
Tutorial 7: Embedded SQL

By Chaofa Gao

Tables used in this note:
 Sailors(sid: integer, sname: string, rating: integer, age: real);
 Boats(bid: integer, bname: string, color: string);
 Reserves(sid: integer, bid: integer, day: date).

Sailors Reserves
Sid Sname Rating Age
22 Dustin 7 45
29 Brutus 1 33
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35
64 Horatio 7 35
71 Zorba 10 16
74 Horatio 9 40
85 Art 3 25.5
95 Bob 3 63.5

sid bid day
22 101 1998-10-10
22 102 1998-10-10
22 103 1998-10-8
22 104 1998-10-7
31 102 1998-11-10
31 103 1998-11-6
31 104 1998-11-12
64 101 1998-9-5
64 102 1998-9-8
74 103 1998-9-8

 Boats

bid bname Color
101 Interlake Blue
102 Interlake Red
103 Clipper Green
104 Marine Red

Figure 1: Instances of Sailors, Boats and Reserves

1. Embedded SQL:

The use of SQL command within a host language program is called Embedded SQL.
Details of embedded SQL also depend on the host language. The syntax sometimes varies.

1. SQL statements must be marked clearly;

e.g. insert a row into Table Sailors based on the values in defined variables. (For C)
EXEC SQL INSERT INTO Sailors VALUES (:c_sid, :c_sname, :c_rating, :c_age)

In some script languages, you don’t have to mark it by yourself. You can write it like other
statement in those languages. However, it is the compiler that helps you to mark it during
compiling.

2. Any host language variable used to pass arguments into an SQL command must be declared

in SQL.
e.g. Declare variables to pass arguments (For C)

EXEC SQL BEGIN DECLARE SECTION
long c_sid;
char c_sname[20];
short c_rating;
float c_age;
short c_para;
EXEC SQL BEGIN DECLARE SECTION

 c_sid long int; c_sname char(20); c_rating smallint; c_age real
 (These data types vary for different languages and different DBMSs.)

 You can cast data value appropriately before passing them to or from SQL command.

Variables in host languages Variables in SQL

3. Some special host language variable must be declared in SQL.
e.g. SQLCODE, SQLSTATE, and so on.

 SQLCODE is defined to return some negative value when an error condition arises,
without specifying further just what error a particular negative integer denotes.
 SQLSTATE associates predefined values with several common error conditions, thereby
introducing some uniformity to how errors are reports.
 One of these two variables must be declared.
 For C, you can define SQLCODE as long, or SQLSTATE as char[6].

 Here, we assume that SQLSTATE is declared. The variable should be checked for errors
and exceptions after each embedded SQL statement. Use WHENEVER to do so.
 EXEC SQL WHENEVER [SQLERROR|NOT FOUND][CONTINUE|GOTO stmt]
 If SQLERROR is specified and the value of SQLSTATE indicates an exception, control
is transferred to stmt, which is presumably responsible for error/exception handling. Control
is also transferred to stmt if NOT FOUND is specified and the value of SQLSTATE is 02000,
which denotes NOT DATA.

4. Set-oriented:

SQL commands deal with tables, while the interface to the host language is constrained
to one row at a time.
 e.g. EXEC SQL SELECT S.sname, S.age
 INTO :c_sname, :c_age

FROM Sailors S
 WHERE S.sid = :c_sid;

Given a c_sid (e.g. 29), this statement will return this sailor’s name and age to variable
c_sname (e.g. Brutus) and c_age (e.g. 33) if this c_sid exists.

 e.g. EXEC SQL SELECT S.sname, S.age
 INTO :c_sname, :c_age

FROM Sailors S
 WHERE S.rating > :c_para;

Given a c_para (e.g. 5), the SQL command may return more than one row. But the
INTO clause is not adequate to support collections of rows. Host variables c_sname and
c_age may just return the first row of the result set.

The solution is to use a cursor. The solution is to essentially provide a mechanism that
allows us to retrieve rows one at a time from a relation.

2. Cursor:

 We can declare a cursor on any relation or on any SQL query (every query returns a set of rows.)
 Once a cursor is declared, we can

1. open it (which positions the cursor just before the first row);
2. fetch the next row;
3. move the cursor (to the next row, to the row after the next n, to the first row, or to the

previous row etc. by specifying additional parameters for the FETCH command);
4. or close the cursor.

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c_para;

OPEN sinfo;

FETCH sinfo INTO :c_sname, :c_age;
Do While (SQLSTATE <> ‘02000’)
 //deal with the current row
 ……
 FETCH sinfo INTO :c_sname, :c_age;
End While

CLOSE sinfo;

Look at the special variable SQLCODE or SQLSTATE to find if the FETCH statement
positions the cursor after the last row. SQLSTATE is set to the value 02000, which denotes NO
DATA. (The syntax varies for different host language.)

Properties of Cursors
The general formal of a cursor declaration is:
DECLARE cursorname [INSENSIVE][SCROLL] CURSOR FOR
 some query
 [ORDER BY order-item-list]
 [FOR READ ONLY | FOR UPDATE]

A cursor can be declared to be a read-only cursor, or,
if it is a cursor on a base relation or an updateable view, to be an updateable cursor.

 e. g. if sinfo is declared as an updateable cursor and is open, you can modify the rating value
of the row currently pointed to by cursor sinfo.

UPDATE Sailors S
SET S.rating = S.rating – 1
WHERE CURRENT of sinfo;

 You can delete this row by executing the next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

 A cursor is updateable by default unless it is a scrollable or insensitive cursor, in which case
it is read-only by default.

 SCROLL, the cursor is scrollable, which means that variants of the FETCH command can be
used to position the cursor in very flexible ways;

 INSENSTIVE will disregard change to data of other transactions after the cursor is opened.

/***
** An example for updateable cursor
***/
#define CHECKERR(CE_STR) if (sqlca.sqlcode != 0) {printf("%s failed. Reason %ld\n",
CE_STR, sqlca.sqlcode); exit(1); }

EXEC SQL DECLARE c1 CURSOR FOR
 SELECT name, dept FROM staff WHERE job='Mgr'
 FOR UPDATE OF job;

 EXEC SQL OPEN c1;
 CHECKERR ("OPEN CURSOR");

 do {
 EXEC SQL FETCH c1 INTO :pname, :dept;
 if (SQLCODE != 0) break;

 if (dept > 40) {
 printf("%-10.10s in dept. %2d will be demoted to Clerk\n",
 pname, dept);
 EXEC SQL UPDATE staff SET job = 'Clerk'
 WHERE CURRENT OF c1;
 CHECKERR ("UPDATE STAFF");
 } else {
 printf ("%-10.10s in dept. %2d will be DELETED!\n",
 pname, dept);
 EXEC SQL DELETE FROM staff WHERE CURRENT OF c1;
 CHECKERR ("DELETE");
 } /* endif */
 } while (1);

 EXEC SQL CLOSE c1;
 CHECKERR ("CLOSE CURSOR");

Note: before you compile these programs, you need to create the following table and insert some tuples
in it.
 --*************
 create table video(video_id int not null, \
 video_title varchar(30), \
 director varchar(20), \
 primary key(video_id))

 insert into video values(100,'Titanic','John')
 insert into video values(200,'Mask','Mary')
 insert into video values(300,'Mary had a little lamb','Jim')
 --*************

/***
** A sample program that demonstrates the use of Static embedded SQL.
**/
#include <stdio.h>

/* sqlca: is the sql communications area. All error codes are returned from db2 in that structure which
is filled each time an interaction with db2 takes place. */

EXEC SQL INCLUDE SQLCA; /* SQL communication area structure */

EXEC SQL BEGIN DECLARE SECTION; /* declare host variables */
 char db_name[8]; /* database name */
 char video_title[30]; /* title of the video */
 short video_id; /* serial number */
 char director[20]; /* director name */
EXEC SQL END DECLARE SECTION;

/* These lines are redundant here because the default action is to continue. They just show the kind of
errors that could arise and one way to control them.*/

EXEC SQL WHENEVER SQLWARNING CONTINUE; /* sqlca.sqlcode > 0 */
EXEC SQL WHENEVER SQLERROR CONTINUE; /* sqlca.sqlcode < 0 */
EXEC SQL WHENEVER NOT FOUND CONTINUE; /* sqlca.sqlcode = 100 */
 /* sqlca.sqlcode = 0 (no error) */

void main() {

strcpy(db_name, "csc343h");

/* C variables are preceded by a colon when they are passed to DB2 */

EXEC SQL CONNECT TO :db_name;

if (sqlca.sqlcode != 0) {
 printf("Connect failed!: reason %ld\n", sqlca.sqlcode);
 exit(1);
}

EXEC SQL DECLARE c1 CURSOR FOR
 SELECT video_title
 FROM video;

EXEC SQL OPEN c1; /* you have to open the cursor in order to get tuples back */

do {
 /* fetch tuples from the cursor. */
 EXEC SQL FETCH c1 into :video_title;
 if (SQLCODE != 0) break; /* SQLCODE refers to sqlca.sqlcode */

 /* host variables should have ':' prefix when they are used in DB2 commands */
 printf("%s\n",video_title);
} while (1);

EXEC SQL CLOSE c1;
EXEC SQL CONNECT RESET;
}
/***
** A sample program that demonstrates the use of Dynamic embedded SQL.
**/
#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

/* The next statement is used in dynamic SQL programs where the output (the number of columns or
their types) is not fixed in the compile time. Here we don't need it, since the output is fixed. */
/* EXEC SQL INCLUDE SQLDA; */

EXEC SQL BEGIN DECLARE SECTION; /* declare host variables */
 char db_name[8];

 char qstring[100]; /* buffer for SQL query */
 char video_title[30];
 short video_id;
 char director[20];
EXEC SQL END DECLARE SECTION;

void main() {

strcpy(db_name, "csc343h");

EXEC SQL CONNECT TO :db_name;

if (SQLCODE != 0) {
 printf("Connect failed!: reason %ld\n", sqlca.sqlcode);
 exit(1);
}

/* construct a query */
strcpy(qstring, "SELECT video_title FROM video");

/* Prepare the query in the run time */
EXEC SQL PREPARE Q1 FROM :qstring;

if (SQLCODE != 0) {
 printf("PREPARE failed!: reason %ld\n", sqlca.sqlcode);
 exit(1);
}

EXEC SQL DECLARE c1 CURSOR FOR Q1;
EXEC SQL OPEN c1;

do {
 EXEC SQL FETCH c1 into :video_title;
 if (SQLCODE != 0) break;

 printf("%s\n",video_title);
} while (1);

EXEC SQL CLOSE c1;
EXEC SQL CONNECT RESET;
}

for this to work, you must put
setenv LD_LIBRARY_PATH /usr/IBMdb2/V7.1/lib
in you .cshrc

A makefile to compile embeded SQL C programs
input: sta-select.sqc (a static SQL c program) and
dyn-select.sqc (a dynamic SQL c program)
output: dyn-select (executable codes)

DB2DIR = /usr/IBMdb2/V7.1
Cflags = -I $(DB2DIR)/include \
 -L $(DB2DIR)/lib \
 -ldb2

all: dyn-select

The first thing is to connect to the database and precompile the programs.
This generates C programs where all SQL commands (except dynamic SQL
queries inside dyn-select.sqc) are replaced by subroutine calls.

dyn-select.c: dyn-select.sqc
 db2 connect to csc343h
 db2 prep dyn-select.sqc
 db2 connect reset

The next step is to compile the C programs and
generate the executable codes.

sta-select: sta-select.c
 gcc -Wall $(Cflags) -o sta-select sta-select.c

dyn-select: dyn-select.c
 gcc -Wall $(Cflags) -o dyn-select dyn-select.c

**
** Using SQLSTATE
**

EXEC SQL CONNECT TO :db_name;

char aux[6];
strcpy(aux,"\0");
strcpy(aux,sqlca.sqlstate);

if (strcmp(aux,"08004")==0 || strcmp(aux,"08002")==0 || strcmp(aux,"08003")==0)
{
 printf("Connect failed!");
 exit(1);
}

