
FROM TABLE table_name

Table_name is a one-column table such that the column name is the dimension’s name, and

each tuple is an element in the instance set of the bottom level of the dimension.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 72

e Creating a TIMFE dimension
ADD TIME DIMENSION cube name.dimension name
GRANULARITY time_type FROM time_value TO time_value
[REPRESENTATION TYPE [ NORMALIZED | DENORMALIZED ] 1]

The term time_type can be one of: DATETIME, DATE, DAY, WEEK, MONTH , YEAR, or HOUR.
This statement automatically generates a TIME dimension, in the specified granularity. We
can have different TIME dimensions, with different granularities and different names. This
dimension, again, has only two levels: the bottom level and All. For instance, if the user
specifies a time_type of DAY and two dates, say January 1st, 2001 and February 31st, 2001,
a time dimension with one level,day, is created and populated with thirty-one tuples, each
one for a different day. Of course this does not prevent the user from creating a user-defined
time dimension. For example, a user may want to have a level like “quarter” in the time

dimension, which the system does not provide.

e Updating dimensions

We expressed above that the CUBE CREATION statement creates dimensions with two levels,
one of them being ALL. A dimension must be built using the dimension update statements

described below, which implement the dimension update operators introduced in Chapter 2.

— ALTER DIMENSION cube name.dimension name
GENERALIZE LEVEL level name
TO LEVEL new_level name TYPE data_type
USING ROLLUP FUNCTION table name

Here, table_name is a two-column table representing the rollup function to be applied.
The first column holds the instance set of the level to be generalized, while the second

column holds the values of the new level.

Example 20 The dimension Product in Figure 2.1 was built as follows: a dimension
with levels itemld and All was initially created. Then, level itemld was generalized to
level category. Finally, brand was generalized to company. The statement for the first

generalization is :



CHAPTER

3. IMPLEMENTATION OF DIMENSION UPDATES 73

ALTER DIMENSION DailySales.Product
GENERALIZE LEVEL itemId
TO LEVEL brand TYPE char(10)
USING ROLLUP FUNCTION genitembrand

The table genitembrand has the following tuples:

genitembrand: {(il, bl), (@-2, bg), (@-37 bg), (@-47 bg)}

ALTER TIME DIMENSION cube_name.dimension_name
GENERALIZE GRANULARITY time_type TO time_type

The values for the TIMFE dimension are generated on-the-fly, according to the time gran-

ularities.

ALTER DIMENSION cube name.dimension name
SPECIALIZE TO LEVEL new_bottom_level name TYPE data_type
[USING ROLLUP FUNCTION table_name]
ALTER DIMENSION cube name.dimension name
DELETE LEVEL level name
ALTER DIMENSION cube name.dimension name
RELATE LEVEL level source name TO LEVEL level_target_name
ALTER DIMENSION cube name.dimension name
UNRELATE LEVEL level_sourcename FROM LEVEL level_target name
ALTER DIMENSION cube name.dimension name
ADD INSTANCE new_instance_value INTO LEVEL level name
[TO LEVELS (level_targetl [, ..., level_targetn ])

VALUES (instance_targetl [, ..., instance_targetn ]) 1]

Example 21 The element i5 in Figure 2.5 is inserted with the following MDDLX com-

mand:



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 74

ALTER DIMENSION DailySales.Product
ADD INSTANCE :5 INTO LEVEL itemId
TO LEVELS(brand,category)
VALUES (bs, c2)

The tuple (bs, cz) indicates that is will be assigned to brand bs and category cs.

— ALTER DIMENSION cube_name.dimension_name
DELETE INSTANCE instance_value

FROM LEVEL level_name

— ALTER DIMENSION cube_name.dimension_name
RECLASSIFY instance_value LEVEL from_level_name

TO instance_value LEVEL to_level_name

— ALTER DIMENSION cube name.dimension name
SPLIT instance_value LEVEL level name
TO new_instance value_l [,..., new_instance value.n]
FROM LEVELS (level name.1 [,..,level name.m])
USING ROLLUP FUNCTIONS (tablename.1 [,...,tablenamem])

In the SPLIT operator definition, new_instance value 1 [,..., new_instance_value n]
are the values in which the element represented by instance_value will be split, and
tablename 1 [,...,tablename_m] are m tables, one for each level below level name

defining the rollup functions for each new element(see definition in Chapter 2).

Example 22 The split operation of Example 16 is specified as follows (assume the name

of the cube is SampleCube, and the dimension’s name is TestDim ):
ALTER DIMENSION SampleCube.TestDim

SPLIT d LEVEL D

TO dy,ds

FROM LEVELS (B,C)

USING ROLLUP FUNCTIONS (splitrupBD,splitrupCD)
The tables splitrupBD and splitrupCD have the following tuples:
splitrupBD ={(b1, d1), (b2, d1), (b3, d2)}.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 75

splitrupCD={(¢1, d1), (c2, d1), (c3,d2) }.

— ALTER DIMENSION cube name.dimension name
MERGE instance_value.l [,..., instance_valuen ]
LEVEL level name
TO new_instance_value
— ALTER DIMENSION cube_name.dimension name
UPDATE instance_value LEVEL level name

TO new_instance_value

In the expressions above, the following data types and properties are supported:

data_type : DECIMAL | VARCHAR | CHAR | DATETIME
e time_type : DATETIME | DATE | DAY | WEEK | MONTH | YEAR | HOUR
e measure_type : SUM | MIN | MAX | COUNT | AVG

e instance_value, new_ instance_value, instance_targetl,... : these are elements in the instance

sets of the levels. Thus, their type is the type of the level they belong to.
e axis_specification : dimension_name.level_name

e slicer_specification : dimension_name.level_name = instance_value

3.5 Using TSOLAP

We claimed that any client tool supporting OLEDB for OLAP could be used to display multidi-
mensional data stored in TSOLAP. To show this, we execute our statements using a client tool, an
OLEDB for OLAP consumer) called DataSetViewer, provided by Microsoft as part of MDAC2.0
(Microsoft Data Access Components). In Figure 3.16 we show how a SELECT query is written in
the DataSetViewer editor. The screen is split in three sections: the upper one allows editing a
MDDLX query. The middle one shows query results, either from queries or metadata. The lowest
part of the screen shows the query log, query execution time and error codes. Figure 3.17 shows a
GENERALIZE command. Note the log window, showing the sequence of methods of TSOLAP being

invoked by the consumer (in this case, DataSet Viewer) .



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 76

Figure 3.18 shows in detail the sequence of TSOLAP methods which the consumer must call
in order to connect to the provider. These methods belong to the library TSOLAP.dIl. Figure
3.19 shows the sequence of calls which are triggered when a CREATE CUBE command is posed to the
system(the other MDDLX statements behave in a similar way). Note that after the command is
created and the methods SetCommandText and Frecute called, the provider invokes the data cube
manager, which assigns the responsibilities to the objects in the way described in Section 3.4.3 and

Figure 3.13.

3.5.1 Visualization: TSShow

An important issue of our work is enhancing the user’s capabilities for data analysis. Thus, we
developed a client tool called TSShow which allows visualization of the structure and instances of
the dimensions of every cube in the System. TSShow accesses the catalog tables in order to display
the system’s metadata, as cubes, hierarchies, levels and so on. Information about the dimension
instances is retrieved from the dimension tables themselves. This tool becomes important in an
environment supporting schema and instance updates. Although most of the commercial systems
provide a visualization tool, TSShow not only displays the dimension’s structure and instances, but
also the rollup functions which hold between elements in the dimension’s levels. Figure 3.20 presents
a TSShow screen displaying the cubes and the dimensions in the system. We can see that two cubes
were created, Salescube and Services. The hierarchies of the dimensions are displayed. The screen
depicted in Figure 3.21 gives an idea of how TSShow shows the instances of the dimensions. In

this case a Patient dimension is displayed (see Chapter 4).

3.6 Conclusion

In this chapter we presented TSOLAP, an implementation of the multidimensional model explained
in Chapter 2, and an extension to MDX supporting dimension updates. We also described the
experiments and analytical results which led to adopt a denormalized relational representation of
the multidimensional model. Finally, we introduced TSShow, a visualization tool for dimensions

and data cubes. In the next chapter we will apply our implementation to a case study.



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES

i DatasetViewer _ (Ol %]
File DataSource Session Command Rowset Dataset Trans Epum Misc Tools Emor Window Help
Wi =l v o3| Bl2)x] bl
£ 150LAP - | BEE|
SELECT patient patientid, doctor. speciality OM COLUMN j
FROM services
WHERE [ quantly, dollanvalue |

Fiow Handle | DOCTOR_SPECIALITY | PATIENT_PATIENTID | QUANTITY | DOLLARVALUE

B3 Out 7 4722 I 0

B3 2 7 B2 Z 25
B3 03 17 f4437 2 F5.68
B3 0w 17 54725 1 2284
B3 05 17 B4743 2 B4
B3 06 17 B4754 2 568
B3 w7 17 B4FTR B A7
B3 048 17 54793 2 B5.68
B3 048 17 f4808 4 13648
B3 Dka 17 f4B45 1 1912
B3 b 17 54153 a0 17680
O e 17 54820 1 8397

| Rzt GetDhata(0-00000005, 0x00000001, 0001 5d5d8) - 5_0K
|Fowset GetDatal0L00000008, 000000001, 0001 5d5dd) - 5_0K
IR st GetDatal0x00000007, 0x00000001, 0x001 Bdbd) - 5_0K
|Rowset Getl'ata(0-00000008, 0:00000001, 0x0015d5da) - 5_0K
IRzt Gedata(0-0000000, 0x00000001, 0x0015d5d4) - 5_0K
IRzt Gedata(0-0000000z, 0x00000001, 0x0015d5d4) - 5_0K,
|Rovwrset Gedlata(0-0000000k, 000000001, 0001 5d5da) - 5_0K
| Rzt GetData(0-0000000c, 0x00000001, 0001 5d5d4) - 5_0K,

Kl —

Figure 3.16: A SELECT query

77



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES

B DatasetViewer _|O]

Fie DataSowrce Session Command Bowset Dataset Trans Enum Misc Tools Enor Window Help

ke e 5 S B R T

ALTER DIMENSION services.doctor 4
GENERALIZE LEVEL IDdactar
TOLEVEL specialiy TYPE CHAR(3]
USING ROLLUP FUNCTION datas_3_q_[DMedico

HuwHandle| catalug_name| schema_narne| cul:ue_name| cube_lype| cube_guid| created_0n| Iast_schema_updale| schema_updated_by| Iast_cJ
Y s TSOLAP TS0LAP SERVICES CUBE 200012 20001230 20:43..  TSOLAP 2000-

d | Il
DB S chemaRowset: GietSchemas(t6, :0:00154708, &0x) - 5_0K ﬂ

IDBS chemaFlowset: GetRowsstNULL, MDSCHEMA_CUBES, 3, 0x0012562c, ID_IRawset, 0, 000000000, &0k02ch1 9a0) - 5_OK

[Calumnslnfo:: GetColumnlnfolt11, &0x00153178, &03001583.38] 5_0K

liccessor CreatehccessoDBACCE SSOR_ROWDATA, 11, 000158580, 0, 40:00000001, Dk00150418) - 5_0K
ColreatelnstancelCLSID_OLEDB_ROWPOSITIONLIBRARY, NULL, CLSCT_INPROC_SERVER, ID_{RowPashion, &0k01Bfcaed - 5_0K

|RowPostion: nialkize(002ch1 SaD] 5 0K

[ConnectionPaint: FindConnectionPamtlliD_|RowPostionChange, $0«018fcafd] - 5_0K

[ConnectionPaint: Adviselk0x00c31 10, $12784036) - 5_0K

IRowset GetestRowsNULL, 0, 2, §1, 40:00122054) - DB_S_ENDOFROWSET

Rt GetD ata(0x00000001, 0x000000M1, 0001 5aca0) - S_EIK

lceesson Releasedocessor0x00000001, NULL) - 5_OK

CammandT ext: S etCommandT ext(m_pCD ataSource-»m_guidDislect, "ALTER DIMENSION services.doctor  GEMERALIZE LEVEL |Ddoctor T LEVEL
CammandText: Ewecute(NULL, ID_[Rowset, MULL, &1, %0:00000000) - Inicio: Sat Dec 30 20:44:48 - Fin: Sat Dec 30 20:44:48 Dwaciare 2 Sequados - 5_0F,

1 14

Figure 3.17: A GENERALIZE command

78



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES

Consumer

«CoCreatelnstance(CLSID_MSDAINITIALIZE, NULL, CLSCTX_INPROC_SERVER, (DataSet Viewer)
1ID_IDatalnitialize, (void**)&plDatalnitialize )

+pIDatalnitialize->CreateDBInstance(CLSID_TSOLAP, NULL,
CLSCTX_INPROC_SERVER, NULL, lID_IDBInitialize, (lUnknown**)&pDataSource)

*pDataSource->Querylinterface(lID_IDBProperties,(void**)&pIDBProperties)
+pIDBProperties->SetProperties(1, rgPropSets)
*pDataSource->Querylnterface(lID_IDBlInitialize,(void**)&pIDBInitialize)
+pIDBInitialize->Initialize()

*pDataSource->Queryinterface(lID_IDBCreateSession, (void**)&plDBCreateSession)

*pIDBCreateSession->CreateSession(NULL, IID_IlOpenRowset, pSession)

*pSession->Querylinterface(lID_IDBCreateCommand, (void**)&pIDBCreateCommand)

+pIDBCreateCommand->CreateCommand(NULL, IID_ICommand, pCommand) v

TSOLAP
( OLE DB for OLAP Provider)

Figure 3.18: Connection Sequence

Consumer
(DataSet Viewer)

*pCommand->QuerylInterface(lID_ICommandProperties,(void**)&plCommandProperties)
*plCommandProperties->SetProperties(1, our_rgPropSets)
*pCommand->QueryInterface(lID_ICommandText, (void**)&plCommandText)
*plCommandText->SetCommandText(DBGUID_DEFAULT, “CREATE CUBE ventas ....")
*plCommandText->Execute(lID_IRowset, pcRowsAffected, ppUnkRowset,ppRowset)

A4

TSOLAP *CTSLex *mylex = new CTSLex(“CREATE CUBE ventas ....")
OLE DB for OLAP Provid *CTSYacc *myyacc = new CTSYacc(mylex)
( or rovi er) *myyacc->yyParse()
Parser
*pOurDataSource->CreateNewCube....)

A4 m_pTSData = new CTSData()
TSCUBE m_pTSData->GenFactTable(dimensiones,medidas,”datos_2",&m_pfactTableName)

(data cube manager)  » TSDATA

(Materialized View Manager)

Figure 3.19: Execution steps



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES

%/ T55how - [Visor de Estructura - TSOLAP]

ﬁ Archivo  Edicidn Hemamientaz  TSOLAP  Wentana  Apuda

80

=181 x|

i It
=48] SERVICES SERVICES SALESC..
=& Dimension
=B DOCTOR
=B IDDOCTOR
L2 SPECIALITY
B TSAl

#-Bf SPECIALITY

=B PRACTICE

-} PRACTICEID

2@ PRACTICETYPE

.2 SUBGROUP

#-BR 154

=-BR SUBGROUP

L2 TSAl

=-BR PRACTICETYPE
L2 TSAl

B PATIENT

#-B DATESERY

-] Measure

=48 SALESCURE

=& Dimension

#-B PRODUCT

®-B) STORE

#-B DTIME

& Measure

Lizto...

Figure 3.20: Cube and Dimension information with TSShow



CHAPTER 3. IMPLEMENTATION OF DIMENSION UPDATES 81
%! T55how - [Visor de Instancias - TSOLAP] _[&] =]
ﬁ Archivo  Edicion Heramientas  TSOLAP Wentana Apuda -|5’|ﬂ
EEIEAL

=HE) SALESCLUBE & || Member Mame Gender Member Mame Insttution Member Mame Y sarafbith Member Mame =
g DTIME E4215 F 233 1937
=-[8 PRODUCT
; B4261 F 1] 1915
o BB ITEMID
B8 Tl BAK4 M 1 1916
B CATEGORY B4266 F 73 1921
B COMPaNY h4288 M 7 1956
- ..AB CORPORATION
; h4346 F 4 1904
=B STORE
B8 STORED BAE M 243 2000
B TSI h4364 M 74 1581
B @ STORETYPE 54393 M 7 2000
=45 SERVICES
: R4395 F 486 1934
B DATESERY
= B DOCTOR 3% M 37 1981
R IDDOCTOR 54405 M 1 1526
R TEAI 54419 F 0 1983
B SPECIALITY
54421 M 4 1964
ERAREFATIENT
B8 PATEENTID 47 M 243 1929
B TSI B4515 M 7 2000
@ YEAROFBIRTH B4E59 M 7 2000
B8 GENDER
R4676 F K]l 2000
B INSTITUTION
BB INSTTYRE 12 M 769 1948
=B PRACTICE 54725 F 577 1926 -
@ PRACTICEID 54743 M 7 1908
B TsA
B4754 F 7 1957
-8R PRACTICETYPE -
R SUBGROUP :lﬂJ L|J

| Lista...

Figure 3.21: Viewing instances with TSShow



Chapter 4

A Case Study: A Medical Data

Warehouse

In Chapter 3 we presented our implementation of the multidimensional model introduced in Chapter
2, called TSOLAP. In this chapter, we use TSOLAP in a real-life case study, a medical center in
Argentina.

The chapter is organized as follows: In Section 4.1 we introduce the problem and describe how
the cube and the dimensions were built. Section 4.2 discusses different ways in which TSOLAP
could be applied to the case study. In Section 4.3 we establish the goals of our experiments, and
the hardware we used for the tests. In Section 4.4 we present and discuss our experimental results,

concluding in Section 4.5.

4.1 The Problem

We tested the model and its implementation on a real case, a medical center in Buenos Aires using
six months of data from medical treatments performed on patients being hospitalized in the clinic.
Each patient gets different services, including radiographies, electrocardiograms, and so on. These
services are denoted “Procedures”, and are grouped into different classification levels. For instance,
a procedure like “Special Radiography” is classified as follows :

10. Radiology

10.01. Radiography

10.01.01 Special Radiography

82



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 83

Medicine given to a patient and disposable material are also considered “Procedures”.

Data was taken from different tables in the operational database. Taking into account the

available data, we designed the data warehouse as follows(see Figures 4.1 and 4.2).

A dimension Procedure, with bottom level procedureld, and levels procedure Type, subgroup and

group, gives information about the different procedures available to patients.

A dimension Patient, with bottom level patientld, represents information about the person un-
der treatment. As data about the age and gender of the patient is available, we also defined the
dimension levels yearOfBirth and gender. Moreover, we found it interesting to analyze data accord-
ing to age intervals, represented by a dimension level called yearRange. Patients are also grouped
according to the institution they are affiliated to. We were interested in this kind of information
because it could be useful to categorize patients delivered by health insurance institutions. More-
over, these institutions are further grouped into types, for instance, private institutions, unions,

and so on.

Dimension Doctor gives information about the available doctors(identified by doctorld) and

their specialities (a level above doctorld).

The last dimension we designed was Time. Recall that the actual values of this dimension are

created on-the-fly.

When the design was completed, we were ready to create the data cube using MDDLX state-
ments. The following statement creates the cube from a table data_clinic, with data from the first
six months of the year 2000(631.000 records). This table holds data facts such that each record con-

tains information about a procedure conducted on a certain patient by a given doctor on a given date.

CREATE CUBE Services (
DIMENSION Doctor BOTTOM LEVEL doctorId TYPE CHAR(6),
DIMENSION Procedure BOTTOM LEVEL procedureId TYPE CHAR(6),
DIMENSION Patient BOTTOM LEVEL patientId TYPE CHAR(6),
TIME DIMENSION Time GRANULARITY DATETIME FROM 01/01/2000 00:00:00 TO 30/06/2000 23:00:00,
MEASURE qty TYPE NUMERIC(5,0) FUNCTION SUM,
MEASURE value TYPE NUMERIC(10,2) FUNCTION SUM)
FROM TABLE data_clinic

WITH MATERIALIZE



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 84

This statement generates four one-level(plus “All”) dimensions : Doctor, Procedure, Patient and
Time, and a fully materialized data cube (due to the inclusion of the WITH MATERIALIZE option).
The created cube contains 2" views(with n=3, the number of dimensions) with levels (procedureld,
patientld,All), (All, patientld,doctorld), (procedureld,All, doctorld) and so on. Two measures are
created, the quantity and the dollar value of the service delivered.

It is now possible to update these dimensions using MDDLX statements, in order to obtain the
dimensions depicted in Figures 4.1 and 4.2. For example, the following statement generalizes level
patientld to level gender, which is of type CHAR(1) (an ‘M’ or an ‘I’ are stored), using the rollup
function specified by the table data3gidintengender. This table has two columns, one named

patientld and the other named gender, and each tuple stores the gender of each patient.

ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId
TO LEVEL gender TYPE CHAR(1)

USING ROLLUP FUNCTION data3gidintengender

The following RELATE statement creates a relation between levels practice Type and group. No-
tice that no information is needed, except from the names of the levels being related, the name of

the cube and the name of the dimension.

ALTER DIMENSION Services.Procedure
RELATE LEVEL practiceType

TO LEVEL group

The complete sequence of statements can be found in the Appendix.

4.2 What Can We Do with Dimension Updates?

We argue that building dimensions using our approach is, most of the time, more efficient and
flexible than building a dimension from scratch every time an update occurs. Moreover, we show

that it is possible to add or remove elements from dimensions, or change classification levels in



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 85

All al
month year hour
speciality /
daie\
doctorld datetime

(@ (b)

Figure 4.1: Case study: Dimensions Doctor and Time

order to query hypothetical database states. Some examples of these kinds of situations are:

e In a clinic like the one described in this study, dimension instances are updated all the time.
For example, new doctors are hired or leave frequently and new patients are serviced every

day. On the other hand, instance updates to the Procedure dimension are less frequent.

e Modifying the “yearRange” field in the Patient dimension allows finding out which age range
is getting more services. This can be performed by deleting the yearRange level, and then
generalizing it again using a different (prepared off-line) rollup function. In a state-of-the-art

OLAP system, this would require rebuilding the data cube once for each range test.

e Generalizing the doctorld level in dimension Doctor to level doctorAge Range is useful to find

out if there is any difference in the number of patients served, according to the doctors’ age.

e The model allows inserting, in an on-line fashion, new patients, institutions, institution types,

and so on.

e Simulation data could be inserted on-line in order to query different hypothetical database
states (for instance, computer-generated patient information). Hypothetical situations could
be easily addressed by replacing the actual rollup functions with the ones we wish to test
(v.g., we could delete the yearOfBirth level and generalize again the patientld level, with data

such that seventy percent of the patients where more than sixty years old).



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 86

All All
group /earRange insType
\ gender
i suberou yearOfBirth
Practlce</ group \ institution
practiceld patientld

(@) (b)
Figure 4.2: Case study: Dimensions Procedure and Patient

4.3 Objectives and Description of the Experiments

From the discussion in Section 4.2 it follows that TSOLAP is a very useful tool for data analysis.
However, we must show that our approach can reach a performance that can cope with the require-
ments of everyday applications. Thus, getting a set of data large enough to allow representative
results was a requirement. We explained in Section 4.1 that we used six month of data, which
involved almost 631.000 records. We partitioned this set in the six subsets shown in the table of
Figure 4.3 in order to run the tests over each one of them, allowing testing the influence of the size
of the data cube over the system’s performance. Note that the six subsets contain the same number
of patients, doctors and procedures, because we tested the operators with all the elements in the
domains of the rollup functions. In the example above (generalization from patienld to gender using
the rollup table data3gidintengender), although the table holds the gender of all patients, only
doctors who actually delivered services before January 31st will be generalized.

In order to test the performance of the dimension updates, we executed a set of MDDLX
commands over the data cube described in Section 4.1. Our intuition was that performance could
be strongly influenced by the order in which operations are performed. Thus, we decided to perform

the dimension updates following two different sequences:

e in the first sequence we updated the dimensions in the following order: Patient, Doctor, Time
and Procedure (notice, however, that some updates over Patient occur after updates over the

Time dimension, see Appendix for details);

e in the second sequence, we first perform all the updates over the Time dimension, then the



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 87

Case # From To # of tuples in FT  # Patients # Doctors # Procedures
1 1/1/2000 1/31/2000 90825 6790 367 3750
2 1/1/2000 2/29/2000 178698 6790 367 3750
3 1/1/2000 3/31/2000 270127 6790 367 3750
4 1/1/2000 4/30/2000 374674 6790 367 3750
5 1/1/2000 5/31/2000 501628 6790 367 3750
6 1/1/2000 6/30/2000 630844 6790 367 3750

Figure 4.3: Data Sets

ones over Doctor, Procedure and Patient, in that order.

Thus, for instance, when performing a generalization over Procedure, more materialized views
must be updated in the first sequence than the number of view updates required in the second one.
Both sequences can be found in the Appendix.

Our second goal was finding out the influence of view maintenance over the performance of the
dimension updates. To meet this goal, we created the same cube described above, but with the NO
MATERIALIZE option, and executed the first sequence of updates. Of course, there is no reason for
executing both sequences, because no view must be updated in this case.

The third goal was studying to which degree an strategy with no materialization at all could
affect query performance. Thus, we run the query “ list the total number of procedures by doctor,
subgroup and institution type” under full materialization, and computing the aggregation on-the-fly.
This query involves taking the join of three dimensions of the cube. In MDDLX:

SELECT Patient.instType, Doctor.idDoctor, Procedure.subgroup ON COLUMN

FROM Services
WHERE ( qty )

As we already explained, TSOLAP materializes every possible view in the data cube. Further,
every view is indexed on all of its columns. Actually in this study, siz hundred and thirty materialized
views are generated after all the updates are performed. We wanted to check the resulting sizes of
the data cube, and how the size of the set of indices relates to the size of the data.

Finally, we were interested in comparing the performance of Algorithm 3 introduced in Chapter
2 against a standard Summary-Delta-like method. We performed the tests for a DELETE INSTANCE

update. We used three months of data(270.000 tuples in the base fact table), because we thought



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 88

that a non-optimized algorithm with the fully materialized data cube would be very inefficient. We
created two data cubes: one with aggregate function SUM. The other with the aggregate function
MAX. The latter allows no optimization because base data must always be accessed (recall that MAX
is not self-maintainable with respect to deletions). Thus, view maintenance techniques cannot avoid
the joins. We then applied the following updates: generalize level datetime to level date, generalize
level procedureld to procedure Type, and generalize level procedureld to subgroup, in this order. The

tests were carried out deleting an element in level procedureld over each data cube.

4.3.1 Hardware

The tests were run on a PC with an Intel Pentium III 600Mhz processor, with 128 Mb of RAM
memory and a 9Gb SCSI Hard Disk. The Database Management System was SQL Server 7.0
database running on top of a Windows N'T 4 (Service Pack 5) Operating System, although we also
ran our tests over an ORACLE 8.04 DBMS. For the latter we do not report results because we

need further experimentation.

4.4 Experimental Results

In this section we describe the results of our experiments. We follow the order in which we stated
our objectives in Section 4.3.

The tables and graphics in Figures 4.4 to 4.11 give an idea of the performance of the update op-
erators, with respect to the number of tuples in the base fact table. Times are expressed in seconds.
Figure 4.4 shows the cube creation time with total view materialization and no materialization at
all. Figures 4.5, to 4.8 depict generalization time, comparing generalizations of fully materialized
data cubes at different aggregation levels, for the two sequences described above. Notice that, even
when the generalization from level yearOfBirth to level yearRange is performed after the generaliza-
tion from patientld to level institution (sequence 2), the former takes less time to perform, because
it affects levels located higher in the dimension’s hierarchy. The charts show that the behavior of
the operators and view updates is close to linear with respect to the number of tuples in the base
fact table. Also notice that in Figure 4.6 the curve corresponding to the generalization of level
patientld is below the other two ones, while in Figure 4.7 it is above them, reflecting the influence
of the number of updated views. Moreover, in Figure 4.5, both curves(corresponding to updates

over Practice) are shifted upwards with respect to Figure 4.8, because the number of materialized



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 89

views is larger at generalization time.

Operations over instances of dimensions are applied once all the views have been materialized.
The same occurs in the case of DellLevel. Thus, the sequence of operations in these cases turns
irrelevant. Figure 4.11 shows the performance of the Dellnstance operator. The number of views

including the involved attribute is also shown.

Our second goal was measuring the time insumed by the operators themselves. Thus, as we
explained in Section 4.3, we executed the updates over the cube created with the NO MATERIALIZE
option. The expression “ Time(NM)” in the heading of the table, denotes the results obtained in

this way. Results for some GENERALIZE statements are depicted in Figure 4.12.

The results presented above show that execution times are compatible with application require-
ments. Notice that the higher in the hierarchy the updating statements are applied, the faster
they perform. However, the tests over the non-materialized cube demonstrate that almost all the
processing time is consumed by the view maintenance operations, suggesting that a partially ma-
terialized strategy (i.e. an approach like the one proposed by Harinarayan et al [HRU96]) would
be the best option when an evolving scenario like the one proposed here is implemented. As this
alternative is dependent on query performance, our third experiment focused on studying how an
MDDLX query could perform when no view is materialized. We executed the query “ total number
of procedures by doctor, subgroup and institution type” over both cubes under test. The results are
shown in Figure 4.13. For the complete set of data, and no view materialization, the execution
time takes two minutes, which seems to be an acceptable result. Of course, queries perform faster
under the full materialization strategy, because performing a query under this strategy implies just

a sequential scan of the desired view.

Figure 4.14 gives a summary of the disk space consumed by the database for the six different
sets of data, comparing data and index spaces. Notice that the relation between data and index

spaces decreases as the data space increases.

Finally, we compared Algorithm 3 introduced in Chapter 2 against a non-optimized algorithm (a
standard Summary-Delta-like method) for the Dellnstance operator. Figure 4.15 shows the results,
for different numbers of materialized views. We see that avoiding unnecessary joins dramatically

improves performance.



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE

Time(sec)
400 _|
300 -—
data cube fully materialized
200 +
100 |
: : ‘dalacuber‘wt materialized : Huplesr1000
f f f f f
100 200 300 400 500 600

Figure 4.4: Data cube creation time

Time(sec)
1250+
1000_|
procedureld to subgroup,
750
500 -1~
250
subgroup to group
) #uples<1000
f f f f f
100 200 300 400 500 600

Figure 4.5:

Performance results for Generalize(sequence 1)

Time(sec)
1200}
procedureld to procedur eTyps
900 |
year of birth to year Range
600 -
300 [~ patientld toingtitution
) #uples*1000
I I I I I
100 200 300 400 500 600

Figure 4.6:

Performance results for Generalize(sequence 1)

90



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE

Time(sec)
1200, patientld to institution,
900 |
600 year of b\rthloyaw
300 |
procedureld to procedureType
) #uples*1000
I I I I I
100 200 300 400 500 600

Figure 4.7: Performance results for Generalize(sequence 2)

Time(sec)

procedureld to subgr,

200

subgroup.to.group.

#uples* 1000

Figure 4.8: Performance results for Generalize(sequence 2)

Time(sec)

120 |

60 yearRange

30 |

#uples* 1000

Figure 4.9: Performance results for DellLevel



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE

Dimension From level To level  # tuples Time Time(NM)
Procedure  procedureType  group 90000 25 25
Procedure  procedureType  group 220000 25 25
Procedure  procedureType  group 370000 30 30
Procedure  procedureType  group 600000 35 35

Figure 4.10: Performance results for Relate (sequence 1)

Figure 4.12: Performance results for Generalize with no view materialization

#uples* 1000

Time(sec)
12001
900 |
doctorld
(236 views)
600 procedureld
(126 views)
300 |
f f f f f
100 200 300 400 500 600

patientld toinstitutiop

year of birth to yearRange

procedureld to prox

cedureType

#uples* 1000

92



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE

# of tuples in source  Time(NM) Time #tuples in result

90.000 ~0 16 353
160.000 ~(0 26 423
230.000 ~(0 40 497
370.000 ~(0 68 538
600.000 ~0 120 621

Figure 4.13: Full vs No Materialization

Case # Data space(Mb) Index space(Mb) rate

1 324 634 1.98
2 568 1025 1.80
3 825 1423 1.72
4 1108 1854 1.67
5 1423 2333 1.63
6 1734 2816 1.62

Figure 4.14: Data and Index disk space

# of Materialided Views Optimized(sec) Non-Optimized(sec)

16 14 103
24 29 196
36 75 291
48 99 482

Figure 4.15: Del Instance optimized vs. non-optimized



CHAPTER 4. A CASE STuDY: A MEDICAL DATA WAREHOUSE 94

4.5 Discussion and Summary

In this chapter we applied TSOLAP to a real-life case study. The results showed that a model
like the one proposed here can be useful not only for database administrators who could avoid
rebuilding the multidimensional database each time a dimension is updated, but also for analysts
who could benefit from the chance of easily posing hypothetical queries to the system.

The DELETE INSTANCE statement seems to be the most difficult to treat, specially when the
aggregate functions of the data cube are MAX or MIN (aggregate functions which are not self-
maintainable). However, we would like to remark that most of the execution time was consumed
by view maintenance operations, because we were using a full materialization strategy. Moreover,
computer machinery in a real working environment is much more powerful than the one used for
our tests. This leads us to believe that data marts (data warehouses at department or local lev-
els, smaller than corporate data warehouses) are the most suitable environments for our proposal.
Other approaches, like partial view materialization or even no materialization at all, look promising
in order to enhance the performance of dimension updates, in a way compatible with a good query
performance.

In the next chapters we will embed the notion of dimension updates in a temporal database

framework, leading to the concept of Temporal OLAP.



Chapter 5

Temporal OLAP

In Chapters 2 and 3 we showed that dimension data may often require to be updated on-line rather
than being rebuilt from scratch every time a requirement change or an update at the data sources
occur. Although the solution proposed in Chapter 2 addresses this problem, it is memoryless, in
the sense that it loses track of the state of the dimension prior to the occurrence of the updates.
In the present chapter we argue that in an evolving scenario like the above, OLAP systems need
temporal features to keep track of the different states of a data warehouse throughout its lifespan

and we extend the model introduced in Chapter 2.

5.1 Introduction

We will introduce the problem by means of a motivating example. For the remainder of this section
we will consider dimensions as snapshot relations representing data as of the current time, allowing
dimension updates as showed in Chapter 2. Let us suppose again, a retail data warehouse with
the following dimensions: Time, Salesperson, Customer, Product. Moreover, as dimensions are
organized in hierarchies, let us also assume the hierarchy {itemlId — itemType,itemlId — brand},
and the following rollup functions from itemlId to itemType : {(i1,t1), (¢2,t1), (23, t2), (1a,t2)} (we

will not be using brand at this time). The following table represents sales facts.

95



CHAPTER 5. TEMPORAL OLAP 96

timeld | spld | customerld | itemld | salesAmount
di 51 €1 1 100
ds 52 €2 1 100
ds 51 c3 i3 100
ds 52 Cq iq 100

A query asking for the total sales per salesperson and product type, expressed as:
SELECT S.spld, P.itemType, SUM(salesAmount)

FROM Sales S, Product P

WHERE S.itemId=P.itemId

GROUP BY S.spld, P.itemType

would return the following table:

spld | itemType | salesAmount
51 1 100
52 1 100
51 2 100
52 2 100

Suppose now that at an instant immediately after d4, product ¢; is assigned type t3. A non-
temporal star or snowflake schema will store < i1,t; >, replacing the tuple < iy,t; >, i.e., there
will be no memory of the type of an item. If the user poses the same query, as all the sales oc-

curred before the revision, she would expect to get the same result. However, she gets the following;:

spld | itemType | salesAmount

S1 tg 200

S9 tg 200

What happened is that the contribution of items of type ¢; is ignored, because now all items
are of type ts.
Notice that in order to issue the query above, the user needs to know the schema of the data

warehouse, that is, which are the attributes in the fact and dimension tables. However, this schema



CHAPTER 5. TEMPORAL OLAP 97

may change over time. For instance, itemld may not always have been an attribute of the fact
and/or dimension tables if in the early days of this data warehouse data with granularity itemld
was not available at the sources. In this case, the query will only consider total sales made since the
time at which itemld was added to the fact table, although information is available to obtain the
total sales over the whole lifespan of the data warehouse, at least at a coarser level, like itemT ype.

As another example of inaccurate results a user could get when querying a non-temporal data
warehouse, suppose that a many-to-one relationship from customers to salespersons exists, such
that each salesperson is assigned a set of customers to serve. At a certain time, customer ¢y,
initially assigned to salesperson sp, is reassigned to s;. Suppose a sales manager wants to use this
data warehouse to set future sales goals for each salesperson, basing the forecast on past sales data.
Given the relationship between customers and salespersons, clearly this projection should be based
on past volume of purchases made to customers currently assigned to each salesperson, no matter
who was formerly assigned to whom, as a salesperson cannot expect anything from a customer no
longer assigned to him/her.

We believe that new models and query languages must be developed in order to address situa-
tions like the ones commented in this section. This will avoid building ad-hoc applications, as in
current commercial OLAP systems, which have no built-in temporal capabilities.

The remainder of this chapter is organized as follows: in Section 5.2 we comment on related
work on temporal OLAP. In Section 5.3 we introduce the Temporal Multidimensional Data Model,
and in Section 5.4 we redefine the dimension update operators of Chapter 2 in terms of the temporal

data model. We conclude in Section 5.5.

5.2 Previous Work

The problem of handling “slowly changing dimensions” was mentioned by Kimball [Kim96], who
suggested some partial solutions, like timestamping dimension tuples with their validity intervals.
This proposal neither takes schema evolution into account, nor considers complex dimension up-
dates.

A work carried out at the Time Center at the University of Arizona [BSSJ98] analyzes the
performance of several SQL queries over three different approaches to the Star Schema: (a) “Time
Series” fact tables; (b) “Event” fact tables; (c) Dimensions timestamped in the way proposed by

Kimball. This work was, to our knowledge, the first approach to the problem of temporal OLAP.



CHAPTER 5. TEMPORAL OLAP 98

Our work goes further, as we propose a model and a query language to address temporal issues at
a higher abstraction level.

More recently, a multidimensional model for handling complex data has been introduced [PJ99],
where the temporal aspect is considered as a modeling issue, and is addressed in conjunction with
another data modeling problems. We are not aware of any work proposing a data warehouse
evolution framework or a temporal query language for OLAP.

Recent works on maintenance of temporal views [YW98, YWO00] present a view definition lan-
guage operating over non-temporal data sources, along with techniques for maintaining temporal
views. Although dealing with temporal databases, these works are orthogonal to our proposal, as
they focus on the data sources and on how a set of temporal views are obtained and maintained,

while we focus on querying a temporal multidimensional database.

5.3 The Temporal Multidimensional Model

In Chapter 2 we introduced a multidimensional model supporting dimension updates. There,
dimensions were non-temporal structures. In the Temporal Multidimensional Model we present
in this chapter, we timestamp dimension elements at the schema and instance level in order to
keep track of the updates that occur during the dimension’s lifespan. We also include attributes
describing levels, which we intentionally omitted in Chapter 2.

In what follows we will be dealing with what in temporal databases is called valid time [Sno95],
that is, the timestamp represents the time when the fact recorded became valid, rather than the time
when it was recorded (transaction time). However, as a user-defined Time dimension is supported,
the model can be classified as bi-temporal, like in the TSQL2 proposal(we will show this in the
implementation we present in Chapter 6).

We will consider time as discrete; that is, a point in the time-line, called a time point, will
correspond to an integer. We will also assume, except when noted, instant ¢g to be the dimension’s

creation instant.

5.3.1 Temporal Dimensions

The following sets are defined : a set of level names L, where each level [ € L is associated with a
set of values dom(l); a set of attribute names A, such that each attribute @ € A is associated with

a set of values dom(a); a set of temporal dimension names TD; and a set of fact table names F.



CHAPTER 5. TEMPORAL OLAP 99

Definition 17 (Temporal Dimension Schema) A temporal dimension schema is a tuple

(dname, L, X\, <, A, >, ) where:

dname € TD is the name of the temporal dimension.

i is a level in the Time dimension. Intuitively, p defines the granularity of the dimension

dname.

L C L is a finite set of levels, which contains a distinguished level name All, s.t. dom(All) =

{all}. This distinguished level is considered valid during the complete lifespan of the dimension.

“N”is a function with signature dom(u) — L, defining the instants when each level was part

of the dimension.

“<” is a function with signature dom(u) — 2V*Y. such that for each t € dom(u), <; is a
relation such that <7, the transitive and reflezive closure of <y, is a partial order, with a
unique bottom level, ;s € A(t), and a unique top level, All, where, for every level | € \(t),
ling <5 L and | <} All hold.

A is a finite set of attributes.

“>7is a function with signature dom(u) x A — L, such that for every level | € A(t), a > |
means that if the function is applied to an atiribute a, it returns the level [, where attribute a

belongs(ed) to level | at time t.

The structure introduced by Definition 17 suggests that, given an appropriate language, it would

be possible to query the schema of a dimension (using the functions < and >). Note that /;,,¢ is

unique at any time instant ¢, although it may not be the case at a different time. Also observe

that taking a snapshot of the schema at a given time ¢, we are back in the non-temporal definition

of a dimension schema (Definition 4). To make the former ideas more clear, let us introduce an

example.

Notation In the figures of this chapter, a label ¢; associated to an edge in a graph, will mean

that the edge is valid for all ¢ > ¢;, and a label ¢}, that the edge was valid for all ¢ < ¢;. If an edge

has no label, it is valid for all the dimension’s lifespan. An interval [t;,¢;) means that the edge is

valid from ¢ > ¢, to t < ¢;.



CHAPTER 5. TEMPORAL OLAP 100

All
tl
storeType region
t1
storeld

Figure 5.1: A temporal dimension schema

Example 23 Consider a dimension Store where dname = Store, L = {storeld, storeType, region, All}.
Initially(i.e. at time to) “<7 contains the following pairs: storeld =<, region,region <, All.

The addition of a new level storeType above level storeld at time t; will modify “<7 as follows:

<= {storeld =<4, region, storeld <y, storeType,region <y, All, storeType <y, All} . See Figure

5.1.

Definition 18 (Temporal Dimension Instance) A temporal dimension instance is a tuple

(D, TRUP, TDESC), where D is a temporal dimension schema, and:
o TRUP (temporal rollup) is a set of functions, satisfying the following conditions:

— For every instant t € dom(u), and for each pair of levels 1,13 € A(t) such that [y <y lg,
there exists in TRUP a rollup function p[t]ﬁf s dom(ly) — dom(ly). Thus, a function is

defined for every snapshot taken at any instant t € dom(p).

— For every instant t in the dimension’s lifespan, and for every pair of paths T1 and 7 in
the graph with nodes in A(t) and edges in <y, such that m =< ly,la,...,lg, 1, >, and

o =< ly,l'9, ..., 'k, 1, >, we have p[t]gf 0...0 p[t]gz = p[t]?f o... op[t]é?‘k.

— At every instant t of the dimension’s lifespan, and for each triple of levels Iy, 13,13 € A(t)

such that [y <; 1y and 1y <4 lg,ran(p[t]%) C dom(p[t]l3).

I3

o TDESC (temporal description) is a set of functions such that for every instant t € dom(p),
and for each level | € X(t) and for each attribute a such that a > I, there exists in TDESC

a function with signature £[t]] : dom(l) — dom(a).



CHAPTER 5. TEMPORAL OLAP 101

Figure 5.2: A temporal dimension instance for Store.

We will call the second condition in Definition 18 snapshot consistency.

Example 24 Figure 5.2 shows a temporal dimension instance for dimension Store depicted in
Figure 5.1. In this figure, we see that the rollup functions with no label are valid for the whole
region region

lifespan of Store, while p .77 (s1) = ro is valid until ty — 1, and p;7707 (s1) = 1 is valid from t,

on.

Definition 19 (Active Instance Set) Given a temporal dimension d, a level | € L, and an
instant t, the set of elements belonging to dom(l) at time t, is called the Active Instance Set of .

We denote it Ainstset(l,t).

Example 25 In Figure 5.2, Ainstset(storeld,ty)= {s1,S2,53,54}. If we delete s; at time ts,

Ainstset(storeld,t4)= {s2, s3, s4}.

Note that in the definitions above, if the temporal functions are constant, dimensions become
non-temporal, as defined in Chapter 2, allowing user-defined Time dimensions. We will come back
to this issue in Chapter 6.

The previous definitions set the basis for a temporal data warehouse. Let us introduce the idea

through the following example.

Example 26 Figure 5.3 shows a sequence of updates to a temporal dimension Product. [Initially,
Product consisted only of level itemld, and the distinguished level All. After that, the brand is
added to the dimension, although the initial state is not lost (Figure 5.3(b)). Later, the type of the
item is inserted, with level name itemType. Finally, the company to which an item belongs is also

added above level brand (Figure 5.3(d)).



CHAPTER 5. TEMPORAL OLAP

All All All All
t9
tl t1 t5 t5
compan
by t1,t91
. 19 )
0 brand itemType t1¥ itemType
brand
brand
" tl t5 \ t5
itemld itemld itemld itemld
@ (b) (© (d)

Figure 5.3: A series of updates to dimension Product.

N

brand itemType

4

itemld

Figure 5.4: A snapshot at tg.

A slice or snapshot(in temporal database terminology) of a dimension, taken at a given instant
t, defines the state of the dimension at that time. For instance, Figure 5.4 shows a snapshot of

dimension Product at tg.

fact table

Definition 20 (Temporal Fact Table) A schema is «a

temporal tuple
s = (fname, f,m,u), where m is a level name, called the measure of the fact table, y is a level in
the Time dimension, and f is a function with signature dom(u) — oL,
Given a temporal fact table schema (fname, f,m,u), a set of levels L in the range of f, and a
level p in the Time dimension, a mapping from each level l; € (L U u) to dom(l;) is called a point.
Given a temporal fact table schema s = (fname, f,m, ), a temporal fact table instance over

it, is a partial function named fname which maps points of s to elements in dom(m).



CHAPTER 5. TEMPORAL OLAP 103

Definition 21 (Temporal Base Fact Table) Given a set D of temporal dimensions, a temporal
base fact table is a temporal fact table with schema (fname, fp, m,u), where fp is a function with
signature dom(u) — 2%, such that for each t € dom(u), every level in fp(t) is a bottom level of
the dimension it belongs to. Thus, a temporal base fact table is a temporal fact table such that its

attributes are the bottom levels of each one of the dimensions in D.

Example 27 Given D = {Store, Product} where dimensions Store and Product are the ones
of Figures 5.1 and 5.3 respectively, the Temporal Base Fact Table associated to D would have
fo(t) = {storeld,itemlId}. If updates occur such that at time t12, brand becomes the bottom level

of dimension Product, fp(t12) = {storeld,brand}.

Definition 22 (Temporal Multidimensional Database)

o A temporal multidimensional database schema, denoted Byg, is a pair (Dg, Fs), where Dg is a

set of temporal dimension schemas, and Fg is a set of temporal fact table schemas.

e A multidimensional database instance I(B), is a tuple (Ft,Dy), where Dy and F1 are dimen-

ston and fact table instances defined as above.

In the next section we will show how the non-temporal update operators defined in Chapter
2 for non-temporal dimensions, can be extended to support temporal dimensions, preserving the

dimension’s history.

5.4 Temporal Dimension Updates

We will now define a set of temporal update operators allowing to perform updates over the schema
or an instance of a given dimension without losing historical information. These operators are the
temporal extension of the ones introduced in Chapter 2. We will not address operators over level
attributes. It is trivial to define operators allowing updating an attribute belonging to a dimension
level.

Notation We will consider the set I of level names in a dimension schema at any time instant
t, as the union of two disjoint subsets, L4(t) = {l|l € A(t)}, and Ly(t) ={l|[l € LAl & A(t)}.

For notation conciseness, a time point immediately before a given instant ¢ is denoted ¢~ (i.e.

t==t—1).



CHAPTER 5. TEMPORAL OLAP 104

We will give the formal definitions for the temporal version of each operator introduced in
Section 2.3. In the following definitions we assume that the values for the functions =<; and p

remain constant until an operator updates them.

5.4.1 Basic Temporal Structural Updates

The Temporal Generalize operator creates a new level, [,,, to which a pre-existent one, [, rolls up at
time £. A function f must be defined from the active instance set of [, to the domain of /,,. The main
difference with the non-temporal Generalize, is that no physical deletion occurs as a consequence

of the update.

Operator 12 (Temporal Generalize) Given a dimension d = ((dname, L, X, <,u), TRUP), an
instant t, two levels | € L4(t7) and I, & La(t™), and a function fj" : Ainstset(l,t~) — dom(l,),

TGeneralize(d, 1,1, fll",t) updates the elements in d in the following way:

L=LU{l};

e MNt)=A(tT)u{l,};

== U{(l7 ln)7 (lm A”)} \ {(l7 A”)}7

The following functions are added to TRUP:

ln In .
- p[t]l = Ji

— pltl " (e) = all Ve € ran(f{");

ln
— p[t) = NIL;
— p[t]gf = p[t_]gz, for all other levels I;,1; € La(t).

Example 28 Figure 5.3 in Section 5.3 shows a series of Generalize operations. For instance,

Figure 5.3(b) depicts the operation Generalize(Product,itemlId, brand, f7ro74, ).
The Temporal Relate operator defines a rollup function between two independent levels belong-
ing to a dimension, at time ¢. Conditions for the temporal relate are analogous to the ones defined

for the non-temporal relate (see Section 2.3.1).



CHAPTER 5. TEMPORAL OLAP 105

Al al
1o
to* t9
province ' region pl #m
to* 19\ ¢
{0
. k2 3
Gity

Figure 5.5: Relating regions and provinces.

Operator 13 (Temporal Relate Levels) Given a dimension d = ((dname, L, A, <,u), TRUP),
a time instant t, a pair of levels l,,ly € LA(t7), such that there exists a consistency function fll:

between Ainstset(l,,t7) and Ainstset(ly,t7), T Relate(d,l,,l,t) updates the elements in d in the

following way:

o =<y==y— UW{(la, ) \AUs, )|l 252 Lo AL 24— B} \ ey i)l 24— T ALy <52 Ik}

e The following functions are added to TRUP :

- P[t]gz = fl(i);
— = NTL, if (=oAL =< L)V (=1 Al < 1);

- plt]) = p[t_]k, for all other levels [;,1; € L4(t).

Example 29 Figure 5.5 shows a typical Geography dimension in which at time tg, it is de-
cided that every region must belong to a unique province. As the preconditions are met,

T Relate(Geography, region, province, tg) can be performed.

Operator 14 (Temporal Unrelate Levels) Given a dimensiond = ((dname, L, X\, <, ), TRUP),
a time instant t, a pair of levels l,,ly € {La(t™)\ All\ lf;f}, s.t. 1y 24 by, TUnrelate(d,l,, 5, t)

updates the elements in d in the following way:



CHAPTER 5. TEMPORAL OLAP 106

o === \{(ay )y ULy )|l 2= La ANLGAT 06 U ey L) |Ts == L Aa 2T i}

liﬁj_ abli means that no path exists at time t= between l; and [; which includes [, 1. 1

e The following functions are added to TRUP :

- plt]: = NIL;

— Pl @) =y if plY (@) =2 APl (2) =y, and =5 by

l . _ _ql "
— oL@ =y if PN (=) =2 Ap[tT)(2) =y and L3 L

— p[t]gf = p[t_]gf, for all other levels I;,l; € La(t7).

Ifl, = lt»;f (in what follows l;,¢) or if I, = All, the following holds:

k3

e TUnrelate(d, lins, ls,t) = TRelate(d, (", ly,t), where I'” is the level closest to I, such that
I || 11 and TRelate(d, It l;,t), is possible.

" Ye 9
By closest level we mean that there is no path < liyg,...0;...0[5% > such that

TRelate(d, (;,ly,t), is possible. If there exist two such levels within the same distance from

ling, anyone can be chosen.

e TUnrelate(d,l,, All,t) = Relate(d,l,,l} ,t), where I, is the level closest to All such that
15 || l, and TRelate(d, l,,15 ,t), is possible.

By closest level we mean that there is no path < 1y ,...0;...All > such that
TRelate(d, l,,1;,t), is possible. If there exist two such levels within the same distance from

ling, anyone can be chosen.

The Temporal Delete Level operator deletes a level and its rollup functions (in the temporal
database sense). As in the non-temporal case, the level to be deleted cannot be the lowest one in
the dimension at the time of the deletion (l;,,¢), unless it rolls up to only one higher level. In this

case, the fact tables associated with the dimension must be updated(see Example 30).

Operator 15 (Temporal Delete Level) Given a dimension d = ((dname, L, X\, <, n), TRUP),
a time instant t, a level | € LA(t™),l # All such that if | = l;,¢, then there is only one level [; such
that | <,- l;, T DelLevel(d,!,t) updates the elements in d in the following way:

'The last conditions prevent the addition of the arcs in case alternative paths (not including la,1s,) between (1;,13)
or (la,1;) existed in < at time ¢™.



CHAPTER 5. TEMPORAL OLAP 107

o A(t) = A7)\ {ln}s
o === \{(,)|(L =)V (la = DYU{(l, )| (l 2= DA (1 2= T2) A (I A5 L2}

o The following functions are added to TRUP :

— Pl =NIL if ;=IVi=1

— Pl (@) =y if plt7] () =z AN (2) = y;

2z 2z

- p[t]gf = p[t_]gz, for all other levels l;,l; € Ly.

5.4.2 Complex Temporal Structural Updates: TSpecialize

The Temporal Specialize operator updates the bottom level of a dimension d at an instant t. A
new level /,, is added below the lowest level of d, l;,,¢, s.t. l;,f € L4(t7), becoming the new current
lowest level of the dimension. Again, a function must be defined for this rollup. This is a key
operation, because the base fact tables in a multidimensional database B involving d, must be

updated in consequence.

Operator 16 (Temporal Specialize) Given a dimension d = ((dname, L, X\, <, u), TRUP), a

time instant t, a level l, ¢ Lo(t™), ling € La(t™) (the bottom level of d) and a function fll:l"f :
it

dom(l,) — Ainstset(l;,5,t7), T'Specialize(d, L, fl;”f, t) updates the elements in d in the following

way:
o L=LU{l,}
o A1) = A(tT)U{ln};
o === U{(ln, [} )3

o The following functions are added to TRUP:

lin lin
- plt])] = hi ’;

ln n

- p[t]? = p[t‘]k, for all other levels I;,1; € L(t™).

2

Example 30 Suppose the following situation, depicted in figure 5.6. Before ty, each salesperson

was assigned customers in a unique city. At time ty, level idSalesperson was dropped from the

2this last condition implies that no alternative paths between (l1,12) exist at the time of the deletion.



CHAPTER 5. TEMPORAL OLAP 108

All al
province region Pl 1 r2
. cl c2 c3
city
15
10,t1),[t5,Noy
[10.2),[t5.Now] "
[tOtL\[t5,N
idSalesperson ol 2 o3 spd
Figure 5.6: A Temporal dimension before and after Specialization.
All al
province region Pl 1 r2

dity cl c2 c3
[t5t9)
[tO,t1),[t5,t9) 1
[t0,t1),[t5,t9
3 spd

idSalesperson ol o2 o
Figure 5.7: Deleting level IdSalespersons at time tg.

dimension, but at time ts, this decision is reversed. Thus, at ts, a specialization occurred. However,
note that the distribution of cities changed in a way such that salesperson sp; was moved to city cs.
Salespersons spy, spa and sps, remain assigned to the same cities as before t1, denoted in the figure
as [to, t1), [ts, Now].

As an example of the TDelLevel operator, suppose at time tg, salespersons are not needed any
more in the dimension of Figure 5.6. Thus, level idSalesperson is deleted. Obviously, no new edge
is created, because idSalesperson was the bottom level at time tgs. The dimension of Figure 5.6 after

the temporal deletion of level idSalesperson is depicted in Figure 5.7.



CHAPTER 5. TEMPORAL OLAP 109

5.4.3 Basic Temporal Instance Updates

We will define now temporal operators allowing modifications to the instance of a dimension. Again,
no element will be deleted, but timestamped, indicating that the element is no longer active.

The Temporal Add Instance operator inserts a new element, say z, at an instant ¢ into a level
lo € La(t™). The element must not exist in the Active Instance Set of /, at time ¢=. As in the non-
temporal model, the operator must be provided with the pairs (/;,y), such that every I; € L4(t7)
is a level to which [, directly rolls up(l, <;- I;), and y belongs to the Active Instance Set of I; at

time t~. Thus, y is the element in level /; to which z will roll up.

Operator 17 (Temporal Add Instance) Assume a dimensiond = ((dname, L, X\, <, u), TRUP),
a time instant t, a levell, € L4(t7), an element z, € dom(l,), z, ¢ Ainstset(l,,t7) , a set of pairs
P={(li,z1),...(ln,z,)} such thatl; € Ls(t7), z; € Ainstset(l;,t7), dom(P) = {l; | lo <4- 1;},
and for each pair (g, zr), (Is,z5) € P such that exists a level | € Lo(t™),ly =7_ 1 and l; <3_ 1, the
following holds: p[t_]ék(mk) = p[t‘]gs(xs). TAddInstance(d,l,, x4, P,t) updates the rollup functions

in d, in the following way :
o plt]) (za) =z, if (lj,%)€ P;
. p[t]iﬂ = p[t_]k, for all other levels I;,1; € L4(t).
The Temporal Delete Instance operator deletes, at time ¢ an element belonging to the active

instance set of a level [,. It is only defined when no element of any level [; such that [; <;- [, rolls

up to the element being deleted.

Operator 18 (Temporal Delete Instance) Given a dimensiond = ((dname, L, X\, <, u), TRUP),
a time instant t,, a level [, € Lao(t7), an element z, € Ainstset(l,,t7), x4 & Utera() ran(p[t‘]é“),

T Dellnstance(d,l,, z,,t) updates the rollup functions in d in the following way :

o plt] (za) = NILYI; st 1y <4 Ij;

. p[t]ij = p[t_]gz, for all other levels I;,1; € Ly.
Example 31 Suppose a new item i5 is added to the instance of Product represented in Figure

5.8, at time t1, by means of T AddInstance(Product,itemld, is, {(brand, bs), (itemType, c3)},t1) .

Figure 5.8(a) shows the result. After that, at time t, we delete item iy from levelitemld (the bottom



CHAPTER 5. TEMPORAL OLAP 110

A A\

2

bl b2 b3 bl b2 b3 t
tl
tl tl
t
i1 2 i3 i4

C!
t1
i1 2 i3 4 i5
Figure 5.8: (a)Temporal Add instance (b)Temporal Delete instance.

level of Product at that time). The operation is invoked as T’ Dellnstance(Product,itemld, iy, t3).
See figure 5.8(b). The reader is suggested to compare Figures 2.5 and 5.8 which present the same

situation in the non-temporal and temporal approaches, respectively.

5.4.4 Complex Temporal Instance Updates
Where possible, we will avoid repeating concepts already present in Chapter 2.
Operator 19 (Temporal Reclassify) Given a dimension d = ((dname, L, X\, <,u), TRUP), a
time instant t, a pair of levels l,,ly € La, a pair of elements x, € Ainstset(l,,t) and z, €
Ainstset(ly,t); T Reclassify(d,ly, ly, x4, x5, t) updates the rollup functions in the dimension in the
following way:

o P[]} (za) = @5;

) p[t]é? = p[t_]k, for all other levels l;,l; € Ly.

1

e The new dimension is snapshot consistent at time t.

As in the non-temporal model, Temporal Reclassification is not always well-defined, and we will

show this through an example.



CHAPTER 5. TEMPORAL OLAP 111

All al
Canad/ \Argentina
country
region provinee 11" 2./ 3 Ontario CordobaMendoza
city cl c2 3

Figure 5.9: Temporal Reclassification

Example 32 Let us suppose that in the dimension instance depicted in Figure 5.9(we used hypo-
thetical city an region names for the sake of clarity) we want to reassign regions at time t1, moving
city co to region r1. This will obviously be not a valid operation, as it will not verify snapshot
consistency at time t1. The proposed reclassification would imply that co belongs to Argentina and
Canada at the same time. However, reclassification among cities and regions in the same country,

will be valid. For instance, we could move c3 to rq, at time ts, as it is shown in the figure.

Level Countryin Figure 5.9, is a Confliciting Level at time ¢, for the proposed reclassification (see

Definition 13).

Lemma 5 (Definiteness of the Temporal Reclassify Operator) TReclassify(d,la, b, Xa, Xb) s
defined if and only if for every conflicting level I, p*lk[t_](az) = p*g’;[t_](xb) holds, where

ly
ERCHEES

Proof Lemma 5 The proof is exactly the same as the proof of Lemma 2, considering a snapshot

at time t. Thus, we will not repeat the proof here.

Operator 20 (Temporal Split) Given a temporal dimension d=((dname,L,< pn), TRUP), a
time instant t, a level I, € La(t7), an element z, € Ainstset(l,,t7), a list E of the form
{Za1 .. .Tan}, where z,; € dom(l,) \ Ainstset(l,,t™), another list P of the form P = {xq[l; :
listy ... Ly 2 listy]s .. xan[ly 2 listy .. L, 2 list,, ]}, where I; <4 1,1 = 1..m, and list; is a list of
elements in Ainstset(l;, t7), of the form (zy,...,21) s.t. p[t]k‘(a@l) = z,; TSplit(d, la, xa, P, E, t)

updates the rollup functions in the dimension in the following way:



CHAPTER 5. TEMPORAL OLAP 112

all

DN

Canada  Argentina

t5 t5*
t
3

Ontario  Cordoba Mendoza

ri1 ri2 rl r2

t5

cl c2 c3 c4

Figure 5.10: Temporal Split

° p[t]gl(maj) =x;, where x,;€ E, x; € list; s.t. x4 [l; : list;] € P;

° p[t]gl(maj) =x;, where x4;[l;:list;] € Pyx,; € F, RUP?;[t_](ma) = z;;

o plt]] (za) = NILYL; st Ly <4 Ij;

o p[t]?? = p[t‘]k, for all other levels I;,1; € L4(t).

1

Example 33 Suppose the schema of Figure 5.9, with the instance depicted in Figure 5.10. At
time ts, region ri is split into ri1 and rig. City c¢q is assigned to r11 and city co to region
r19. Both new regions will still roll up to Canada, as vy did. The operation will be invoked as:
TSplit(Geography, region, ry,{ri1, 12}, {rulcityld : (e1)];rolcityld @ (c3)]},t5). Note that the

user must assign the roll up functions corresponding to the new values ri1 and rqs.

The Temporal Merge operator performs the inverse of T'Split, i.e., it merges two instances of a

dimension into a single one.

Operator 21 (Merge operator) Given a temporal dimension d=((dname, L, \, <, u), TRUP), a
time instant t, a level [, € L4(t7), an element zx|eny € dom(l,) N zn ¢ Ainstset(l,,t7), s.t. all
the elements x; € X roll up to the same element in every levell s.t. 1, <.~ l; Merge(d,l,, X, znN,1)

updates the rollup funcitions in the dimension in the following way:

° p[t]éj(rl) =zy, where p[t‘]k‘(rz) =x;,%; € X;

. p[t]éi(m]\r) ==xz;, where p[{t‘}]ii(mz) =z;, w;€X;



CHAPTER 5. TEMPORAL OLAP 113

o plt]}(z;)) = NIL, where z; € X;

. p[t]iﬂ = p[t_]gz, for all other levels [;,1; € L4(t).

:
e The new dimension remains snapshot consistent.

Example 34 Figure 5.11 shows another instance of the dimension Geography. Here, regions ro
and r3 were merged at ts into a new region rqo3. All the cities which before ts rolled up to either
ro or rz will now roll up to rq3, which will roll up to Argentina. The operation will be invoked as
Merge(Geography, region, {rg, rs}, ra3,t5), and it can also be seen that it keeps the dimension in

a consistent state.

Operator 22 (Temporal Update) Given a dimension d = ((dname, L, X, <, u), TRUP, i),
a level [, € La(t”), an element z, € Ainstset(l,,t7), and an element =z, ¢
Ainstset(l,,t”); Update(d,l,, x4, Ty, t) will update the dimension in the following way:

o p[t]gi(mn) =uz;, where p[t_]gi(%) =z;;

o p[t]?j(a@]) =z,, where p[t‘]?j(.rj) = z4;

o plt] (za) = NIL Vi € La(t), la =l

o p[t]ﬁj(ac]) =NIL Vi; € La(t), l,=:1;, and p[t]ﬁj(:vj) = T,

. p[t]ij = p[t‘]gz, for all other levels I;,1; € L4(t).

5.4.5 Temporal Multidimensional Model Revisited

So far we have introduced a temporal version of the dimension update operators. These operators
allow keeping track of the history of a dimension. However, in order to display the history of
the elements in a dimension level, for instance, of region ry in example 33, we need to add two
predicates to the data model, denoted split(z,y, L,t), and merged(z,y, L,t), with the following
meanings: split(z,y, L,t) is true if the element z, in level L was split at time ¢, and y is one
of the elements resulting from this splitting; (b) merged(z,y, L,t) is true if element z in level L
was merged into node y at time ¢. Predicates split and merged are event predicates, in temporal
database sense.

In the next chapter we will present a temporal query language. We will see that the expressive

power of this language can be expanded making use of the predicates described above.



CHAPTER 5. TEMPORAL OLAP 114

all

Canada Argentina

t5

t! t!
Ontario Cordoba Mendoza
ri r2 r3 r23

cl c2 c3 c4

Figure 5.11: Temporal Merge

5.5 Summary

In this chapter we introduced the Temporal Multidimensional Model, and the temporal extension
of the dimension update operators introduced in Chapter 2. In the next chapter we will present a

temporal query language supporting the model and discuss its implementation.



Chapter 6

TOLAP : Temporal OLAP Query

Language

We argued in previous chapters that usually in an OLAP environment, queries require the computa-
tion of aggregates over base fact tables. Moreover, in Chapter 5 we introduced a model accounting
for temporal dimensions, i.e. dimensions that evolve across time, allowing to keep track of the
dimension’s history. We denoted this dimensions temporal. We will show in this chapter that typi-
cal OLAP queries involving temporal dimensions admit different interpretations, which should be
considered in order to give the user the correct answers to queries. Further, we introduce a query

language called TOLAP supporting the model presented in Chapter 5.

6.1 Introduction

There are many real-life situations in which maintaining historical data is needed in order to get
correct answers to OLAP queries. Consider for instance an NBA (professional basketball) data
warehouse where the fact table Points has dimensions Player and Time, and a measure, Points
scored. The Player dimension is structured by grouping players into teams called Franchises.
Suppose a user wants to know the total number of points scored by the players of the Portland
Blazers. This query could be interpreted in two different ways: the user could be asking for the
sum of total points ever scored by all players who are currently on the Blazers, or for the sum of the
points scored by these same players while playing for the Blazers. For instance, the points scored

by Damon Stoudamire (who is currently on the Blazers) while playing for the Toronto Raptors in

115



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 116

the 1998-99 season should only be added under the first interpretation. Query languages provided
by most standard commercial OLAP systems will not be able to distinguish one interpretation from
the other. The reason is that these systems just record the last value of dimensional attributes
giving no access to their historic values. The Temporal Multidimensional Model introduced in
Chapter 5 allows defining powerful languages which can express adequately a query like the one

above.

6.1.1 Our Proposal

In this chapter we present a temporal query language supporting the Temporal Multidimensional
Model introduced in Chapter 5. We call this language TOLAP (standing for Temporal OLAP).
TOLAP combines some of the features of temporal query languages like TSQL2 or SQL/TP [Sno95,
Tom97] with some of the high-order features of languages like HiLog or Schemal.og [CKWR89,
L.SS97], in the OLAP setting. We introduce TOLAP by means of examples, formally define its
syntax and semantics, and discuss its expressive power We also show that TOLAP can be easily
extended in order to allow queries in which the history of the dimension’s elements is taken into
account.

Let us show how the first interpretation of the NBA query of Section 6.1 can be expressed in
TOLAP:

Q(x,SUM(p)) +¢+— Points(x,p,t), x M franchise: ‘Blazers’.

This means: for each player x, add up all the points scored by x, where x is such that currently

belongs (“rolls up”) to the Blazer franchise. The query for the second interpretation will read:

Q(x,SUM(p)) +¢+— Points(x,p,t), x 'y franchise: ‘Blazers’.

Here we are asking to add the points scored by x at time ¢, if x at that time was playing for the
Blazers.
Descriptive attributes make queries like “total number of points scored by Stoudamire while

playing for the Toronto Raptlors” easy to express:



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 117
Q(SUM(p)) +— Points(x,p,t), x LN franchise: ‘Raptors’, X.name=‘Stoudamire’ .

Note that the queries above operate at a high level of abstraction, without requiring low-level

knowledge about the database design that underlies the dimensional model.

6.1.2 Do We Need a Temporal OLAP Language?

One might argue, at first sight, that a generic temporal query language like TSQL2 [Sn095] could
be used instead of defining a special-purpose one like TOLAP. There are two main reasons sup-
porting the idea of introducing a new language. First, a language designed specifically for the
multidimensional model makes typical OLAP queries much more concise and elegant. In a generic
language, queries would have to be laboriously encoded using detailed knowledge of the low-level
relational structures used to encode the dimensional data. Second, the best-known temporal query
languages such as TSQL2, support only a minimal level of schema versioning ( [Sno95] p.29).

Another alternative would have been adding temporal features to other languages with schema
management features, such as Hil.og [CKW89] or Schemal.og [.SS97]. Again, using a language
specifically designed for OLAP yields much simpler syntax and semantics, and just the high-order
features that are needed to support schema evolution.

The remainder of this chapter is organized as follows. In Section 6.2 we motivate the need for a
temporal query language for OLAP. In Section 6.3 we introduce TOLAP. The syntax and semantics
of the language are detailed in Section 6.4. In Section 6.5 we discuss TOLAP’s expressive power

and a possible extension of the language. We conclude in Section 6.6.

6.2 Motivating Example

The following example will show that a temporal OLAP query language is needed in order to capture
the particular characteristics of OLAP queries expressed over a set of temporal dimensions. We

will use this example when introducing our query language in Section 6.3.

Example 35 Let us consider again a retail data warehouse, with a set of temporal dimensions
D = {Product, Store}, and a base fact table with schema (Sales, f, sales, day). At this time we
will assume that no schema update occurred (this will be studied in the next sections). Thus,

f maps each instant to {itemld, storeld}, the bottom levels of the dimensions in D. Dimen-



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 118

sions Store and Product are depicted in Figures 6.1 and 6.2, respectively. Notice that in Prod-
uct, item 1y has type t1 until day d4, and type ty since then. For the Time dimension we have:
pﬁj’[f;k ={d1 = wy,dy — wi,d3s = wy,dy — we,ds — wy}(and the rollups from week to All).
Finally, we have the following instance for the Sales fact table (day is displayed for the sake of
clarity, but could have been omitted, like in TSQL2):

itemld | storeld | day | sales
i 51 dq 600
i S9 di | 100
i 51 dy | 100
i3 9 ds 100
i3 53 ds | 100
i3 54 ds | 100
i 51 ds | 100

Let us now suppose the query: “list the weekly total sum of sales, by city and item type”. As in
the NBA example of Section 6.1, two interpretations could be given to this query. The most usual
one would expect to get the sum of sales considering the type an item had when it was sold. In this
case, for instance, item 11 would contribute to the aggregation in the following way: the first three
tuples, with a total of 800, will add to the group {ti,cy, w1}, while the last one will contribute to

{t9, c1, we}. The result will be given by the following table:

itemType | city | week | sales
t c1 w1 800
ty c1 w1 100
ty o ) 200
ty c1 ) 100

The second interpretation, the only one supported by non-temporal systems, would ask for the
sum of the sales, considering that each sold item has the current type, regardless of the time the
sale occurred. The result a user would get under this interpretation is given by the table below, and
was computed in the following way: the rollup function for every occurrence of item 11 is set to:

pifiﬁ?é’pe(il) = ty. Thus, all the i, tuples will contribute to type ty. For instance, the first tuple will



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 119

All al
i/ \\
d1 region r1 r2
storeType sl &2
city cl c2
d a \ &
storeld sl 3 4

Figure 6.1: Dimension Store for the running example

now contribute to the group {ts,cy,wi}. In the next Section we will present a language that lets
the user distinguish between the two interpretations. The following table shows the result the user

would obtain under the second interpretation.

itemType | city | week | sales
t c1 w1 200
9 c1 w1y 700
tg ca Wy 200
ts c1 Wy 100

6.3 TOLAP: A Temporal Multidimensional Query Language

Temporal OLAP queries require a language which can account for their particular characteristics.
Thus, in this section we introduce TOLAP (Temporal OLAP), a multidimensional query language.
We will first present TOLAP by means of examples, and then define its syntax and semantics. In
Section 7.4 we will apply TOLAP to the case study of Chapter 3.

6.3.1 TOLAP By Example

Let us consider again the set of dimensions D = {Product, Store} and the base fact table

Sales, from Example 35. In the Product dimension, y = day. Also assume there is a fact table



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 120

All all
itemlid brand 1 12 b1 b2
5
da*
itemid il i2 i3

Figure 6.2: Dimension Product for the running example

(Price, fp, price, u : month), containing the price of each item each month(fp(¢) = {itemId} for

each t).

Simple Queries

We begin with queries not involving aggregates.

Example 36 A query returning the sales for stores in Buenos Aires, on a daily basis, will be ex-

pressed in TOLAP as:

BASales(p,s,m,t) ¢— Sales(p,s,m,t), s BT city:‘BA’, t— month:%;.

In TOLAP, the query above returns the tuples in Sales such that s rolled up to ‘BA’ at the time
of the sale, where s represents an element in the instance set of the lowest level of the dimension
Store. The atom t—> month:ty explicitly performs the conversion between the granularities of the
fact table(day) and the dimension table Store(month). Our actual implementation of TOLAP hides
this granularity management from the user. The query is expressed in a point-based fashion (see
Section 6.4.2 for details), and is interpreted as follows: a tuple in Sales will be in the result if a
product p was sold in store s on a day t belonging to month t1, if s was settled in Buenos Aires on

that month.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 121

We assume a fixed order of the attributes in the base fact tables. For instance, in the base fact

table Sales, the first position from the left will always correspond to dimension Product.

Example 37 The next query asks for the dollar value of the daily sales for each store and item.

DailySales(p,s, d*r,t) ¢— Sales(p,s,d,t), Price(p,r,m), t — month:m.

“¥7_ This, along with other scalar functions, will be assumed as

Here, we used a scalar function
predefined interpreted functions. The atom t — month:m homogenizes granularities between the

two fact tables in the body of the rule.

Queries With Aggregates

In order to address queries involving aggregation, we adapt non-recursive datalog with aggregate
functions [CM90], which, in turn, was based on the approach of Klug’s relational calculus with

aggregates [Klu82].

Example 38 Consider the query : “list the total sales per item and region,” where we want ag-
gregates to be computed using temporally consistent values (i.e., a sale in a given store is credited

to the region that corresponded to that store at the time of the sale).

IR(it,re,SUM(m)) +— Sales(it,st,m,d), st —> region:re,

d — month:mo.

Note that although in Example 38 we made explicit the rollup between the time granularity
of the Sales and Store dimensions (i.e. day and month), this could be easily avoided, allowing a
limited form of “schema independence”, as in Schemalog or SchemaSQL [L.SS93, 1.SS97]. Later
examples show the use of variables that range over level names, pushing this independence farther.

In TOLAP, time management can be hidden from the user. Taking advantage of this feature,
the query of Example 38 will read:

IR(it,re,SUM(m)) +¢+— Sales(it,st,m,d), st i> region:re.

In this query, the user does not express the rollup from day to month. In the former one, the
rollup from day to month had been made explicit with the atom d — month:mo,, and the use of
the variable mo in the rollup expression st ~— region:re. TOLAP automatically checks gran-
ularities and performs the necessary conversions. This approach will be followed in the remainder

of this chapter.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 122

Example 39 We now introduce descriptive attributes of dimension levels. Suppose we want the
total sales by store and brand, for stores with more than ninety employees. Assume that the level

storeld is described by an attribute nbrEmp (number of employees).

SB(br,st,SUM(m)) <+— Sales(i,s,m,t), i LN brand:br,

s - storeld:st, s.nbrEmp > 90.

Metaqueries

TOLAP also allows querying the system’s metadata. Thus, TOLAP supports queries with no fact

table in the body of the rules. Some examples of these kinds of queries are:

e “Give me the time instants at which store s1 belonged to the Southern region”, expressed as:

. ¢ .
StoreTime(t) +¢— Store:storeld:‘s;’ — region:‘Southern’.

Note that we must specify the name of the dimension in the atom Store:storeld: ‘s;’,

because there is no fact table in the body of the rule to which s could be bound.

e “List the months when “Southern” was not a valid region”.

. t
noSouth(t) ¢— —Store:region:‘Southern’ — X:x.

In the example above, variable X ranges over level names in the Store dimension. Variable x
is bound by the values in the levels of the dimension. The domain of t is the lifespan of the

dimension referenced in the metaquery.

e “Were products categorized by brands two years ago?” .

1/

1/1/98
ProdBrand() <— Product:X:x —— brand:y.

Here again X ranges over level names. The expression above means that if any element, in
any level in the Product dimension rolled up to an element in level brand at the required date,

the answer to the query will be ‘yes’.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 123

e “How were customers classified three years ago?”.

1/1/

1/97
CustCat(cust,X,x) «— Customer:customerId:cust —— X:x.

6.3.2 Data Warehouse Evolution in TOLAP

In Section 5.3 we showed that our model supports evolution of the schema over time (in temporal
database terminology this is called schema versioning or schema evolution). For instance, suppose
in our running example that the bottom level of the Store dimension in Figure 6.1 was initially
city, and that, at time ds, storeld was inserted below it. Also assume that the fact table depicted

below was in effect before ds.

itemld | city | sales | day

1] c1 100 dq
19 ca 100 ds
1] c3 100 ds
19 c1 100 dq

After the update, the following sales occurred (notice the new structure of the fact table):

itemld | storeld | sales | day
0 S4 100 | de
19 S 100 | de
0 s3 100 | dr
19 s1 100 | dr

In TOLAP, an element not defined at a given instant, will not contribute to the result. For

instance, given the query “list the total sum of sales by brand and storeld”, we have:

SB(br,st,SUM(m)) <+— Sales(i,s,m,t), i%brand:br,
s —‘ystoreld:st.
The expression s—'sstoreld:st means that if an element in any level, which was once a com-
ponent of a base fact table, rolled up to level storeld at time ¢, it contributes to the aggregation.
Thus, the sales made before the month corresponding to ds will not contribute to the aggregation

in the head (condition s—'s storeld:st will not be satisfied). Analogously, a query like “total



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 124

All All
ds &5
company d7*
compan;
ds ds5*
[d5,d9)
bran itemType itemType
brand
b
itemld itemld
(a) (®)

Figure 6.3: Data warehouse evolution

sales by store and itemld” would return exactly the instance of the second fact table above. This

query is expressed:

StIt(it,st,SUM(m)) +<+— Sales(i,s,m,t), ity itemId:it, s 'ystoreld:st.

Figure 6.3(a) shows that at time ds, level company was added above level brand (a generaliza-
tion from brand to company) in dimension Product. Given the query : “total sales by company and
region”, the sales occurring before ds will not contribute to the aggregation, as company was not a

level of the dimension at that time. The query reads in TOLAP:

CR(c,reg,SUM(m)) <+— Sales(i,s,m,t), i L>company:c, sy region:reg.
Finally, suppose that at time dg, level brand is deleted from the dimension Product. The re-

maining levels are item/Id,(bottom level), itemType, company, and All. The query “total sales by

brand and region” is expressed in TOLAP as:

BR(br,reg,SUM(m)) ¢— Sales(i,s,m,t), i%brand:br, s%region:reg.

Any sale occurred after dg will not be considered, as brand is not a level of the dimension

anymaore.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 125

6.3.3 TOLAP Programs

A TOLAP program allows to compute the result of a rule and use it as a predicate in the body
of another rule. The predicate’s name is the name of the predicate in the head of the rule which

computes it.

For instance, let us suppose the following query: “List the total sales by brand, for those brands
that sold more than one hundred thousand dollars in Buenos Aires”. We want to answer this query

precomputing a view holding the total sales in Buenos Aires, by brand.

BASales(c,SUM(m)) <+— Sales(a,s,m,t),a%brand:c,

t . .
s —»city:x, x.name=‘‘Buenos Aires’’.

Then, we compute the query, using predicate BASales.

Q(c,SUM(m)) +¢— Sales(a,s,m,t), BASales(c,q), a L>brand:c, q > 100000.

For each brand in dimension Product matching a brand in BASales, in the second rule, if the

amount sold was greater than one hundred thousand, the sales contributes to the aggregation.

6.4 TOLAP Syntax and Semantics

6.4.1 Syntax

In this section we will formally define the syntax of a TOLAP rule. We will first give some

definitions which will be used below, and then formalize the concepts introduced in Section 6.3.

Preliminary Definitions

Given a set T, and a discrete linear order <, with no endpoints, we define a point based tem-
poral domain as the structure Tp = (7', <). Analogously, given Tp = (T, <), we define the set
I(T) = {(a,b)|a < bya,b € T'U{—00,+00}}. Let us denote by 6 the set of the usual interval
comparison operators. Then, 77 = (I(T),0) is an Interval-based Temporal Domain corresponding

to Tp. [Tom97]. The rollup functions in TOLAP will be defined over Tp.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 126

Atoms, Terms, Rules and Programs

Assume Bg(Dg, Fs) and I(B) represent a multidimensional database schema and instance, respec-
tively, as defined in Section 5.3. Let VI, and Vp be a set of level and data variables, respectively.
We have also the sets Cy, and Cp of level and data constants, respectively. Let P be a set of

predicate names, and F g a set of aggregate function names.

Definition 23 (Terms)
e A data term is either a variable in Vp or a constant in Cp;

e qa rollup term is an expression of the form d:X:x, X:x or x, where X is a level name variable

in Vi or constant in Cy, x is a data term, and 4 is a constant in Cy;
e a descriptive term is an expression of the form x.a where x and a are data terms;

e an aggregate term is an expression of the form £(d) such that £ is a function name in F g

and d is a data term.

A term is a data, rollup, descriptive or aggregate term.

Definition 24 (Atoms)

o A fact atom is an expression of the form F(Xy,...,Xn, M, t), where F is a fact table name in

Fg, and X4, ...,X4, M and t are data terms;

e a rollup atom is an expression of the form X L5 Y, or X — Y, where X and Y are rollup

terms, and t is a data term;

e a descriptive atom is an expression of the form x = y, where x is a descriptive term, and y

and t are data terms;

e an aggregate atom is of the form Q(R,...,Z) s.t. Q € P, and R, ...,Z are data terms s.t. at

least one is an aggregate term;

e ¢ constraint atom is an expression t; 0 to, where t; and ty are data terms, and 8 is one of
{<7 :};

o if g:Nx .. XN—N is a scalar function, g(ny,...ny), where n; are data terms, is a scalar

atom;



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 127

e an intensional(extensional) predicate atom is an expression of the form p (X,..,Z) where
X,Y,Z are data terms, and p is an intensional(extensional) predicate name in P. In what

follows, we will refer to this kinds of atoms simply as predicate atoms when possible.

An atom is a fact, rollup, descriptive, aggregate, constraint, scalar or predicate atom. An

expression —ty, where ty is an atom, is a negated atom.

Definition 25 (TOLAP Rules) A TOLAP rule is a formula of the form A «— Ay, A,, ...A,, where
A is an intensional(possibly aggregate) positive atom, and A;, i = 1...n are non-aggregate atoms.

A TOLAP rule I satisfies the following conditions:

e if a variable appears in the head of the rule, it must also appear in its body;

e for every level/data variable v, all the rollup terms in which v appears are associated to the

same dimension; moreover, all the variables in a rollup atom belong to the same dimension;

e if there is an aggregate atom Q(ay,...,an) in the head of the rule, for all atoms in the body,
of the form d:X:x N y:rai, X N y:ai, y is a constant data term (thus, aggregation is

performed over constant level names);

e cvery variable x in a rollup atom of the form x L>y:a, must appear in a fact atom in the

body of the rule;
e ifx.a isin the body of I, at least one rollup term in the body is of the form d:X:x, X:x or x;

e cvery variable appearing in a predicate atom must appear in a fact or rollup atom in the body

of the rule;
e in a rollup term of the form d:X:x N y:a, d is a constant data term;

e if there is no fact atom in the body of I', all the rollup atoms must be of the form d:X:x N

y:a;
e In a negated fact atom, at least one of its terms must be a constant in Cp;

e ift10ty is a constraint atom, t1 and ty are both variables in a fact, rollup or descriptive atom
in the body, or one of them is a constant in Cp and the other is a variable in a fact, rollup

or descriptive atom.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 128

e if the head of a rule is of the form Q(ay, ..., an), Q cannot appear in the body of the same rule.

From the rules above, it follows that there is a function, call it dim, that maps each data
variable x to a unique dimension dim(x), and each level variable X to a unique dimension
dim(X). Furthermore, there is a function level, that maps each instant t to a unique level
level(x,t) of the dimension dim(x), and to a unique level level(X,t) of the dimension

dim(X).

o The granularity of a fact table ' must be finer than the finest granularity of any of its com-

ponent dimensions involved in a rollup atom in the body of the rule.

This rule prevents a fact from being counted more than once. For example, consider the query:

Q(is,rs,SUM(m)) ¢+— F(i,s,m,t), s 1y d:rs.

Assume that the fact table granularity is “year”, and the granularity of dim(s) is“day”. A
fact in an instance of F could be of the form < 11, s1,100,1998 > . The dimension may have a
pair of tuples < s1,7rs1,1—1—-1998,5—-5—-1998 > and < s1,7r82,5—6—1998,12—-31—-1998 > .

The fact would be counted twice. Thus, we do not admit this case to occur.

Definition 26 (Mutual Recursion) Given a set R of TOLAP rules, a precedence graph G is
built as follows: for each aggregate, predicate or fact atom P, there is a node named P in G. If
P and @) are nodes in G, add an edge from P to @) if there is a rule I' in R such that P and @
occur in the body and the head of T, respectively. Following Abiteboul et al [AHV95] we say that
two aggregate, fact or predicate atoms R and S are mutually recursive if R and S participate in
the same cycle in G. We do not consider the case R=5 because a TOLAP rule is non-recursive by

definition.

Definition 27 (TTOLAP Programs) A finite set of TOLAP rules which does not contain mutu-

ally recursive atoms is called a TOLAP Program.

6.4.2 Semantics

We will use point-based semantics [Tom95] for the rollup functions. This means, for instance,
that in a dimension such as Store of our running example, a value for a rollup, say

storeld:s: ‘i1’ =% city:c:‘cl’, exists for each month in its validity interval.



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 129

Let us assume that for each dimension instance we have a pair of relations, call them Rp and
Dp, representing the sets TRUP and TDESC of Definition 18, respectively. The multidimensional
database is defined over three different domains: D, N, Tp, where variables ranging over D belong
to an uninterpreted sort, the ones ranging over N belong to an interpreted sort (numeric), and the
temporal variables range over Tp, defined in 6.4.1. For each dimension d, we will consider that Tp
is limited to the lifespan of d.

A wvaluation 0 for a TOLAP rule T, is a tuple (65, 60;), where 8, is called a schema valuation,
and 65 is an instance valuation. Valuation 65 maps the level and attribute variables in I' to level

and attribute names in Bs(Dg, Fg), while #; maps domain variables to values in /(B).

Definition 28 (Valuations) A schema valuation for a rule I', denoted 8(1") maps level and at-

tribute variables in the atoms of I' as follows:
e given a rollup atom of the form d:X:x N Y:y, 85 maps 4 to a dimension name in Dy, t to

a value w € Tp, and X and Y to a pair of values (v,u) s.t. v <¥ u holds in d;

e if the rollup atom is of the form X:x AN Y:y, 0, maps t to a value w € Tp, and X and Y to

a pair of values v,u s.t. v <} u holds in dim(X) € Dy;

e if the rollup atom is of the form x AN Y:y, 0, maps t to a value w € Tp, and Y to a value

u s.t. level(x,w) =¥ u holds in dim(x) € Dy;

e for a rollup atom of the form x — Y:y, 05 maps Y to a dimension level u in dim(Y), s.t.

ling =" u holds in dim(X);

e given a descriptive atom of the form x.A < y, s maps t to a value w € Tp, and A to an
attribute name u € A, s.t. u > level(x,w) in dim(x) € Dy;

Given a rule schema valuation 05(I") for a rule I, an instance valuation is a function 05 s.t.

e 07 maps the domain variables x and y in the rollup atoms defined above to values in Rp over

levels defined by 6,;

e O; maps variable x in the descriptive atom x.A L y to values in Dp, over levels defined by

0s, and y to a value in D or N;

e 01 maps a fact atom F(zq,..,x,, M,t) as follows: the rightmost term t in F' is mapped to a
value w € Tp; each domain variable z; in I to a value in dom(level(x;,w)); and the data

term M in F' to a value in N (M is the measure of the fact table).



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 130

e ¢ constraint atom z {<,=} y evaluates to true whenever O(z) {<,=} 07(y) is true. Recall
that every variable in a constraint atom must appear in a rollup or fact atom in the body.
Thus, either 81 maps x and y in the way described above, or they are mapped to a value in

D, N or Tp.

e A negated rollup atom is evaluated using the Close World Assumption. Thus, =( x AN Y:y)
is true if, given a valuation 8 s.t. 8(z) = u, 8(t) = w, 8(Y) = [, and 0(y) = v, then there
does not exist a rollup in dim(x) s.t. pllevel(x w)[w](u) = v. Recall that every variable must be

in a positive atom in the body of the rule.

e A negated descriptive atom —x.A L y is treated as explained above for negated rollup atoms.
Thus, ~x.A £ y is true if, given a valuation 8 s.t. 8(z) = u, 8(t) = w, B(A) = a, and

0(y) = v, then it does not exist a description in dim(x) such that {[t]qyer(xq)(w) = v.

e A negated constraint atom is evaluated in the standard way (i.e. §(—x =Db) =0(x <> D)) .

e A negated fact atom —F(z,y,..., “a”, m,t) is true if for a valuation 0;(z) = u, 0;(y) = v, ...,

W,

the tuple < u,v,...,“a”, ... > is not in F.

e predicate atoms are valuated as in standard datalog [AHV95].

Let AGG be the set of aggregate functions, with extension AGG = {MIN,MAX,
COUNT,SUM,AVG}, and r a relation. The aggregate operation [CM90] 'yfA(X)(r) is the re-
lation

'yfA(X)(r) = {t :tis an XA-tuple,t[X] € 7x(r),t[A] = fa(ox=ex](r))},

over XA, s.t. XA € schema(r), f € AGG, and f4(r) denotes the aggregation of the values in
t[A],t € r, using f.

Thus, we can now define the semantics of a TOLAP rule ' of the form

Q(ar,az,...,a,, AGG(m)) +— A1,..., Ay

as follows:

For each level or data variable v; in the body of I', and for a valuation 8 of the variables in the
rule’s body, we have:

rr={<0(v),...,0(v,) > |0 is a valuation of I'}.

Then ) = ’YAGGm(al,...,an)(rF)-



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 131

6.4.3 Discussing Safety

Queries expressed as TOL AP rules studied in the previous subsections always lead to finite answers.
This follows from the syntactic restrictions and from the semantics defined in subsection 6.4.2. The
existence of functions dim(x) and level(x,t) makes every variable in a rule bounded by the active
domain of some level in a dimension. This is analogous to the concept of range restricted variable
[AHV95]. Thus, for instance, if a negated rollup atom appears in the body, safety is always granted.
The same occurs with negated fact atoms. Also, limiting the temporal domain to the lifespan of the
dimensions avoids infinite query answers, like in the second metaquery in Section 6.3.1. Thus, we

conclude that TOL AP rules are safe. We apply this conclusion in Section 7.2, where we translate

a TOLAP rule to an SQL query.

6.5 Expressive Power

In this section we informally discuss TOLAP’s expressive power. We also define an extension to
TOLAP which will allow expressing queries not supported by the syntax and semantics defined so

far.

6.5.1 What Can Be Expressed in TOLAP?

Intuitively, it is not hard to see that TOL AP has at least the power of first-order query languages
with aggregation. However, in a sense it goes beyond this class. Note that in the temporal mul-
tidimensional data model, only the direct rollups are stored. Thus, to evaluate a rollup atom like
d:X:x L>Y:y, we need to compute the transitive closure of the rollup functions in dimension 4.
It is a well-known fact that this cannot be done in first-order, even after adding aggregate func-
tions [LW97]. However, as long as the dimension schema is fixed, this computation can be done in
first order, because for a fixed schema, the number of joins needed to transitively close the rollup
functions is known in advance.

Observe that not only the structure of a dimension is subject to updates. There are common
real-life situations in which an instance of a dimension may be modified in a non-trivial fashion.
For example, splits, mergings or reclassification can occur.

Assume a “Geography” dimension is defined in the data warehouse we are using as our running

example, with levels city and region , and the following query is posed: “total sales per item and



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 132

region, using only the currently existing regions”. In TOLAP we would write:

SB(p,r,SUM(m)) +¢+— Sales(i,st,s,t), i LN itemId:p, st M region:r.

The second rollup atom filters out regions not valid today.

Suppose now the following constraint: if a region where a sale occurred does not exist today,
we want in the result a descendant of such region, if it exists. This query cannot be expressed in
TOLAP. To show this, suppose a region r is split into r; and ry. After that, ry is merged with
another region r4. In the meantime, maybe some region could have been deleted. With the tools
defined so far, we could not find the “descendants” of r, because this is a transitive closure problem

even though the schema remains fixed.

6.5.2 Extending TOLAP

We extend TOLAP in order to be able to express the class of queries exemplified above. First,
remember that at the end of Section 5.4.5 we added two predicates to the data model, denoted
split(z,y, L,t) and merged(z,y, L,t) in order to keep track of the different dimension’s states. We
defined them as event predicates, in the temporal database sense.

Using the split and merged predicates, we add to the syntax of TOLAP defined in Section 6.4.1
a new kind of atom, d:L;:x N La(t2) : y. The valuation of this atom proceeds as in Section
6.4.2. The interpretation is as follows: the atom evaluates to True whenever y is the element in
level Ly in dimension d, to which an element x in level L; rolled up at time ¢;, given that y is a
successor(if t2 > #1) or predecessor (if t; > t3) of an element z in Ly, s.t. x rolled up to z at time
t.

In order to clarify the meaning of the expression d : Ly : x N La(tz2) : y let us explain it in
terms of datalog with stratified negation expressions. Let us define a predicate shift(z,y, L,t) as

follows:
shift(x,y,L,t) — split(x,y,L,t).

shift(x,y,L,t) ¢— merged(x,y,L, t).

shift(x,y,L,t2) ¢— shift(x,z,L,tq),shift(z,y,L,tq), 2 > 1.

From predicate shift we derive another one, called shiftPers(z,y, L,t), which extends the valid-
ity of the split or merge, to every instant ¢ between updates. For instance, if shi ft(r,r1, L, 10) and
shift(ry,re, L,13) hold, then, shiftPers(r,r,L,11) and shiftPers(r,ry, L,12) also hold. This

has been called Persistence in former temporal database works [BWJ98]. Thus:



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 133

shiftPers(x,y,L,t) shift(x,y,L,t).

«
shiftPers(x,y,L,s(t)) +— shiftPers(x,y,L,t),
—shift(y, yi1,L, s(t)),
y # y1,5(t) < Now,
—deleted(y,L,s(t)).
shiftPers(x,y,L,s(t)) +— shiftPers(x,y,L,ty),
deleted(y,L, t1),
—inserted(y,L, ta),
inserted(Y,L,t),

ty < to, by < t.

Here, s(t) stands for the successor of ¢. Predicates deleted(y, L, t) and inserted(y, L,t) represent
the deletion of an element y from a level L containing it, or the insertion of an element into a level,
respectively, and can be derived from the available data.

Now, we can define the meaning of L : z Ay Ly(tz) : y by means of the following datalog

rules:
t ty
Li:x > Lo(ta) :y ¢— Litx—Ly:y,

lexi>L2:y.
L1ZXi>Lg(t2):y — L1ZXL>LQZZ,
L1:xi>L2:y,
shiftPers(z,y,L, ts).
L1ZXi>Lg(t2):y — L1ZXL>LQZZ,
lexi>L2:y,

shiftPers(y,z,L, ts).

This implies that if at time ¢; = rolled up to z, and at time ¢, x rolled up to y, and v is a
descendant of z, then use y as a rollup for x.

We will denote this extension of TOLAP as TOLAP*T. The meaning of a TOLAPT query is
analogous to the meaning of a TOLAP one. Now, we can express the query “total sales per item

and region, using only the regions at which the sales occurred, or their descendants”, as:

IR(p,r,SUM(s)) <+— Sales(i,st,s,t), i LN itemId:p,

st L>reg(Now) r.

In order to make things more clear, suppose that a sale such as (py, s1, 30, 10) occurred, and

also suppose that at instant “1” store sy belonged to region r, which no longer exists at time “107,



CHAPTER 6. TOLAP : TEMPORAL OLAP QUERY LANGUAGE 134

because it was split into r9; and rag. After a series of updates(maybe including the deletion of ry;
and ry3), store sy currently belongs to region rs, which is not a descendant of r;. According to the

semantics defined above, this sale will not contribute to the query result.

6.6 Summary

In this chapter we introduced the temporal query laguage for OLAP, which we called TOLAP.
We defined the syntax and semantics of the language, and presented many examples of TOLAP
rules and programs. Finally, we suggested a possible extension that expands TOLAP’s expressive

power.



Chapter 7

TOLAP Implementation

In this chapter we present our TOLAP implementation. We describe the data structure support-
ing the system, and how each TOLAP atom is translated to SQL statements. We also show how
TOLAP rules and programs are translated to SQL, and discuss different implementation alterna-
tives. Finally, we apply our implementation to the case study introduced in Chapter 3.

The chapter is organized as follows. In Section 7.1 we discuss different relational representation
alternatives for the temporal model. Section 7.2 presents the translation to SQL of TOLAP rules
and programs. Section 7.3 describes the system’s implementation and metadata. In Section 7.4 we

apply our implementation to the medical center case study. We conclude in Section 7.5.

7.1 Relational Representation

Like in Chapter 3, two different data structures were considered for representing dimensions : a
“fixed schema” versus a “non-fixed schema” approach. In both of them, a relation with schema
(dimensionld, loLevel, toLevel, From, To) represents the structure of each dimension across time.
Each tuple in this relation informs that in the dimension identified by dimensionld, level loLevel
rolled up to level toLevel between instants From and to. We briefly discuss how instances of the

dimensions are stored under both kinds of representations.

7.1.1 Fixed Schema

In a fixed-schema relational representation, a dimension instance is a relation with tu-

ples of the form (loLevel,upLevel,loVal,upVal, From,To). Each tuple represents a rollup

135



CHAPTER 7. TOLAP IMPLEMENTATION 136

p;;pLL;fll[(From,To)](loVal) = upVal. Thus, a structural dimension update will only insert new

tuples in this relation, leaving the schema unaltered.

This is probably the most natural representation, because it implements the relation Rp of
Section 6.4.2 straightforwardly. Moreover, update operators can be easily implemented, except for
Relate and Unrelate, which will require self-joining the relation, in order to check the existence of
a consistency function. On the other hand, this representation has drawbacks analogous to the
ones described in Chapter 3. Further, translation to SQL would be awkward, and the resulting
SQL queries will be far from optimal, because the transitive closure of the rollup functions must

be computed, requiring self-joining temporal relations.

7.1.2 Non-fixed Schema

In this case there is also a single relation holding the instances of each dimension, but each dimension
level is mapped to an attribute in this relation. As in the denormalized representation discussed
in Chapter 3, a tuple contains all the possible paths from an element in the bottom level, to the
distinguished element “all”. Two attributes, F'rom and To, indicate, as usual in the temporal
database field, the interval within which a tuple is valid.

This structure requires more complicated algorithms for the update operators. For instance,
each generalization, specialization or level deletion, requires an update of the relation’s schema.
However, the translation process is simpler, and the subsequent query performance better, because

the transitive closure of the rollup functions reduces to a single relation scan.

7.1.3 Fixed vs. Non-fixed Schemas

To make the ideas above more clear, let us show how a TOLAP query is translated to SQL. Later,
we will give full details of this process.
Consider the query “total sales by company”, posed to the example data warehouse of Chapter

6 in which we have inserted a new level company above level brand. This query reads in TOLAP :

COMP(c,SUM(qty)) <— Sales(i,st,qty,t), i L>~:ompany:~:.

In the fixed schema representation, the dimension Product would be represented by relations
with tuples of the form < itemld, brand, i1, by, t1, t3 >, < brand, company, b, c1, to, t3 >, and

so on. Thus, each time a new level is added, the relation’s schema does not change. In a non-fixed



CHAPTER 7. TOLAP IMPLEMENTATION 137

schema approach, the addition of a dimension level induces a schema update of this relation: a
new column will be added to the relation. If a level is deleted, no schema update occurs(i.e., the

corresponding column is not dropped), in order to preserve the dimension’s history.

Assuming that no schema update affected the fact table Sales, the SQL equivalent of the

TOLAP query above in the fixed schema approach will look like!:

SELECT P1.upLevel,SUM(sales)
FROM Sales S, Product P, Product P1, Time T
WHERE

S.itemId = P.loVal AND P.loLevel = ‘itemId’ AND

P.uplLevel = ‘brand’ AND P1l.upLevel = ‘company’ AND

P.upLevel = P1.loLevel AND
S.day between P.From AND P.To AND
S.day between P1.From AND P1.To

GROUP BY P1.upLevel

In the non-fixed schema representation, the SQL equivalent for the query is:

SELECT P.company,SUM(sales)
FROM Sales S, Product P
WHERE

S.itemId = P.itemId AND

S.day between P.From AND P.To

GROUP BY P.company

It is easy to see that the result is much more elegant and efficient in the second approach. The
computation of the rollup from item/Id and company is straightforward, while in the first approach,

the self-join of the table Product is required.

These arguments led us to conclude that the non-fixed schema approach would be the better

choice for the current TOLAP implementation.

"For the sake of clarity we do not show here how time granularity is handled in the translation.



CHAPTER 7. TOLAP IMPLEMENTATION 138

7.2 Translating TOLAP into SQL.

The TOLAP parser performs a first pass over a rule, checking that the syntactic conditions of
Definition 25 are met. In case an error is found, execution halts. In this first pass, the different
atoms are identified and a symbol table built. The second pass translates each atom into an SQL
statement and builds the equivalent SQL query.

We will show how a TOLAP rule of the form

Q(x,y,Ag(m)) ++— F(x;,y;,m,t), x; 5 lx, Y; Now li:y, Dim:1:r SN p:Z;

is translated to SQL. The translation of atoms, rules, and programs will be explained in that

order 2.

7.2.1 TOLAP Atoms

e For each rollup atom like z; AN l;:x, bound to a variable in a fact table, a selection clause is

built as follows:

F.i = Dim;.bottom AND

F.time between Dim;.F'rom AND Dim;.To

The first expression equates the bottom level of dimension Dim; to the column of the fact
table corresponding to dimension Dim;(Dim; is dim(z;) in our notation above). The actual
name of the column F.i is taken from the fact table’s metadata. The second expression

corresponds to the join between the fact table and the “Time” dimension.
e Each time constant is translated as a selection clause. The second rollup atom in the rule
above will be translated as® :

F.j = Dimj.bottom AND
Dim;To = Now

Dim; is the dimension such that variable y; is bound to.

e If the rollup atom z — Y:x corresponds to a user-defined time dimension, the atom is

translated as

Notation: The dimensions’ sub-indices represent their position in the fact table to which they are bound. Also,

constructions of the form z — Y:x, are replaced by z[t] — Y:x in the implementation, in order to simplify parsing.
°In an actual implementation, Now can be replaced by Sysdate() or any function returning the current time.



CHAPTER 7. TOLAP IMPLEMENTATION 139

F.j = Dimj.bottom
The user-defined time dimension is identified by the dtime attribute in the catalog table
DIMENSION.

e A rollup atom Dim:l:r N p:z, not bound to any fact table, is translated as an EXISTS clause.

EXISTS
SELECT =*
FROM Dim
WHERE

F.Time between Dim.From AND Dim.To

The WHERE clause is omitted if the join with the time dimension is not required.

e The rollup from the bottom levels of the dimensions to the levels /; and /; corresponding to the
variables in the head of the rule above (the aggregation levels), is computed as a projection
and an aggregation in the way shown below. Thus, the SQL query generated by the TOLAP

query of the beginning of this section, will look like
SELECT Dim;.l;, Dim;.l;,Ag(measure)
FROM F_1, Dim;, Dim;

WHERE

F_1.i = Dim;.bottom AND
F_1.j = Dim;.bottom AND
F_1.time between Dim;.From AND Dim;.To AND
Dim;. To = Now AND
EXISTS
(SELECT *
FROM Dwm
WHERE
F_1.Time between Dim.From AND Dim.To )

GROUP BY Dim;.l;, Dimj.lj

The term measure is the measure in the fact table, bound to variable m. The fact table

sub-index represents the version of the fact table. In this case there is only one version, as



CHAPTER 7. TOLAP IMPLEMENTATION 140

no schema update occurred. We will come back to this shortly.

e A constraint atom is translated as a selection condition in the WHERE clause. If the constraint

atom is negated, this condition is treated in the usual way (a NOT predicate is added).

o A negated rollup atom is translated as a NOT EXISTS clause. Suppose that in the query above

we add a negated atom as follows *:

!y, Moy 111 ¢a%)

where ‘a’ represents a constant. This atom is converted into an SQL expression of the form:

NOT EXISTS(
SELECT *
FROM Dim;
WHERE

Dim;.To= Now AND  Dim;.l; =‘a’ AND F.j = Dim;.bottom)

where [y is the attribute representing level [;.

e A predicate atom is translated as a table in the FROM clause, with the conditions which arise

from the variables or constants in it.

7.2.2 TOLAP Rules

So far we tackled the problem of translating each atom in a TOLAP rule separately. The next step
will be the study of the translation of the whole rule.

Above, we gave an example of a simple rule, assuming no schema update occurred in the
fact table. However, we claimed that one of the main features of TOLAP is the ability to deal
with schema updates triggered by a specialization or the deletion of a bottom level. In the table
META_FACT_TABLE (see Subsection 7.3.3), a tuple is stored each time a dimension update affects
a fact table in the data warehouse. Given a fact table I, this fact table may have versions F_1, I'_2
and so on, each one with different schemas.

Given a TOLAP query I involving a fact table I’, with versions Fi, ..., F},, the SQL query )

equivalent to I' will be such that

* Actually, the parenthesis is not required



CHAPTER 7. TOLAP IMPLEMENTATION 141

Q = QUQU...UQy,

where (); are queries involving facts occurred in the intervals I; in which each F_ holds. If the
query involves an aggregation function, call it figq, one more aggregation must be performed, in

order to consider duplicates in each subquery. Thus

Qacc = face(Q)
7.2.3 TOLAP Programs

TOLAP programs are treated as a series of TOLAP rules. Let us consider again the TOLAP
program of Subsection 6.3.3 above: “total sales by brand, for those brands that sold more than one

hundred thousand dollars in Buenos Aires”.

BASales(c,SUM(m)) <+— Sales(a,s,m,t),a%brand:c,

. .
s —rcity:x, x.name=°‘‘Buenos Aires;’’

Q(c,SUM(m)) ¢— Sales(a,s,m,t), BASales(c,q), a L>brand:c, q > 100000;

The program is processed as follows: during parsing, a temporary table is created for each
predicate in the head of the first rule (the semicolon indicates the end of each rule). This predicate
is entered in the symbol table, so it can be accepted when parsing the second rule. Then, the
program generates two SQL queries. The first one populates the temporary table, and the second
one computes the final output of the program. All temporary tables are dropped after program

execution.

7.2.4 Query Optimization

There are cases in which the join between dimensions and fact tables is not needed. This situation
arises when a variable in the head of the rule belongs to a level which is the bottom level of a fact
table in the body (or was the bottom level at least during some interval /;). Our implementation
takes advantage of this fact, and does not generate the join.

Example 40 Let us consider again the situation discussed in Section 6.3.2. The fact table Sales
will be split into Sales_1 and Sales_2, each one holding before and after ds. Let us analyze how the



CHAPTER 7. TOLAP IMPLEMENTATION 142

query “total sales by itemld and city” will be translated to SQL. The query in TOLAP reads:

IC(it,ci,SUM(m)) +— Sales(i,s,m,t), i%itemld:it,
] L>city:ci.

Two SQL subqueries will be generated, one for each fact table.

SELECT itemId,city,SUM(sales)
FROM (
SELECT itemId,city, SUM(sales)
FROM Sales_1
GROUP BY itemId,city

UNION ALL

SELECT itemId,city, SUM(sales)
FROM Sales_2,Store
WHERE
Sales 2.Time between Store.From AND Store.To AND
Sales_2.storeld=Store.storeld
GROUP BY itemId,city )
GROUP BY itemId,city

Notice that, as city and itemld were the bottom levels of Sales_1 no join is needed in the first
subquery.

If a TOLAP rule contains a constraint atom with a condition over time such that the lifespan
of a version of the fact table does not intersect with the interval determined by the constraint, the
subquery corresponding to that version of the fact table is not generated by the translator, as it
will not yield any tuple in the output. For instance, in Example 40, adding the constraint ¢t < dg

will prevent the first subquery from being generated. We call this step subquery pruning.

7.3 Implementation

In this section we briefly describe our implementation of TOLAP. We focus on describing the

system’s metadata, because it constitutes the heart of the implementation.

7.3.1 Implementation Tools

The system was implemented on an ORACLE 8.04 database. The parser and visual interfaces
were written in Java using Borland’s Java Builder. The update operators were implemented as

ORACLE’s PL-SQL stored procedures and functions.



CHAPTER 7. TOLAP IMPLEMENTATION 143

Visual interface
(Java)

TOLAP Parser
(Java)

Dimension Updates
(Java)

TOLAP Trandator

(Java)
{ JDBC }
ORACLE 8.04 database
PL-SQL dimension
metadata
stored procedures tables

Figure 7.1: System’s architecture

7.83.2 Architecture

Figure 7.1 shows the system’s architecture. The user interacts with the system through the visual
interface. The dimension updates and the TOLAP compiler access the database through a JDBC

driver. The compiler uses stored procedures when processing metaqueries.

7.3.3 Metadata

Besides the relations representing each dimension in the data warehouse, several tables are needed

in order to store the system’s metadata. We briefly describe the main ones.

e DIMENSION (dimensionld,description,granularity,init,dtime). Holds the basic information of
each dimension in the system. Attribute init indicates if the user is working in “temporal”
or “non-temporal” mode. This is useful when the user does not want to record a dimension’s
history until a stable stage has been reached. For instance, the user would like to start from a
dimension Product with levels itemld, brand and category. In this case, the user indicates that
she wants to work in the “initial mode”, and proceeds to create the dimension. When the
dimension is completed, the user shifts back to the “temporal mode”. The value of attribute
init (‘I’ or “T” for ‘initial’ and ‘temporal’ respectively) is reset each time the user shifts modes.

The default is ‘T".



CHAPTER 7. TOLAP IMPLEMENTATION 144

Attribute dtime informs if the dimension is a user-defined time dimension. This information

becomes necessary when translating TOLAP rules to SQL (see Subsection 7.2).

e DIMENSION_H(dimensionld, TmpFrom,TmpTo,LevelFrom,LevelTo). Represents the history

of the dimension schema.

e META _FACT_TABLE(FactTableld,From,To,dimension,number,granularity, ...). Keeps infor-
mation of the different stages of the fact tables in the system, and the correspondence of

dimensions to columns in the fact table.

e ATTRIBUTE_LEVELS(dimensionld,level,attributeName). Holds the names of the attributes

of each level.

o ATTRIBUTE_INSTANCE(dimensionld,level,value,attrib,valueAt). Holds the names and val-
ues of the attributes of each level. The column value is the element in level level which is

described by attribute atirib with value valueAt.

Note. In the current version of TOL AP, attributes are not temporal objects. Thus using the
notation of table ATTRIBUTE_INSTANCE, valueAt is constant for all the lifespan of value.

7.4 The Medical Clinic Case Study: a Temporal Approach

In this section we apply the temporal approach to the Case Study introduced in Chapter 3. The
temporal multidimensional data model allows not only to modify the dimensions in an on-line
fashion, but to keep track of the history of the medical data warehouse. We will present a simulated

scenario, based on real data and the available information already described in Section 4.

7.4.1 Goals of the Study

We will study, on a real-life case, if the temporal approach and the TOL AP query language address
the needs of the users in a better way than commercially available non-temporal OLAP tools.
Using our implementation, we will discuss: (a) performance, measuring the response time of the
dimension updates and TOLAP queries;(b) expressiveness and abstraction, posing queries which
could not be easily expressed in non-temporal environments and comparing these queries with their
SQL equivalent;(c) visualization capabilities, through a graphic environment which allows browsing
dimensions and fact tables across time, applying dimension updates, and querying the temporal

data warehouse.



CHAPTER 7. TOLAP IMPLEMENTATION 145

Table # of tuples

Patient 16383
Procedure 11253
Doctor 822

Time 730
Services_1 26040
Services_2 12624

Services_3 17828

Figure 7.2: Number of tuples in the temporal data warehouse tables

7.4.2 Data Preparation

The testing scenario was prepared as follows:

1. We created the temporal data warehouse dimensions using a sequence of temporal dimension
updates. We also created the initial version of the fact table; the other two versions were
triggered by the dimension updates. The dimension updates were applied using the graphic

environment we describe below.

2. After this, we populated (off-line) the three versions of the fact table, with a subset of the
data used to populate the fact table Services in Chapter 4. The number of tuples in each

table of the relational representation after all these operations were performed, is showed in

Figure 7.2.

The temporal data warehouse was created as follows:

e Procedure. Created with bottom level procld. Subsequent operations performed using the
graphic interface generalized this level to levels subgroup and proc Type. Finally, subgroup was
generalized to group, and procType related to group. These dimension levels were discussed

in Chapter 3.

e Patient. Here, the initial bottom level patientld represents information about the person
under treatment. This level was generalized to yearOfBirth, gender and institution, in that
order. Levels yearOfBirth and institution were further generalized into yearRange and instype

respectively.



CHAPTER 7. TOLAP IMPLEMENTATION 146

e Doctor. In order to make the study more interesting, we assumed that although facts were
recorded at the idDoctor level, this level was temporarily deleted, triggering fact table evo-
lution. Thus, during a short interval, the dimension’s bottom level was speciality, later

specialized into level doctorld.

e A user-defined Time dimension, with granularity day, allowing to express aggregates
over time. The dimension’s hierarchy is the following: {day =< week, day < month,
week < All, month < All}. In the relational model, the dimension is a relation with
schema {day, week, month,year}, and a tuple in an instance of this relation has the form
< 10,2,1,1 >, meaning that day ‘10’ belongs to week ‘2’, month ‘1’ and year ‘1°. Attributes
could be added, for instance, to cover the case of a user wishing to find out the number of
services delivered on holidays. For the present study we did not define attributes for the Time
dimension. Also, the fact table was populated in a way such that the default time dimen-
sion(with granularity second) and the user defined dimension (i.e. Time, with granularity day
as we explained above) represent valid time. Notice, however, that other applications could
require that bi-temporal management. In such cases, one of the time dimensions could be

defined as representing transaction time, with the other one representing valid time.

In summary, the sequence of data warehouse updates was:

1. Create dimension Doctor with bottom level idDoctor.
2. Create dimension Patient with bottom level patientld.
3. Create dimension Procedure with bottom level procld.
4. Create dimension Time with bottom level day.

5. Generalize idDoctor to speciality.

6. Generalize procld to subgroup.

7. Generalize procld to procType.

8. Generalize patientld to yearOfBirth.

9. Generalize patientld to gender.



CHAPTER 7. TOLAP IMPLEMENTATION 147

10.

11.

12.

13.

14.

15.

16.

17.

Generalize subgroup to group.
Generalize patientld to institution.

The Fact Table Services(named Services_1) was created, with bottom levels procld, patientld,

idDoctor and day.

Generalize institution to instType.
Generalize yearOfBirth to yearRange.
Relate levels practice Type and subgroup.

Delete Level idDoctor.

The second version of Services (denoted Services_2) was created, with bottom levels procld,
patientld, speciality and day. This action is triggered by the Delete Level operation.
Specialize speciality into doctorld.

The third version of Services was created, with bottom levels procld, patientld, doctorld and

day. As above, the action was triggered by the dimension update.

In the meantime, we performed several insertions, deletions, splits, merges and reclassifications

simulating situations where new doctors were hired, others left, new procedures or specialities were

created, or patients moved from one institution to another. We have already shown that these

situations are adequately captured by the model and TOLAP.

7.4.3 Queries

Figure 7.3 shows one of the sets of TOLAP queries we ran. The objective was finding out how

the number of dimensions involved in the query affects query performance. Query Q1 has three

rollup atoms in the body, while query Q3 has only one of such atoms. Moreover, we also ran the

three queries replacing variable ¢ by the constant Now (i.e., the current values of the rollups are

considered for aggregation, instead of the values holding at the time of the service). For instance,

query Q3 was modified to :

Q(a,b,c,SUM(m)) ¢— Services(do,pr,pat,d,m,t), pal[Now] — instype:b;



CHAPTER 7. TOLAP IMPLEMENTATION 148

Q1: Q(a,b,c,SUM(m)) +— Services(do,pr,pat,d,m,t), do[t] — speciality:a,
palt] — instype:b, pr[t] —subgroup:c;

Q2: Q(b,c,SUM(m)) +¢+— Services(do,pr,pat,d,m,t), pr[t] —subgroup:c,
palt] — instype:b;
Q3: Q(b,SUM(m)) +— Services(do,pr,pat,d,m,t), palt] — instype:b;

Figure 7.3: Queries

Finally, we included a constraint atom in the three queries, to see the influence of the subquery
pruning step. The constraint ¢ <€ €02/08/2001°° leaves out fact tables Services 2 and Services_3,
while the constraint ¢t <‘02/13/2001°’ leaves out fact table Services_3. For instance, query Q3

was modified as follows:

Q(a,b,c,SUM(m)) ¢— Services(do,pr,pat,d,m,t), palt] — instype:b,
t <¢¢02/13/2001°°

7.4.4 Hardware

The hardware support for these experiments was the same as the one used for the tests described

in Chapter 3.

7.4.5 Discussion of Results

Performance. Figure 7.4 shows the query execution times for the three sets of queries described
above. Each query was ran three times, and the average response time is displayed in the table,
expressed in seconds. The numbers between parentheses represent the number of tuples in the query
result. We see that replacing the time variable ¢ with the constant Now is not relevant. However,
subquery pruning reduces execution times by a factor between two and four in this example. Of
course, this will depend on the size of the pruned fact table. As we could have expected, query Q1
takes longer to complete than the other two, as a multiway join of four tables is performed.

The table of Figure 7.5 shows the execution times for the dimension updates, executed in the
order detailed above. We can see that they are compatible with a real environment. Note that
when the same level is generalized several times, response gets slower because the size of the table

increases in order to keep the history of the dimension. We did not record results for the dimension



CHAPTER 7. TOLAP IMPLEMENTATION 149

Query type Q1 Q2 Q3
1 i 200 (977) | 130 (361) | 40

t = Now 250 (977) | 110
t <“02/08/20017 | 60 (289) | 50
1 <02/13/20017 | 140 (620) | 125 (230) | 20

e C R V]

Figure 7.4: Query execution time

Time because they are not relevant, as the dimension has fixed size during the lifespan of the data
warehouse.

Table in Figure 7.6 shows the results of a second test, carried out as follows: for the dimension
Patient we performed a sequence of dimension updates, each one increasing the number of tuples
in the dimension. In order to compare this solution with the non-temporal approach, we included
the results obtained for an equivalent non-temporal dimension Patient(created in initial mode,
which does not account for the dimension’s history). In Figure 7.6, we indicate these results in the

rightmost two columns.

Expressiveness. The queries below show TOIL AP’s expressive power applied to this case study.
These queries cannot be expressed in a non-temporal model without ad-hoc design. The temporal
approach shows its power in queries which compare the times of occurrence of different events.

For example, let us suppose a user wants to analyze the workloads of doctors, in order to esti-
mate future needs. The following query could be used for measuring how the the arrival of a new

doctor influences the number of patients served by a doctor named Roberts:

“List the total number of services delivered weekly by Doctor Roberts while Doctor Richards

was not working for the clinic.”

patRob(w,SUM(m)) +— Services(do,pr,pat,d,m,t), do LN doctorId:d,
d.name=‘‘Roberts’’, d — week:w

IDoctor:doctorId:dd—3All:all ,dd .name=° ‘Richards’’.

Notice in this query that the negated atom is not bound to the fact table. Also notice the use

of the user-defined Time dimension. The following query returns the number of services delivered



CHAPTER 7. TOLAP IMPLEMENTATION 150

Table Time (sec)
Generalize idDoctor to speciality 2
Generalize procld to subgroup 10
Generalize procld to procType 320
Generalize patientld to yearOfBirth 190
Generalize patientld to gender 280
Generalize subgroup to group 10
Generalize patientld to institution 320
Generalize institution to instType 5
Generalize yearOfBirth to yearRange 5
Relate procType to group 65
Delete Level idDoctor 30
Specialize speciality to doctorld 2

Figure 7.5: Dimension updates execution time

by Dr. Roberts while both doctors were hired by the clinic.

patRob(w,SUM(m)) +— Services(do,pr,pat,d,m,t), do LN doctorId:d,
d.name=‘‘Roberts’’,d — week:w

Doctor:doctorId:dd——All:all ,dd.name=‘‘Richards’’.
Figure 7.7 shows the translation to SQL of the first query. For the sake of clarity we only
display in full the portion of the query corresponding to the first fact table state. The other parts
are solved in a similar fashion. Note the complexity of the SQL query, compared with its TOLAP
equivalent.
The next query illustrates how to check patients who were served when they were affiliated to

‘MEDICUS’ and are currently affiliated to ‘SWISS MEDICAL’.

changePlan(pat) +¢— Services(do,pr,pat,d,m,t),pat LN institution: ‘MEDICUS’,
pat M institution: ‘SWISS MEDICAL’.

Below, we give another query that cannot be expressed in non-temporal systems.

“Was the clinic giving cancer treatment service while patient ‘John Ash’ was registered?.”



CHAPTER 7. TOLAP

IMPLEMENTATION

151

# tuples in dimension Update Time (sec) | # tuples (nt) | Time (sec)(nt)
2727 create dimension 2 2727 2
2727 Gen. patientld to gender 20 2727 20
5452 Gen. patientld to age 30 2727 18
8179 Gen. patientld to institution 230 2727 20
10906 Gen. age to ageRange 30 2727 10
13633 Delete gender 15 2727 3
16356 Delete institution 20 2727 3
21808 Delete age 25 2727 3

Figure 7.6: Dimension updates for dimension Patient, temporal and non-temporal

cancTr() ¢— Procedure:group:x 1y All:all,

7.4.6 Visualizatio

. . t
x.desc=‘‘cancer treatment’’, Patient:patientId:y — All:all,

y.name="‘John Ash’.

n: a Walk-through

In this subsection we will conduct a tour through the graphic environment developed taking ad-

vantage of the temporal multidimensional model.

The graphic interface allows to:

e browse dimensions across time, and watch how they were hierarchically organized throughout

their lifespan. Further, dimension instances could also be browsed.

e apply all the basic and complex dimension updates;

e import rollup fun

ctions from text files;

e browse different versions of a fact table;

e send TOLAP programs to the system, and display their results without leaving the environ-

ment, including seeing the generated SQL query.

Figure 7.8 shows a typical system screen depicting dimension Patient as of December 13th,

2000. The window on the left presents the dimension’s structure. The arrows upon the window




CHAPTER 7. TOLAP IMPLEMENTATION 152

patRob(w,SUM(m)) +— Services(pr,pat,do,d,m,t), do[t] —> doctorId:d,
d.name=‘ ‘Roberts’’,d —> week:w
'Doctor:doctorId:x[t]— All:‘‘all’’,x.name=‘‘Richards’’.

SELECT COL_0,SUM(SUM.0)
FROM (
SELECT DIMENSION TIME.WEEK COL_O, SUM(AMNT) SUM.O
FROM SERVICES_1 SERVICES_1, DIMENSION DOCTOR, DIMENSION_TIME,
WHERE NOT EXISTS (
SELECT * FROM SERVICES_1 FT, DIMENSION_DOCTOR
WHERE to_date(to_char(FT.Tmp,’dd/mm/yyyy hh24°’),’dd/mm/yyyy hh24’)BETWEEN
to_date(to_char (DIMENSION DOCTOR. tmp from, >dd/mm/yyyy hh24’ ),’dd/mm/yyyy hh24’ )
AND decode(to.date(to_char (DIMENSION DOCTOR.tmp_to,’dd/mm/yyyy hh24’),
’dd/mm/yyyy hh24’),null, to_date(to_char(sysdate,’dd/mm/yyyy hh24’),
’dd/mm/yyyy hh24’ ),to date(to_char(DIMENSION DOCTOR. tmp_to,’dd/mm/yyyy hh24°’ ),
’dd/mm/yyyy hh24°’)) AND to_date(to_char(FT.Tmp,’dd/mm/yyyy hh24’),
’dd/mm/yyyy hh24’)= to_date(to_char(SERVICES_1.Tmp, ’dd/mm/yyyy hh24’),
’dd/mm/yyyy hh24’ )
AND DIMENSION_DOCTOR.IDDOCTOR IS NOT NULL
AND DIMENSIONDOCTOR.ALL = ’all’
AND UPPER(DIMENSION DOCTOR.IDDOCTOR) IN
(SELECT UPPER(value) FROM ATTRIBUTE_INSTANCE
WHERE LTRIM(RTRIM(UPPER(dimension_id))) = LTRIM(RTRIM(’DD0OC_88’))
AND LTRIM(RTRIM(UPPER(level))) = LTRIM(RTRIM(’IDDOCTOR’))
AND LTRIM(RTRIM(UPPER(attrib))) = LTRIM(RTRIM(’NAME’))
AND valueAt='Richards’ ))
AND SERVICES_1.DAY=DIMENSION_TIME.DAY
AND DIMENSION_TIME.WEEK IS NOT NULL
AND to_date(to_char(SERVICES 1.tmp, ’dd/mm/yyyy hh24’ ),’dd/mm/yyyy hh24’ ) BETWEEN
to_date(to_char (DIMENSION DOCTOR. tmp from, ’dd/mm/yyyy hh24’ ),’dd/mm/yyyy hh24°)
AND decode( to_date(to_char(DIMENSIONDOCTOR.tmp-to,’dd/mm/yyyy hh24’),
’dd/mm/yyyy hh24°’), null, to_date(to_char(sysdate,’dd/mm/yyyy hh24’),
’dd/mm/yyyy hh24°’ ), to_date( to_char(DIMENSIONDOCTOR.tmp-to,’dd/mm/yyyy hh24°’ ),
’dd/mm/yyyy hh24°’ ))
AND UPPER(DIMENSIONDOCTOR.IDDOCTOR) IN
(SELECT UPPER(value) FROM ATTRIBUTE_INSTANCE
WHERE LTRIM(RTRIM(UPPER(dimension_id))) = LTRIM(RTRIM(’DD0OC_88’))
AND LTRIM(RTRIM(UPPER(level))) = LTRIM(RTRIM(’IDDOCTOR’))
AND LTRIM(RTRIM(UPPER(attrib))) = LTRIM(RTRIM(’NAME’))
AND valueAt=’Roberts’ )
AND SERVICES_1.DOCTORID = DIMENSION_DOCTOR.DOCTORID
GROUP BY DIMENSION_TIME.WEEK
UNION ALL
SELECT DIMENSION TIME.WEEK COL_O, SUM(AMNT) SUM.0
FROM SERVICES 2 SERVICES 2, DIMENSION DOCTOR, DIMENSION_TIME
WHERE NOT EXISTS (SELECT * FROM SERVICES 2 FT, DIMENSION DOCTOR
UNION ALL
SELECT DIMENSION TIME.WEEK COL_O, SUM(AMNT) SUM.O
FROM SERVICES_3 SERVICES_3, DIMENSIONDOCTOR, DIMENSION_TIME
WHERE NOT EXISTS (SELECT * FROM SERVICES 3 FT, DIMENSION DOCTOR
o)
GROUP BY COL.O

Figure 7.7: Translation of a TOLAP Rule with Negation



CHAPTER 7. TOLAP IMPLEMENTATION 153

allow browsing forward and backward across time. This is not allowed if the system is in ‘initial’
mode. The window on the right shows the dimension’s instances. This window is synchronic with
respect to the one on the left. Thus, the instances being displayed correspond to the structure on
the left although they can vary as instance updates occur. However, while the screen of the left
remains unchanged, several instance updates may occur, which can be displayed in the window on
the right. The little box in the upper middle indicates the number of elements in the bottom level
which are going to be displayed, allowing partial loading of the instance graph in main memory.
This feature is crucial in making the tool usable in real applications, because loading the entire

instance graph would be very expensive even for not very large dimensions.

In Figures 7.8 to 7.19 we give a graphic description of the systems’s functionalities using our
case study. Figures 7.8 to 7.10 show a typical browsing through time of the dimension Patient,
depicting how the schema and instances of the dimension evolve. Figures 7.11 to Figures 7.19 show

how dimensions and fact tables are created and updated.

Figure 7.11 shows how how dimension Patient was created, with bottom level patientld. The
creation time is shown, the default being the current time. The Data Table field lets the user specify
the table from which data in the bottom level will be loaded. This table could be loaded from a

text file using a system provided loader, invoked clicking on the Tables menu.

Figures 7.12 and 7.13 deal with fact tables. Figure 7.12 illustrates the fact table creation
procedure for the fact table Services. Just choose one or more dimensions displayed on the left
window of the form, and load them into the box on the right. If the granularity of one dimension
is not compatible with the granularity of the fact table, the fact table is not created and an error
message displayed. Figure 7.13 shows the different versions of the fact table Services before the

last specialization occurred.

The menu in Figure 7.14 is displayed after right-clicking on the level to be updated. Choosing
the “Attributes” option allows defining a new attribute for the level (Figure 7.15). Right-clicking on
an element of a level (in the right window), and choosing the “Attributes” option, opens the window
of Figure 7.16, where the user can define the value for an attribute of the level corresponding to

the selected instance. In Figure 7.16, we are defining the name of Patient number 52765.

Figure 7.17 shows the window that appears when choosing the Specialize operation after having
clicked the right button over the dimension level speciality. Also, clicking the right button of the

mouse over the screen on the right and choosing “AddInstance”, opens the screen of Figure 7.18.



CHAPTER 7. TOLAP IMPLEMENTATION 154

Here, we are inserting Patient number 77789, male, born in 1997 affiliated to Institution 138.
Analogously we proceeded with the merge operator depicted in Figure 7.19. After shadowing the
elements to be merged(on the left window of the form), we have loaded them into the right window.

Clicking the ‘Save’ button will perform the update.

7.5 Summary

In this chapter we have described our TOLAP implementation, giving details of the process of
translating a TOLAP rule or program into SQL. This translation makes it clear how simple it is
to express in TOLAP a query that in SQL takes many lines of complex code. Finally, we applied
the implementation to the case study introduced in Chapter 3, showing that TOL AP can be useful

for a real-life application, overriding the limitations of non-temporal OLAP commercial tools.



CHAPTER 7. TOLAP IMPLEMENTATION

E,%Hain
Tables Operstors TOLAP  Help

Schema |Patient

ﬂl 131272000 19:14

j ﬁm Grajnlm

ﬂ 3, |znn ﬂ| 13/12/2000 19:14

3

patientld

ii E-all
+-F

=M

—0
—243689
—35204
—42498
—42967
—43206
—43833
—48925
—50034
—50134
—50223
—a0641
—51003

. —51032
LlJ —451259

More... |

155

M= E3

Figure 7.8: Browsing dimension Patient (1)




CHAPTER 7. TOLAP IMPLEMENTATION 156

E%Hain BEE

Tables Operstors TOLAP  Help

Schema [Patient Al Grain [

ﬂ| 16/12/2000 22:33 ﬂ &[0 ﬂ | 16122000 22:33 ﬂ

i

patientld

Mm&.l

Figure 7.9: Browsing dimension Patient (2)




CHAPTER 7. TOLAP IMPLEMENTATION 157

E*E%Hain _[&] x|

Tahlez  Operators TOLAP Help

Schema [Patient HA Grain [ T

ﬂ| 16/12/2000 22:35 ﬂ &, [ s ﬂ| 174 272000 00:18 ﬂ ‘

patientld

Mm&.l

Figure 7.10: Browsing dimension Patient (3)




CHAPTER 7. TOLAP IMPLEMENTATION

Eg,ih'lain

Tahles  Operstors  TOLAP  Help

Schema |Prucedure

ﬂl 161212000 223956

j m Grajnls

ﬂ ﬂ I 20 ﬂ I 161212000 22:39:56

2

[{5 Create New Dimension (O] ]

;”Eﬂﬂ

Nare |Pmmm

BEotiom level patientld

Time 161252000 23:17:41

Data Tahle sourcePatient

Grain |0 7

o

== =

a
—

More... |

158

=18]x

Figure 7.11: Creating a new dimension




CHAPTER 7. TOLAP IMPLEMENTATION

E%%Hain
Tables  Operators TOLAP Help

Schema |F‘rucedure

ﬂ| 1612/2000 223956 ﬂ

Al

ﬂ [ 20 ﬂ| 16/12/2000 22:39:56

Gmin|s

-

all

AI IIILnII

[ [=] E3

E‘E‘%NEW Fact Table
MName SENiCes
Measure dollarvalue [6min [z -]
Dimensions
Geography m Patient
Doctar M = (Procedurs
Product mo__

Create |

Exit |

m3|

More... |

159

=B8] x|

Figure 7.12: Creating a new fact table




CHAPTER 7. TOLAP IMPLEMENTATION 160

ki Main _[A[X]

Tahlez  Operstors TOLAP  Help

Schema |Doctar R Grain | m

ﬂ| 16/12/2000 23:28 ﬂ ARED ﬂ | 16122000 23:28 ﬂ

ii =l B
all 104
108
113
114
E%%Desclihe Fact Table (O] %]
Fact Tahle |SERVICES -
Brsio Dimension MAME | Bottom | Time | Time
0 Procedure procld 141202000 03:068:32 161272000 23:27:00
@I 11 Fatient patient!d 141212000 03:06:32 161202000 23:27:00
2|1 Dactar idDoctor 1411212000 030632 161272000 232700
1l MEASLIRE dolValue 141212000 03:06:32 16122000 23:27:00
412 Pracedurs procld 16212000 232701 161202000 23:29:24
g2 Patient patient!d 16212000 232701 161202000 23:29:24
G2 Dactor speciality 16A 22000 232701 16122000 23:29:24
ﬂ_| 712 MEASLIRE dolvalue 16212000 232701 161202000 23:29:24
Exit

Figure 7.13: Describing a fact table




CHAPTER 7. TOLAP IMPLEMENTATION 161

E%%Hain @] x|

Tables  Operators TOLAP  Help

Schema |Procedure KA Grain [ 5

ﬂ| 16/12/2000 22:39:56 ﬂ

| »

practType

b3 LIEIQ“'“' -
Aftributes

Generalize
Specialize
Relate
Urirelste
Delete Level

More. .. |

Figure 7.14: Applying structural operators




CHAPTER 7. TOLAP IMPLEMENTATION 162

B A
F 16M 22000 22:35 ’7 ’7 4’7 F

Figure 7.15: Attribute definition



CHAPTER 7. TOLAP IMPLEMENTATION

E%Hain
Tahlez  Operators TOLAP Help

Schema |Patient

ﬂl 1611212000 22:35

[

patientid

52765

52789

530545
H-104
H-111
H-114
—123
H-132
H-134

H-138

163
=18 x|
Grain | m
| 161212000 22:35 '=£>||
Eﬁ Instance Attributes |0
| patientld M
Instance  |52765 M
Atributes Values
0 [name Roberts . John

Figure 7.16: Attribute instances




CHAPTER 7. TOLAP IMPLEMENTATION

E\%Hain
Tahles  Operstors TOLAP  Help

Schema IDEIETEIF

A Grain [ m

ﬂ I 161272000 23:28

ﬂ &, | [ 100 ﬂ| 1611212000 23:28 ﬂ ‘

all

speciality

il - all

Eg%ﬁpecialize _ (O] ]
| Newhottomlevel | dociorl
| Time | 17122000 0002

| Current hottom level | speciality

| Tahle | gendoc

Ok | Exit | Rall Lip

o
hfore... |

164

=18] x|

Figure 7.17: Specialization of level doctorld




CHAPTER 7. TOLAP IMPLEMENTATION

E%‘;Hain
Tables  Operstors TOLAP  Help

Schema |Patient

ﬂ| 16/12/2000 2235

= %,

E’,%Add Hew Inztance

|Le1.re1

| patientld

| New Yalue

| 77789

| Time

| 1T 2izo0n007

M [=] E3

| Uper Level

patientld

|instiun

114
123
132
134

140

14n

[
[
—

Level - Data

WrOBIh-1997
gender-h
instion-138

165

=18] x|

Figure 7.18: AddInstance operator




CHAPTER 7. TOLAP IMPLEMENTATION 166

=
: [EiMerge O[]

Tahles  Operators TOLAP  Help

| Level |procid v| TME [ 1771272000 002957

Schema |Prncedure j

New Data | MO0D0899

ﬂ| 16/12/2000 22:39:56 ﬂ | —Instance DataToMerge —

= DATA 1= Data From
ff000001 MOo00343
o000z fA000349
MO0ooaa M0a0413
MO0000s
WO0ooaz?
f00000s
MO0a010
MO00016

hd
RACCAAAT = =

=

—_

[ )

a - [z ) LT = [N} [ o] = _-

sae | Bit |

MOTTZ90
MO00301
MO00343
MO00344

- Moo0413
1| | L|J H-Z00M j
More... |

Figure 7.19: Merge operator



Chapter 8

Conclusion

In this thesis we have argued that dimensions in a data warehouse are not static entities, but are
subject to updates, either at the schema or instance level. We studied the effect of these updates
over a set of materialized views and developed a characterization of the possible dimension updates.
We extended our approach to the temporal database framework and introduced a language which

can express a class of OLAP queries.

8.1 Contributions

We summarize our contributions as follows:

We showed that supporting dimension updates is a desirable feature for an OLAP tool, in
order to avoid constantly rebuilding dimensions from scratch when such an update occurs. We
introduced a set of schema and instance update operators, and developed an algorithm to maintain
materialized views under each one of these operators. Our algorithms in some cases outperform
the well-known Summary-Delta Method [MQM97].

We implemented the update operators and an extension to the MDX language, Microsoft’s
standard for OLAP, following the OLE DB for OLAP standard.

We extended our proposal to the temporal database framework, introducing the temporal multi-
dimensional model, a query language supporting it which we denoted TOL AP, and a set of temporal
update operators. TOL AP accounts for schema evolution, and allows expressing complex queries
at a high abstraction level. We also implemented the temporal model and developed a visualiza-
tion tool which allows browsing the schema and instances of a dimension across time, creating and
updating dimensions and fact tables, and editing and running TOLAP queries without leaving the

environment.

167



CHAPTER 8. CONCLUSION 168

All our implementations were tested using a real-life case study, a medical center in Buenos

Alires.

8.2 Future Work

Our MDDLX proposal can be extended to support temporal updates, in a way such that MDDLX
itself could allow temporal OLAP queries. The power of MDDLX can be increased allowing bulk
updates over sets of elements. Moreover, we would like to add data cube bulk update support to
MDDLX. View maintenance for complex instance dimension updates should be addressed in future
versions of MDDLX, as well as data cubes with non-distributive aggregate functions.

TOLAP can be extended in order to allow the definition of constraints, which could be easily
introduced within our visualization tool. Also, there is space for studying query optimization in
TOLAP.

Another issue which deserves attention is adding update support to TOLAP, allowing bulk
updates like “delete all customers which had no completed any transaction since 1998”. Also,
transactions in update expressions in TOLAP could be addressed. For example, the expression
above could be followed by :“ classify all customers which did not perform any transaction since

1999 as ‘low priority’ customers”.



Appendix A

MDDLX Operators for the Clinic
Case Study

In this appendix we give the complete testing sequences used in the case study presented in Section

4. The DROP CUBE and CREATE CUBE statements are common for both sequences.
DROP CUBE Services

CREATE CUBE Services (
DIMENSION Doctor BOTTOM LEVEL doctorId TYPE CHAR(6),
DIMENSION Procedure BOTTOM LEVEL procedureld TYPE CHAR(6),
DIMENSION Patient BOTTOM LEVEL patientId TYPE CHAR(6),
TIME DIMENSION Time GRANULARITY DATETIME FROM 01/01/2000 00:00:00 TO 30/05/2000
23:00:00,
MEASURE qty TYPE NUMERIC(5,0) FUNCTION SUM)
MEASURE value TYPE NUMERIC(10,2) FUNCTION SUM)
FROM TABLE data_clinic
WITH MATERIALIZE

A.1 Testing sequence 1.

1.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId

TO LEVEL gender TYPE CHAR(1)

169



APPENDIX A. MDDLX OPERATORS FOR THE CLINIC CASE STUDY

USING ROLLUP FUNCTION data3gidintengender

2.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId
TO LEVEL yearOfBirth TYPE CHAR(3)

USING ROLLUP FUNCTION data3gidpatientage

3.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId
TO LEVEL Institution TYPE CHAR(4)

USING ROLLUP FUNCTION data3ginstitution

4 ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATETIME TO DATE

5.ALTER DIMENSION Services.Doctor
GENERALIZE LEVEL IDDoctor
TO LEVEL speciality TYPE CHAR(3)

USING ROLLUP FUNCTION data3gIDDoctor

6.ALTER DIMENSION Services.Procedure
GENERALIZE LEVEL procedureld
TO LEVEL practiceType TYPE CHAR(5)

USING ROLLUP FUNCTION data3gprocedureldtipopre

7 .ALTER DIMENSION Services.Procedure
GENERALIZE LEVEL procedureld
TO LEVEL subgroup TYPE CHAR(5)

USING ROLLUP FUNCTION data3gprocedureldsubgroup

8.ALTER DIMENSION Services.Procedure

170



APPENDIX A. MDDLX OPERATORS FOR THE CLINIC CASE STUDY

GENERALIZE LEVEL subgroup
TO LEVEL group TYPE CHAR(3)

USING ROLLUP FUNCTION data3gsubgroup

9.ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATETIME TO HOUR

10.ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATE TO YEAR

11 .ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATE TO MONTH

12.ALTER DIMENSION Services.Procedure
RELATE LEVEL practiceType

TO LEVEL group

13.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL institution
TO LEVEL instType TYPE CHAR(10)

USING ROLLUP FUNCTION data3ginstitype

14 .ALTER DIMENSION Services.Patient
GENERALIZE LEVEL yearOfBirth
TO LEVEL yearRange TYPE CHAR(5)

USING ROLLUP FUNCTION data3agerange

15.ALTER DIMENSION Services.practice
ADD INSTANCE M999999
INTO LEVEL procedureld

TO LEVELS ( SubGroup,practiceType )

171



APPENDIX A. MDDLX OPERATORS FOR THE CLINIC CASE STUDY

VALUES ( M0002, Z0002 )

16.ALTER DIMENSION Services.Doctor
DELETE INSTANCE 1450

FROM LEVEL idDoctor

17 .ALTER DIMENSION Services.Patient

DELETE LEVEL yearRange

A.2 Testing sequence 2.

1.ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATETIME TO DATE

2.ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATETIME TO HOUR

3.ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATE TO MONTH

4 ALTER DIMENSION Services.Doctor
GENERALIZE LEVEL IDDoctor
TO LEVEL speciality TYPE CHAR(3)

USING ROLLUP FUNCTION data3gIDDoctor

5.ALTER DIMENSION Services.Procedure
GENERALIZE LEVEL procedureld
TO LEVEL practiceType TYPE CHAR(5)

USING ROLLUP FUNCTION data3gprocedureldtipopre

6.ALTER DIMENSION Services.Procedure

172



APPENDIX A. MDDLX OPERATORS FOR THE CLINIC CASE STUDY

GENERALIZE LEVEL procedureld
TO LEVEL subgroup TYPE CHAR(5)

USING ROLLUP FUNCTION data3gprocedureldsubgroup

7 .ALTER DIMENSION Services.Procedure
GENERALIZE LEVEL subgroup
TO LEVEL group TYPE CHAR(3)

USING ROLLUP FUNCTION data3gsubgroup

8.ALTER DIMENSION Services.Procedure
RELATE LEVEL practiceType

TO LEVEL group

9.ALTER TIME DIMENSION Services.dayTimeDim

GENERALIZE GRANULARITY DATE TO YEAR

10.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId
TO LEVEL gender TYPE CHAR(1)

USING ROLLUP FUNCTION data3gidintengender

11.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId
TO LEVEL yearOfBirth TYPE CHAR(3)

USING ROLLUP FUNCTION data3gidpatientage

12.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL patientId
TO LEVEL Institution TYPE CHAR(4)

USING ROLLUP FUNCTION data3ginstitution

173



APPENDIX A. MDDLX OPERATORS FOR THE CLINIC CASE STUDY

13.ALTER DIMENSION Services.Patient
GENERALIZE LEVEL institution
TO LEVEL instType TYPE CHAR(10)

USING ROLLUP FUNCTION data3ginstitype

14 .ALTER DIMENSION Services.Patient
GENERALIZE LEVEL yearOfBirth
TO LEVEL yearRange TYPE CHAR(5)

USING ROLLUP FUNCTION data3agerange

15.ALTER DIMENSION Services.practice
ADD INSTANCE M999999
INTO LEVEL procedureld
TO LEVELS ( SubGroup,practiceType )
VALUES ( MO002, Z0002 )

16.ALTER DIMENSION Services.Doctor
DELETE INSTANCE 1450

FROM LEVEL idDoctor

17 .ALTER DIMENSION Services.Patient

DELETE LEVEL yearRange

174



Bibliography

[AGS*96]

[AHV95]

[BSSJ98]

[BW.J9S]

[CCS93]

[CKWS89]

[CM90]

[CTO7]

[FJS97]

R. Agrawal, A. Gupta, S. Sarawagi, P. Deshpande, S. Agarwal, J. Naughton, and
R. Ramakrishnan. On the computation of multidimensional aggregates. In Proceed-

ings of the 22nd VLDB Conference, Bombay, India, 1996.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

R. Bliujute, S. Saltenis, G. Slivinskas, and G. Jensen. Systematic change management

in dimensional data warehousing. Time Center Technical Report TR-23, 1998.

R. Bettini, S. Wang, and S. Jajodia. Semantic assumptions and their use in databases.

IFEFE Transactions on Knowledge and Data Fngineering, 1998.

E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (on-line analytical

processing) to user analysis : An it mandate. White Paper. Arbor Software, 1993.

W. Chen, M. Kifer, and D. S. Warren. Hilog as a platform for database language.
In Proceedings of the 2nd. International Workshop on Database Programming Lan-

guages, pages 315-329, Oregon Coast,Oregon,USA, 1989.

M. Consens and A.O. Mendelzon. Low complexity aggregation in Graphlog and
Datalog. In Proceedings of the 3rd International Conference on Database Theory,
Lecture Notes in Computer Science n.470, pages 379-394, 1990.

L. Cabibbo and R. Torlone. Querying multidimensional databases. In Proceedings
of the 6th International Workshop on Database Programming Languages(DBPL’97),
pages 253-269, East Park, Colorado, USA, 1997.

C. Faloutsos, H. Jagadish, and N. Sidiropoulos. Recovering information from sum-

mary data. In Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997.

175



BIBLIOGRAPHY 176

[GBLP97]

[GHQ95a]

[GHQO5b]

[GIM94]

[GL96]

[GM99]

[GMS93]

[HMV99a]

[HMV99b]

[HRU96]

[Huy00]

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube : A relational
operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge

Discovery 1, pgs. 29-53, 1997.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate query processing in data ware-
housing environments. In Proceedings of the 21st VL.DB Conference, Zurich, Switzer-

land, 1995.

A. Gupta, V. Harinarayan, and D. Quass. Generalized projections:a powerful ap-
proach to aggregation. In Proceedings of the 21st VLDB Conference, Zurich, Switzer-
land, 1995.

A. Gupta, H.V Jagadish, and I.S. Mumick. Data integration using self-maintainable
views. Technical Memorandum 113880-94101-32, ATT Bell Labs, 1994.

M. Gyssens and L. Lakshmanan. A foundation for multi-dimensional databases. In

Proceedings of the 22nd VLDB Conference, pages 106-115, Bombay, India, 1996.

A. Gupta and 1. H. Mumick. Materialized Views: Techniques, Implementations and
Applications. MIT Press, 1999.

A. Gupta, I.S. Mumick, and D Subrahmanian. Maintaining views incrementally. In
Proceedings of the ACM-SIGMOD Conference on Management of Data, Washington
D.C.,USA, 1993.

C. Hurtado, A.O. Mendelzon, and A. Vaisman. Maintaining data cubes under di-
mension updates. Proceedings of IEEE/ICDE’99, 1999.

C. Hurtado, A.O. Mendelzon, and A. Vaisman. Updating OLAP dimensions. Pro-
ceedings of ACM DOLAP’99, 1999.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently.
In Proceedings of the ACM-SIGMOD Conference, pages 205 — 216, Montreal, Canada,
1996.

N. Huyn. Speeding up view maintenance using cheap filters at the warehouse. In

Proceedings of IEEE/ICDE’2000, San Diego, USA, 2000.



BIBLIOGRAPHY 177

[Info6]

[JLS99]

[Kim96]

[Klu82]

[1.5593]

[L.5S97]

[LW95]

[LW96]

[LW97]

[Mic]

[Mic98]

Informix Corporation. Informiz OnLine Extended Parallel Server and Informiz Uni-
versal Server : A New Generation of Decision-Support Indexing for Enterprisewide

Data Warehouses, 1996. White Paper.

H.V Jagadish, L.V.S Lakshmanan, and D. Srivastava. What can hierarchies do for
data warehouses? In Proceedings of the 25th VLDB Conference, Edimburgh, Scot-
land, 1999.

R. Kimball. The Data Warehouse Toolkit. J.Wiley and Sons, Inc, 1996.

A. Klug. Equivalence of relational algebra and relational calculus query languages

having aggregate functions. Journal of ACM, p.699-717, 1982.

L.V.S Lakshmanan, F. Sadri, and [.N. Subramanian. On the logical foundations
of schema integration and evolution in heterogeneous database systems. In Third
International Conference on Deductive and Object-Oriented Databases(DOODI3),
Springer-Verlag, LNCS-760, 1993.

L.V.S Lakshmanan, F. Sadri, and [.N. Subramanian. Logic and algebraic lan-
guages for interoperability in multidatabase systems. Journal of Logic Programming

33(2),pp.101-149, 1997.

D. Lomet and J. Widom. IEFF Data Engineering Bulletin. Special Issue on Materi-

alized Views and Data Warehousing, June 1995.

C. Li and S. Wang. A data model for supporting on-line analytical processing. In
Proceedings of the Conference on Information and Knowledge Management, pages

81-88, 1996.

L. Libkin and L. Wong. On the power of aggregation in relational query languages.
In Proceedings of the 6th International Workshop on Database Programming Lan-
guages(DBPL’97), pages 270-280, East Park, Colorado, USA, 1997.

Microsoft Corporation. OLEDB for OLAP 2.0 Design Specification.

Microsoft Corporation. OLEDB for OLAP Programmer’s Reference (Internet Docu-
ment hitp://www.microsoft.com/oledb/olap/spec), 1998.



BIBLIOGRAPHY 178

[MQM97]

[OLA97]
[Pil96]

[PJ99]

[QGMW96]

[Qua96]

[QW9T]

[Sno95]

[Sta96]

[TBG+99]

[Tom95]

[Tom97]

[U1188]

I. Mumick, D. Quass, and B. Mumick. Maintenance of data cubes and summary
tables in a warehouse. In Proceedings of the ACM - SIGMOD Conference, Tucson,
Arizona, 1997.

OLAP Council. OLAP Council White Paper, 1997.
Pilot Software. An introduction to OLAP, 1996. White Paper.

T.B Pedersen and C. Jensen. Maultidimensional data modeling for complex data.

Proceedings of IEEE/ICDE’99, 1999.

D. Quass, A. Gupta, I. Mumick, and J. Widom. Making views self-maintainable for
data-warehousing. In Parallel and Distributed Information Systems, Miami, Florida,

USA, 1996.

D. Quass. Maintenance expressions for views with aggregations. In ACM Workshop

on Materialized Views: Techniques and Applications, Montreal, Canada, 1996.

D. Quass and J. Widom. On-line warehouse view maintenance for batch updates. In

Proceedings of the ACM - SIGMOD Conference, Tucson, Arizona, 1997.

Richard Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, 1995.

Stanford Technology Group. Designing the Data Warehouse On Relational Data
Warehouses, 1996. White Paper.

E. Thomsen, L. Baekgaard, D. Grossman, W. Liang, and S. Tolkin. Panel: Future
directions in data warehousing. In Proceedings of ACM DOLAP’99, Kansas City,
USA, 1999.

D. Toman. Point-based vs. interval-based temporal query languages. In Proceedings

of the ACM - PODS Conference, 1995.

D. Toman. A point-based temporal extension to sql. In Proceedings of DOOD’97,
Montreaux, Switzerland, 1997.

J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science

Press, 1988.



BIBLIOGRAPHY 179

[Wid95] J Widom. Research problems in data warehousing. In Proceedings of the 4th Inter-

national Conference on Information and Knowledge Management, 1995.

[YWO98] J. Yang and J. Widom. Maintaining temporal views over non-temporal information
sources for data warehousing. In Proceedings of the Sizth International Conference

on Frtending Database Technology, Valencia, Spain, 1998.

[YWO00] J. Yang and J. Widom. Temporal view self-maintenance in a warehousing environ-
ment. To appear in Proceedings of the Seventh International Conference on Fxtending

Database Technology, 2000.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In Proceedings of ACM-SIGMOD Conference, San Jose,
California, 1995.



