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Abstract. We continue the recent line of work on the connection between semidefinite program-
ming (SDP)-based approximation algorithms and the unique games conjecture. Given any Boolean
2-CSP (or, more generally, any Boolean 2-CSP with real-valued “predicates”), we show how to reduce
the search for a good inapproximability result to a certain numeric minimization problem. Further-
more, we give an SDP-based approximation algorithm and show that the approximation ratio of
this algorithm on a certain restricted type of instances is exactly the inapproximability ratio yielded
by our hardness result. We conjecture that the restricted type required for the hardness result is
in fact no restriction, which would imply that these upper and lower bounds match exactly. This
conjecture is supported by all existing results for specific 2-CSPs. As an application, we show that
Max 2-And is unique games-hard to approximate within 0.87435. This improves upon the best
previous hardness of αGW + ε ≈ 0.87856 and comes very close to matching the approximation ratio
of the best algorithm known, 0.87401. It also establishes that balanced instances of Max 2-And, i.e.,
instances in which each variable occurs positively and negatively equally often, are not the hardest
to approximate, as these can be approximated within a factor αGW and that Max Cut is not the
hardest 2-CSP.
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1. Introduction. Predicates on two Boolean variables are fundamental in the
study of constraint satisfaction problems (CSPs). Given a set of constraints, each
being a formula on two Boolean variables, it is an easy task to find an assignment
satisfying all constraints if such an assignment exists. However, determining the
maximum possible number of simultaneously satisfied constraints is well known to
be NP-hard. This problem is known as the Max 2-CSP problem. It also has some
very interesting special cases, the two most well studied of which are the Max Cut

problem and the Max 2-Sat problem. In the Max Cut problem, each constraint
is of the form xi ⊕ xj , i.e., it is true if exactly one of the inputs are true. In the
Max 2-Sat problem, each constraint is of the form li ∨ lj , i.e., a disjunction on two
literals, each literal being either a variable or a negated variable.

Given that the problem is NP-hard, much research has been focused on approxi-
mating the maximum number of simultaneously satisfied constraints to within some
factor α. An algorithm achieves approximation ratio α if the solution found by the
algorithm is guaranteed to have value at least α times the optimum. We also allow
for randomized algorithms, in which we require that the expected value (over the ran-
domness of the algorithm) of the solution found by the algorithm is at least α times
the optimum. The arguably most trivial approximation algorithm is to simply pick a
random assignment to the variables. For the general Max 2-CSP problem, this algo-
rithm achieves an approximation ratio of 1/4. For the special cases of Max Cut and
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Max 2-Sat, it achieves ratios of 1/2 and 3/4, respectively. For several decades, no
substantial improvements were made over these results until a seminal paper by Goe-
mans and Williamson [22], where they constructed a 0.7960-approximation algorithm
for Max 2-CSP and 0.87856-approximation algorithms for Max Cut and Max 2-
Sat. To do so, they relaxed the combinatorial problem at hand to a semidefinite
programming problem, to which an optimal solution can be found with high preci-
sion, and then used a very clever technique to “round” the solution of the semidefi-
nite programming back to a discrete solution for the original problem. This approach
has since been succesfully applied to several other hard combinatorial optimization
problems, yielding significant improvements over existing approximation algorithms.
Examples include coloring graphs using as few colors as possible [28, 6, 24, 2], Max

Bisection [18], Set Splitting [27], and quadratic programming over the Boolean
hypercube [9].

Some of the results by Goemans and Williamson were subsequently improved
by Feige and Goemans [15], who strengthened the semidefinite relaxation using cer-
tain triangle inequalities [22]. They obtained 0.931-approximation for Max 2-Sat
and 0.859-approximation for Max 2-CSP. These results were further improved by
Matuura and Matsui [37, 38], who obtained 0.935-approximation for Max 2-Sat and
0.863-approximation for Max 2-CSP. Shortly thereafter, Lewin, Livnat, and Zwick
[35] obtained further improvements, getting a 0.94016-approximation algorithm for
Max 2-Sat and a 0.87401-approximation algorithm for Max 2-CSP, and these stand
as the current best algorithms. It should be pointed out that these last two ratios
arise as the minima of two complex numeric optimization problems, and, as far as we
are aware, it has not yet been proved formally that these are the actual ratios, though
there seems to be very little doubt that this is indeed the case.

Meanwhile, the study of inapproximability has seen a lot of progress, emanating
from the discovery of the celebrated PCP theorem [4, 3]. In particular, H̊astad [25]
showed that the generalizations of Max 2-Sat and Max Cut from 2 to 3 variables,
Max 3-Sat and Max 3-Lin-Mod21 are NP-hard to approximate within factors 7/8+
ε and 1/2+ε, respectively. This surprisingly demonstrates that the random assignment
algorithm is the best possible for these problems, assuming P �= NP . On the other
hand, Max 3-CSP can be approximated to within a factor 1/2 [48], which is tight
by the result for Max 3-Lin-Mod2.

For optimization problems with constraints acting on two variables, however,
strong inapproximability results have been more elusive. The best NP-hardness results
for Max 2-CSP, Max 2-Sat, and Max Cut are 9/10 + ε ≈ 0.900, 21/22 + ε ≈
0.955, and 16/17 + ε ≈ 0.941, respectively [47, 25]. The most promising approach to
obtaining strong results for these problems is the so-called unique games conjecture
(UGC), introduced by Khot [29]. The UGC has established itself as one of the most
important open problems in theoretical computer science because of the many strong
inapproximability results that follow from it. Examples of such results include 2 − ε
hardness for Vertex Cover [32], superconstant hardness for Sparsest Cut [10, 33]
andMulticut [10], 1/2+ε hardness of Maximum Acyclic Subgraph [23], hardness
of approximating Max Independent Set within d/poly(log d) in degree-d graphs
[42], and approximation resistance2 for random predicates [26].

For Max 2-CSP problems, Khot et al. [30] showed that the UGC implies αGW +ε
hardness for Max Cut, where αGW ≈ 0.87856 is the performance ratio of the orig-

1Linear equations mod 2, where every equation has 3 variables.
2A predicate is approximation resistant if it is hard to do approximate the corresponding Max

CSP problem better than a random assignment.
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inal Goemans–Williamson algorithm and, in [5], we showed that the UGC implies
αLewin-Livnat-Zwick (LLZ)+ε hardness forMax 2-Sat, where αLLZ ≈ 0.94016 is the per-
formance ratio of the algorithm of Lewin, Livnat, and Zwick (modulo the slight pos-
sibility that the performance ratio of their algorithm is smaller than indicated by ex-
isting analyses). It is interesting that the hardness ratios yielded by the UGC exactly
match these somewhat “odd” constants obtained from the complex numeric optimiza-
tion problems arising from the semidefinite programming (SDP)-based algorithms.

There are several other cases where the best inapproximability result, based on
the UGC, matches the best approximation algorithm, based on a semidefinite pro-
gramming approach. Examples include the Max k-CSP problem [8, 42] and Max

Cut-Gain [9, 31, 40] (which is essentially a version of the Max Cut problem where
unsatisfied constraints give negative contribution rather than zero). This line of re-
sults is not a coincidence: in most cases, the choice of optimal parameters for the
so-called long code test (which is at the heart of the hardness result) are derived by
analyzing worst-case scenarios for the semidefinite relaxation of the problem.

1.1. Our contribution. In this paper, we continue to explore this tight con-
nection between semidefinite programming relaxations and the UGC. We consider a
generalization of predicates on two variables to what we call fuzzy predicates. A fuzzy
predicate P on two variables is a function P : {true, false}2 → [0, 1], rather than to
{0, 1}, as would be the case with a regular predicate. We investigate the approxima-
bility of the Max CSP(P ) problem. Following the paradigm introduced by Goemans
and Williamson, we relax this problem to a semidefinite programming problem. We
then consider the following approach for rounding the relaxed solution to a Boolean
solution: given the SDP solution, we pick the “best” rounding from a certain class of
randomized rounding methods (based on skewed random hyperplanes), where “best”
is in the sense of giving a Boolean assignment with maximum possible expected value.
Informally, let α(P ) denote the approximation ratio yielded by such an approach (the
exact definition appears in section 3, Definition 3.11). We then have the following
theorem.

Theorem 1.1. There is an algorithm which, for any ε > 0, fuzzy predicate P ,
and Max CSP(P ) instance Ψ on n variables, finds an assignment to Ψ with expected

value at least (α(P )− ε) ·Val(Ψ), in time poly(n) · (1/ε)O(1/ε
2).

The reason that we lose an additive ε is that we are not, in general, able to find
the best rounding function, but we can come arbitarily close.

Then, we turn our attention to hardness of approximation. Here, we are able
to take instances which are hard to round, in the sense that the best rounding (as
described above) is not very good and translate them into a unique games-based hard-
ness result. There is, however, a caveat: in order for the analysis to work, the instance
needs to satisfy a certain “positivity” condition. Again, informally, let β(P ) denote
the approximation ratio when restricted to instances satisfying this condition (again,
the exact definition appears in section 3, Definition 3.11). We then have the following.

Theorem 1.2. If the UGC is true, then for any fuzzy predicate P and ε > 0, the
Max CSP(P ) problem is NP-hard to approximate within β(P ) + ε.

Both α(P ) and β(P ) are the solutions to a certain numeric minimization problem.
The function being minimized is the same function in both cases, the only difference is
that in α(P ), the minimization is over a larger domain, and thus we could potentially
have α(P ) < β(P ). However, there are strong indications that the minimum for α(P )
is in fact obtained within the domain of β(P ), in which case they would be equal, and
Theorems 1.1 and 1.2 would be tight.
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Conjecture 1.3. For any fuzzy predicate P , we have α(P ) = β(P ).
Because of the difficulty of actually computing the approximation ratios α(P ) and

β(P ), it may seem somewhat difficult to compare these results to previous results.
However, previous algorithms and hardness results for Max Cut, Max 2-Sat, and
Max 2-CSP can all be obtained as special cases of Theorems 1.1 and 1.2 (the details
of this appear in section 7). In particular, for P (x1, x2) = x1⊕x2, the Xor predicate,
it can be shown that α(P ) = β(P ) = αGW .

We are also able to use Theorem 1.2 to obtain new results, in the form of an
improved hardness of approximation for the Max 2-And problem, in which every
constraint is an And of two literals. This also implies improved hardness for the
Max 2-CSP problem—as is well known, the Max k-CSP problem and the Max k-
And problem are equally hard to approximate for every k (folklore, or see, e.g., [46]).

Theorem 1.4. For the predicate P (x1, x2) = x1 ∧ x2, we have β(P ) ≤ 0.87435.
This comes very close to matching the 0.87401-approximation algorithm of Lewin,

Livnat, and Zwick. It also demonstrates that balanced instances, i.e., instances in
which each variable occurs positively and negatively equally often, are not the hardest
to approximate, as these can be approximated within αGW ≈ 0.87856 [30].

Finally, as a by-product of our results, we obtain some insight regarding the
possibilites of obtaining improved results by strengthening the semidefinite program
with more constraints. Traditionally, the only constraints which have been useful
in the design of Max 2-CSP algorithms are triangle inequalities of a certain form
(namely, those involving the vector v0, coding the value false). It turns out that, for
very natural reasons, these are exactly the inequalities that need to be satisfied in order
for the hardness result to carry through. In other words, assuming Conjecture 1.3
is true, it is UG-hard to do better than what can be achieved by adding only these
triangle inequalities, and thus it is unlikely that improvements can be made by adding
additional inequalities (while still using polynomial time).

1.2. Techniques and related work. Analysis of SDP-based approximation
algorithms for CSP problems is generally very “local” in nature. That is, one proves,
for any given constraint, that the probability of this constraint being satisfied by the
algorithm is related to the relaxed value of this constraint in the semidefinite solution.
In the case of 2-CSP problems, each relaxed constraint involves three vectors, and the
probability that the algorithm satisfies the constraint is a function of these three
vectors.

The key objects in our analysis are weighted sets of such vector triples, which we
call families of configurations. These can informally be thought of as an entire instance
rather than just a single constraint, and in this sense one can view the approach of
this paper as moving away from the local analysis to a global analysis. Given a family
of configurations of a certain restricted type, which are “hard” to round in the sense
that no rounding scheme gives a good assignment, we obtain a unique games-based
inapproximability matching this “hardness” of rounding the family.

Conversely, any instance together with an SDP solution can be viewed as a family
of configurations, and we show that if there is some rounding scheme which gives a
good assignment on this family, then an almost equally good rounding scheme can
be found efficiently. Hence, we can always find an assignment to the 2-CSP instance
which is at least as good as the “hardness” of rounding the corresponding family of
configurations.

The main new ingredients of this paper are the generalizations of the various
quantities used in previous results. In, e.g., the case of Max 2-Sat [5], a sharp result



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2434 PER AUSTRIN

was obtained by considering a family of two vector triples of a very special form,
defined by a single parameter, which made the calculations a lot easier. In this paper,
on the other hand, we can have an arbitrary number of parameters (and this is, of
course, the reason why it is very difficult to actually compute the approximation ratios
obtained), and the “positivity” condition needed here is significantly less restrictive
than the special form used for Max 2-Sat.

The proof of Theorem 1.2 follows the same path as previous proofs for specific
predicates [30, 5], using the majority is stablest theorem [39]. The main difference
here is that we need a generalization of these bounds to a more general setting. The
proof of Theorem 1.1 primarily builds upon the work of [35] for Max 2-Sat and
Max Di-Cut, the main difference being that a rounding function is chosen based on
the semidefinite solution rather than beforehand, using a discretization technique to
make the search for a good rounding function feasible.

1.3. Subsequent work. Subsequent to this work, there have been two very
closely related results. In order to discuss them, we need to briefly describe the
notion of approximation curves (as opposed to approximation ratios). An approxi-
mation curve describes the approximation ratio of an algorithm as a function of the
optimum value of the instances. For instance, the Goemans–Williamson algorithm
for Max Cut finds a cut with value at least s(c) = arccos(1− 2c)/π on graphs where
the maximum cut cuts at least a c fraction of edges. The approximation ratio of the
Goemans–Williamson algorithm is the largest gap between the quantities s(c) and c,

i.e., αGW = minc∈[1/2,1]
s(c)
c . We say that a problem is (s, c)–UG-hard if it is UG-hard

to distinguish between the case when the optimum is at least c from the case when
the optimum is at most s (in particular, (s, c)–UG-hardness implies UG-hardness of
approximating the problem better than a factor s/c).

Another important concept is that of an integrality gap. An (s, c)-integrality gap
for an SDP relaxation of a CSP is an instance Ψ of the problem such that the integral
optimum of Ψ is ≤ s, whereas the SDP optimum is at least c. An integrality gap
can be viewed as a type of unconditional hardness result, in that they state that a
very specific computational model (semidefinite programming) cannot solve a certain
problem. In particular, they indicate that the SDP relaxation for which the integrality
gap was proved cannot distinguish between the case when the optimum is ≤ s and
the case when the optimum is ≥ c.

1.3.1. The approximability curve for MAX CUT. In an “orthogonal” work
to the results of this chapter, O’Donnell and Wu [40] analyzed the entire approx-
imability curve of the Max Cut problem. In particular, they considered a certain
function s : [1/2, 1] → [1/2, 1] and constructed the following:

• An algorithm which, for every constant ε > 0, on input a Max Cut instance
Ψ in which the maximum cut cuts at least a c fraction of edges, finds a cut
of value at least s(c)− ε.

• An (s(c) + ε, c − ε)–UG-hardness result for Max Cut for every ε > 0 and
c ∈ [1/2, 1].

• An (s(c)+ε, c−ε)-integrality gap for the standard SDP relaxation of Max Cut

(with triangle inequalities) for every ε > 0 and c ∈ [1/2, 1].
The main difference which makes Max Cut more amenable to analysis than

general CSPs is the absence of linear terms when the underlying predicate is arithme-
tized. In particular, as we will see in section 7, determining the approximability ratio
for Max Cut is, because of the lack of linear terms, a fairly straightforward task,
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whereas for general predicates, we cannot even prove that α(P ) = β(P ). Determining
the entire approximability curve for Max Cut is significantly more involved than just
finding the worst ratio.

The rounding scheme in the algorithm of [40] uses the random projection ran-
domized (RPR2) rounding scheme of Feige and Langberg [16]. Unfortunately, RPR2

is incomparable to the rounding scheme used in this paper—this will be discussed
when we introduce our rounding scheme in section 3.

1.3.2. UG-hardness from integrality gaps. In a remarkable result, Raghaven-
dra [41] essentially proved the following theorem: fix any Max CSP problem of any
arity or alphabet size, and suppose a certain natural SDP relaxation has an (s, c)-
integrality gap. Then, the problem is (s+ε, c−ε)–UG-hard. In other words, assuming
the UGC, if semidefinite programming cannot approximate a CSP to within some fac-
tor α, then no polynomial time algorithm can.

For the special case of objective functions P : {−1, 1}2 → [0, 1], i.e., the setting
we are considering in this paper, the SDP relaxation used is exactly the standard
SDP relaxation used in this paper, with those of the triangle inequalities that involve
v0. In other words, the results of [41] verify the indication given by the results of this
paper, that these inequalities are the only ones which help.

The main advantage of our results compared to [41] is that [41] requires an actual
integrality gap instance in order to be able to derive a hardness result. Integrality gaps
which satisfy the triangle inequalities can be quite difficult to construct, and, hence,
for many problems we do not know the exact approximation ratio of the associated
SDP relaxation. Our result, on the other hand, needs only to start with what we
call a family of configurations (Definition 3.1), which is a much simpler object to
construct. Informally, one can view a family of configurations as a “recipe” for an
integrality gap, in the sense that it specifies that the inner products of the vectors
involved should take certain values for a certain fraction of constraints. In particular,
if one wants to compute explicit inapproximability ratios for different problems, it can
be much easier to find an appropriate family of configurations instead of a complete
integrality gap instance. For instance, we do not know of any integrality gap instances
for Max 2-And with gap larger than αGW , the Max Cut constant. On the other
hand, it is not too complicated to find a family of configurations with a larger gap,
as we did in section 6.

If our Conjecture 1.3 is true, the results of this paper are as strong as the results
of [41] for P : {−1, 1}2 → [0, 1]: any integrality gap instance defines a family of
configurations with a gap which is at least as large as that of the gap instance.

1.4. Organization. This paper is organized as follows. In section 2, we set
up some notation and define CSPs and the UGC. In section 3, we discuss the SDP
relaxation of the Max CSP(P ) problem and define the constants α(P ) and β(P ). In
section 4, we prove Theorem 1.1. In section 5, we prove Theorem 1.2. In section 6,
we prove Theorem 1.4. In section 7, we show that the ratios given by Theorems 1.1
and 1.2 for Max Cut, Max 2-Sat, and Max 2-And are at least as good as previous
results for the those problems. Finally, in section 8, we give some concluding remarks
on our results.

2. Preliminaries. We associate the Boolean values true and false with −1 and
1, respectively. Thus, a disjunction x ∨ y is true if x = −1 or y = −1, and a
conjunction x ∧ y is true if x = y = −1. We denote by Sn = { v ∈ Rn+1 : ‖v‖ = 1 }
the n-dimensional unit sphere.
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2.1. CSPs. A predicate P on two Boolean variables is a function P : {−1, 1}2 →
{0, 1}. We generalize this to the notion of fuzzy predicates.

Definition 2.1. A fuzzy predicate P on two Boolean variables is a function
P : {−1, 1}2 → [0, 1].

Note that, with general objective functions from {−1, 1}2 to the nonnegative real
numbers in mind, the upper bound P (x) ≤ 1 can be assumed without loss of generality,
since we can always scale down any nonnegative objective function so that it takes
values in [0, 1] and thus becomes a fuzzy predicate. The restriction to nonnegative
real numbers is made in order for the notion of an approximation ratio to be well
defined.

Definition 2.2. An instance Ψ of the Max CSP(P ) problem, for a fuzzy pred-
icate P , consists of a set of clauses and a weight function wt. Each clause ψ is a
pair of literals (l1, l2) (a literal is either a variable or a negation of a variable), and
the weight function associates with each clause ψ a nonnegative weight wt(ψ). We
abuse notation slightly by identifying Ψ with both the instance and the set of clauses.
Given an assignment x = (x1, . . . , xn) to the variables occurring in Ψ and a clause
ψ = (s1xi, s2xj) (where s1, s2 ∈ {−1, 1}), we denote the restriction of x to ψ by
x|ψ = (s1xi, s2xj). The value of an assignment x to the variables occuring in Ψ is
then given by

(1) ValΨ(x) =
∑
ψ∈Ψ

wt(ψ)P (x|ψ),

and the value of Ψ is the maximum possible value of an assignment

(2) Val(Ψ) = max
x

ValΨ(x).

For convenience, we will assume (without loss of generality) that the weights are
normalized so that wt(·) is just a probability distribution on the clauses, i.e., that∑

ψ∈Ψwt(ψ) = 1 (so 0 ≤ Val(Ψ) ≤ 1).

Definition 2.3. The Max CSP
+(P ) problem is the special case of Max CSP(P )

where there are no negated literals (i.e., each clause is a pair of variables).
An example of the Max CSP(P ) problem which is of special interest for us is

the Max 2-And problem, which is obtained by letting P be the predicate which
is 1 if both of the inputs are true and 0 otherwise. A well-known example of the
Max CSP

+(P ) problem is the Max Cut problem, which is obtained by letting P
be the predicate which is 1 if the inputs are different and 0 if they are equal.

Any fuzzy predicate P can be arithmetized as P (x1, x2) = P̂0 + P̂1x1 + P̂2x2 +
P̂3x1x2, for some constants P̂0, P̂1, P̂2, and P̂3. Thus, the Max CSP(P ) problem can
be viewed as a certain special case of the integer quadratic programming problem.
Throughout the remainder of this paper, we fix some arbitrary fuzzy predicate P and
its corresponding coefficients P̂0 . . . P̂3.

2.2. The UGC. The UGC was introduced by Khot [29] as a possible means to
obtain new strong inapproximability results. As is common, we will formulate it in
terms of a label cover problem.

Definition 2.4. An instance

X = (V,E,wt, [L], {σve , σwe }e={v,w}∈E)

of Unique Label Cover is defined as follows: given is a weighted graph G = (V,E)
(which may have multiple edges) with weight function wt : E → [0, 1], a set [L] of
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allowed labels, and for each edge e = {v, w} ∈ E two permutations σve , σ
w
e on [L] such

that σwe = (σve )
−1, i.e., they are each other’s inverse. We say that a function � : V →

[L], called a labeling of the vertices, satisfies an edge e = {v, w} if σve (�(v)) = �(w),
or equivalently if σwe (�(w)) = �(v). The value of � is the total weight of edges satisfied
by it, i.e.,

(3) ValX(�) =
∑
e

� satisfies e

wt(e).

The value of X is the maximum fraction of satisfied edges for any labeling, i.e.,

(4) Val(X) = max
�

ValX(�).

Without loss of generality, we will always assume that
∑

ewt(e) = 1, i.e., that
wt is in fact a probability distribution over the edges of X . We denote by E(v) the
subset of edges adjacent to v, i.e., E(v) = { e | v ∈ e }. The probability distribution wt
induces a natural probability distribution on the vertices of X where the probability
of choosing v is 1

2

∑
e∈E(v) wt(e), and wt also induces a natural distribution on the

edges of E(v) where the probability of choosing e ∈ E(v) is wt(e)∑
e∈E(v) wt(e) .

Whenever we speak of choosing a random element of V , E, or E(v), it will be
according to these probability distributions, but to simplify the presentation, we will
simply refer to it as a random element. For the same reason we will refer to a fraction
c of the elements of V , E, or E(V ) when in fact we mean a set of vertices/edges with
probability mass c. We will be interested in the gap version of the Unique Label

Cover problem, which we define as follows.
Definition 2.5. Gap-Unique Label Coverη,γ,L is the problem, given a

Unique Label Cover instance X with label set [L], of determining whether Val(X) ≥
1− η or Val(X) ≤ γ.

Khot’s UGC asserts that the gap version is hard to solve for arbitrarily small η
and γ, provided we take a sufficiently large label set.

Conjecture 2.6 (UGC [29]). For every η > 0, γ > 0, there is a constant L > 0
such that Gap-Unique Label Coverη,γ,L is NP-hard.

Note that even if the UGC turns out to be false, it might still be the case that
under some standard hardness assumption, one can prove that Gap-Unique Label

Coverη,γ,L is hard in the sense of not being solvable in polynomial time, and such
a (weaker) hardness would also apply to all other problems for which hardness has
been shown under the UGC.

2.3. Influence and correlation under noise. Fourier analysis of Boolean
functions is a crucial tool in most strong inapproximability results. As in previous
results [30, 5], the key ingredient in the proof of our hardness result is (a generaliza-
tion of) the so-called majority is stablest theorem [39]. In this section, we describe
this result and the exact formulation we use. Since we need to work with biased
distributions rather than the standard uniform ones, we will review some relevant
concepts. With the exception of Proposition 2.14, the propositions in this section are
well known, and proofs can be found in, e.g., [5], full version. We denote by μnq the
probability distribution on {−1, 1}n, where each bit is set to −1 with probability q,
independently, and we let Bnq be the probability space ({−1, 1}n, μnq ).

We define a scalar product on the space of functions from Bnq to R by

(5) 〈f, g〉 = E
x∈Bn

q

[f(x)g(x)],



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2438 PER AUSTRIN

and for each S ⊆ [n] the function USq : Bnq → R by USq (x) =
∏
i∈S Uq(xi), where

Uq(xi) =

⎧⎨⎩−
√

1−q
q if xi = −1,√

q
1−q if xi = 1.

Proposition 2.7. The set of functions {USq }S⊆[n] forms an orthonormal basis
w.r.t. the scalar product 〈·, ·〉.

Thus, any function f : Bnq → R can be written as

f(x) =
∑
S⊆[n]

f̂SU
S
q (x),

where the coefficients f̂S =
〈
f, USq

〉
= Ex[f(x)U

S
q (x)] are the Fourier coefficients of

the function f . It is a straightforward exercise to verify the basic identities 〈f, g〉 =∑
S⊆[n] f̂S ĝS , Ex[f(x)] = f̂∅, and Varx[f(x)] =

∑
S �=∅ f̂

2
S . We will also use ‖f‖ :=√

〈f, f〉 to denote the L2 norm of a function f : Bnq → R, and we remind the reader
of the Cauchy–Schwarz inequality

(6) | 〈f, g〉 | ≤ ‖f‖ · ‖g‖.

Definition 2.8. The long code of an integer i ∈ [n] is the function f : {−1, 1}n →
{−1, 1} defined by f(x) = xi.

Definition 2.9. A function f : {−1, 1}n → R is said to be folded over true if
f(x) = −f(−x) for every x.

Definition 2.10. The influence of the variable i on the function f : Bnq → R is

(7) Infi(f) = E
x

[
Var
xi

[f(x) |x1, . . . , xi−1, xi+1, . . . , xn]

]
.

The influence of the variable i is a measure of how much the variable i is able to
change the value of f once we have fixed the other n−1 variables randomly (according
to the distribution μn−1

q ).
Proposition 2.11.

(8) Infi(f) =
∑
S⊆[n]
i∈S

f̂2
S .

Motivated by the Fourier-representation formulation of influence, we define the
slightly stronger concept of low-degree influence, crucial to PCP applications.

Definition 2.12. For k ∈ N, the low-degree influence of the variable i on the
function f : Bnq → R is

(9) Inf≤ki (f) =
∑
S⊆[n]
i∈S

|S|≤k

f̂2
S.

A nice property of the low-degree influence is the fact that for functions into
[−1, 1],

∑
i Inf

≤k
i (f) ≤ k, implying that the number of variables that have low-degree

influence more than, say, τ , must be small (think of k and τ as constants not depending
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Table 2.1

Distribution of x and y.

xi yi Probability

1 1 1+ξ1+ξ2+ρ
4

1 −1 1+ξ1−ξ2−ρ
4

−1 1 1−ξ1+ξ2−ρ
4

−1 −1 1−ξ1−ξ2+ρ
4

on the number of variables n). Very informally, one can think of the low-degree
influence as a measure of how close the function f is to depending on only a few
variables, i.e., for the case of Boolean-valued functions, how close f is to being the
long code or negated long code of some i. Note that a long code is the extreme case of
a function with large low-degree influence, in the sense that it has one variable with
Inf≤1

i (f) = 1 and all other variables having influence 0.
Next, we introduce the correlation under ρ̃-noise between two functions f : Bnq1 →

R and g : Bnq2 → R. For functions into {−1, 1}, the correlation under noise measures
how likely f and g are to take the same value on two random inputs with a certain
correlation. For f = g, this is simply the well-studied noise stability of f . Recall
that the correlation coefficient of two random variables A and B is defind as ρAB =

Cov[A,B]√
Var[A] Var[B]

.

Definition 2.13. The correlation under ρ̃-noise between f : Bnq1 → R and
g : Bnq2 → R is given by

(10) Sρ̃(f, g) = E
x,y

[f(x)g(y)],

where the ith bits of x and y are drawn from Bnq1 and Bnq2 with correlation coefficient
ρ̃ (independently of the other bits).

Note that we can write

(11) ρ̃ = E
xi,yi

[
(xi − E[xi])(yi − E[yi])√

Var[xi] Var[yi]

]
=

ρ− ξ1ξ2√
1− ξ21

√
1− ξ22

,

where ξ1 = E[xi] = 1 − 2q1, ξ2 = E[yi] = 1 − 2q2, and ρ = E[xiyi]. The distribution
of the ith bits of x and y can be written out explicitly as in Table 2.1.

We define Sρ̃(f) = Sρ̃(f, f) to be the noise stability of the function f .
Proposition 2.14. For x and y chosen as in Table 2.1, we have

(12) E[USq1(x)U
T
q2 (y)] =

{
ρ̃|S| if S = T ,
0 otherwise.

The following proof was suggested by Marcus Isaksson.
Proof. The case when S �= T is immediately clear, since E[Uq1(xi)] = E[Uq2(yi)] =

0. For the S = T case, it suffices to prove that E[Uq1(xi)Uq2(yi)] = ρ̃. But this follows
immedediately from the fact that Uq1 can be written as

(13) Uq1(xi) =
xi − E[xi]√

Var[xi]
,

and similarly for Uq2 , implying that E[Uq1(xi)Uq2(yi)] equals the correlation coefficient
between xi and yi, which, by definition, equals ρ̃.
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Thus, we can write the correlation under noise between f and g as

(14) Sρ̃(f, g) = E
x,y

⎡⎣∑
S,T

f̂SU
S
q1(x)ĝTU

T
q2(y)

⎤⎦ =
∑
S⊆[n]

ρ̃|S|f̂S ĝS .

2.4. Functions in Gaussian space. We denote by φ(x) = 1√
2π
e−x

2/2 the stan-

dard normal density function, by Φ(x) =
∫ x
−∞ φ(t)dt the standard normal distribution

function, and by Φ−1 the inverse of Φ.
As with functions on the hypercube, we define a scalar product on functions

f, g : Rn → R by 〈f, g〉 = Ex[f(x)g(x)] (we abuse notation slightly by using the same
notation as for scalar products on functions from the hypercube), where the expecta-
tion is over a standard n-dimensional Gaussian, i.e., a vector in which the coordinates
are independent standard normal random variables. The Ornstein–Uhlenbeck opera-
tor Uρ on functions f : Rn → R is defined as

(15) Uρf(x) = E
y

[
f(ρx+

√
1− ρ2y)

]
,

where the expected value is over a standard n-dimensional Gaussian y. Note that
ρx +

√
1− ρ2y is a standard n-dimensional Gaussian, where each coordinate has

covariance ρ with the corresponding coordinate in x. For μ ∈ [−1, 1] we denote by
χμ : R → [0, 1] the indicator function of an interval (−∞, t), where t is chosen so that
E[χμ] =

1−μ
2 , i.e. t = Φ−1

(
1−μ
2

)
.

Definition 2.15. For ρ, μ1, μ2 ∈ [−1, 1], define

(16) Γρ(μ1, μ2) = 〈χμ1 , Uρχμ2〉 = Pr[X1 ≤ t1 ∧X2 ≤ t2],

where ti = Φ−1(1−μi

2 ) and X1, X2 are jointly normal variables with mean 0 and

covariance matrix
(

1 ρ
ρ 1

)
.

Analogously to noise stability, we define Γρ(μ) = Γρ(μ, μ). The following proper-
ties of Γρ will be useful.

Proposition 2.16 (see [5, Lemma 2.1]). For all ρ ∈ [−1, 1], μ1, μ2 ∈ [−1, 1], we
have

(17) Γρ(−μ1,−μ2) = Γρ(μ1, μ2) + μ1/2 + μ2/2.

The following proposition is easily derived from [5, (full version), Proposition
D.1].

Proposition 2.17. For any μ1, μ
′
1, μ2, μ

′
2 ∈ [−1, 1] and ρ ∈ (−1, 1), we have

(18) |Γρ(μ1, μ2)− Γρ(μ
′
1, μ

′
2)| ≤

|μ1 − μ′
1|+ |μ2 − μ′

2|
2

.

2.5. Thresholds are extremely correlated under noise. For proving hard-
ness of Max Cut, Khot et al. [30] made a conjecture called majority is stablest,
essentially stating that any Boolean function with noise stability significantly higher
than the majority function must have a variable with high low-degree influence (and
thus in a vague sense be similar to a long code). Majority is stablest was subsequently
proved by Mossel, O’Donnell, and Oleszkiewicz [39], using a very powerful invariance
principle which, essentially, allows for considering the corresponding problem over
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Gaussian space instead. For our result, we will use a strengthening of majority is
stablest to two functions on the biased hypercube.

Theorem 2.18. For any ε > 0, q1 ∈ (0, 1), q2 ∈ (0, 1), and ρ ∈ (−1, 1), there are
τ > 0, k ∈ N such that for any two functions f : Bnq1 → [0, 1] and g : Bnq2 → [0, 1]

satisfying E[f ] =
1−μf

2 , E[g] =
1−μg

2 , and

min
(
Inf≤ki (f), Inf≤ki (g)

)
≤ τ

for all i ∈ [n], the following holds:

Sρ(f, g) ≤
〈
χμf

, U|ρ|χμg

〉
+ ε(19)

Sρ(f, g) ≥
〈
χμf

, U|ρ|(1− χ−μg )
〉
− ε.(20)

In the terminology of [13], the setting of Theorem 2.18 corresponds to the case of
a reversible noise operator, rather than a symmetric one as was studied there. It is
known that the bounds of Theorem 2.18 also hold in the reversible case [12] (and in
fact even in the nonreversible case [39]), but for completeness we give a proof (following
the same lines as the proof of [13]) in Appendix A. Using elementary manipulations,
we obtain the following corollary, the proof of which can be found in Appendix A.2.

Corollary 2.19. Let ε > 0, q1, q2 ∈ (0, 1), and ρ ∈ (−1, 1). Then there are
τ > 0, k ∈ N such that for all functions f : Bnq1 → [−1, 1], g : Bnq2 → [−1, 1] satisfying

E[f ] = μf , E[g] = μg, and min(Inf≤ki (f), Inf≤ki (g)) ≤ τ for all i, we have

(21) 4Γ−|ρ|(μf , μg)− ε ≤ Sρ(f, g)− μf − μg + 1 ≤ 4Γ|ρ|(μf , μg) + ε.

3. Semidefinite relaxation and the α and β parameters. One approach
to solving integer quadratic programming problems which has turned out to be re-
markably successful over the years is to relax the original problem to a semidefinite
programming problem. This approach was first used in the seminal paper by Goe-
mans and Williamson [22], where they gave the first approximation algorithms for
Max Cut, Max 2-Sat, and Max Di-Cut with a nontrivial approximation ratio
(ignoring lower order terms).

For solving integer quadratic programming over the hypercube where each vari-
able is restricted to ±1, the standard approach is to first homogenize the program
by introducing a variable x0 which is supposed to represent the value false and then
replace each term xi by x0xi. We then relax each variable xi ∈ {−1, 1} = S0 to a
vector vi ∈ Sn (i.e., a unit vector in Rn+1) so that each term xixj becomes the scalar
product vi · vj .

In addition, we add the following inequality constraints to the program for all
triples of vectors vi, vj , vk:

vi · vj + vj · vk + vi · vk ≥ −1, −vi · vj + vj · vk − vi · vk ≥ −1,(22)

vi · vj − vj · vk − vi · vk ≥ −1, −vi · vj − vj · vk + vi · vk ≥ −1.(23)

These are equivalent to triangle inequalities of the form ‖vi − vj‖2 + ‖vj − vk‖2 ≥
‖vi − vk‖2, which clearly hold for the case where all vectors lie in a one-dimensional
subspace of Rn (so this is still a relaxation of the original integer program), but is
not necessarily true otherwise. There are, of course, many other valid inequalities
which could also be added, considering k-tuples of variables rather than just triples.
In particular, adding all valid constraints makes the optimum for the semidefinite
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program equal the discrete optimum [17] (but there are an exponential number of
constraints to consider).

The process of adding new constraints to LP or SDP relaxations of an integer
programming problem is systematized by so-called hierarchies. The three most well-
known such hierarchies are the Lovász–Schrijver hierarchy [36], the Sherali–Adams
hierarchy [45], and the Lasserre hierarchy [34]. In general, these share the following
features: the first level of the hierarchy is the “basic” SDP relaxation, and the rth
level of the hierarchy is constructed from the (r − 1)th by adding new constraints
which have to be satisfied by any integral solution, in a certain systematic way. The
SDP at the rth level of the hierarchy can be solved in time nO(r), and any feasible
solution at the nth level of the hierarchy is a convex combination of integral solutions.

While initially seeming like a powerful method for obtaining better approximation
algorithms, results which make use of the higher levels of these hierarchies have been
scarce, whereas there have been several results exhibiting cases where they do not
help, e.g., [44, 21, 43]. In fact, the only result we are aware of which goes beyond
the third level of any hierarchy is a very recent result by Chlamtac and Singh [11] for
finding independent sets in hypergraphs, using the Lasserre hierarchy.

In particular, the only inequalities which have been used when analyzing the
performance of approximation algorithms for 2-CSP problems are those of the triangle
inequalities which involve the vector v0. The results of this paper shed some light
on why this is the case—these are exactly the inequalities we need in order for the
hardness of approximation to work out. Thus, assuming Conjecture 1.3 and the UGC,
it is unlikely that adding other valid inequalities (while still being able to solve the
SDP in polynomial time) will help achieve a better approximation ratio, as that
would imply P = NP . This is supported by the subsequent work of Raghavendra
[41], described in section 1.3.

In general, we cannot find the exact optimum of a semidefinite program. It
is, however, possible to find the optimum to within an additive error of ε in time
polynomial in log 1/ε [1]. As is standard (see, e.g., [22, 40]), we ignore this small point
for notational convenience and assume that we can solve the semidefinite program
exactly.

Given a vector solution {vi}ni=0, the relaxed value of a clause ψ ∈ Ψ depends only
on the three (possibly negated) scalar products v0 · vi, v0 · vj , and vi · vj , where xi
and xj are the two variables occuring in ψ. Most of the time, we do not care about
the actual vectors, but we are only interested in these triples of scalar products.

Definition 3.1. A scalar product configuration θ, or just a configuration for
short, is a triple of real numbers (ξ1, ξ2, ρ) satisfying

ξ1 + ξ2 + ρ ≥ −1,
ξ1 − ξ2 − ρ ≥ −1,

−ξ1 + ξ2 − ρ ≥ −1,
−ξ1 − ξ2 + ρ ≥ −1.

(24)

A family of configurations Θ is a finite set X = {θ1, . . . , θk} of configurations, endowed
with a probability distribution η. We routinely abuse notation by identifying Θ both
with the set X and the probability space (X, η).

A configuration can be viewed as representing three vectors v0, v1, v2, where v0 ·
vi = ξi and v1 · v2 = ρ. Note that the inequalities in (24) then correspond exactly to
those of the triangle inequalities (22) which involve v0. The important feature of these
inequalities is that they precisely guarantee that Table 2.1 gives a valid probability
distribution, which will be crucial in order for the hardness result to work out. It can
also be shown that these inequalities ensure the existence of vectors v0, v1, v2 with the
corresponding scalar products.
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Definition 3.2. Recall that the arithmetized form of P is P (x1, x2) = P̂0 +
P̂1x1 + P̂2x2 + P̂3x1x2 (as described in the end of section 2.1). The relaxed value of
a configuration θ = (ξ1, ξ2, ρ) is given by

Prelax(θ) = Prelax(ξ1, ξ2, ρ) = P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ.

Analogously to the notation x|ψ for discrete solutions, we denote by v|ψ = (s1v0 ·
vi, s2v0 · vj , s1s2vi · vj) the configuration arising from the clause ψ = (s1xi, s2xj) for
the vector solution v = {vi}ni=0. The relaxed value of the clause ψ is then simply
given by Prelax(v|ψ).

Often we view the solution to the SDP as just the family of configurations Θ =
{ v|ψ |ψ ∈ Ψ } with the probability distribution, where Prθ∈Θ[θ = v|ψ] = wt(ψ). The
relaxed value of an assignment of vectors {vi}ni=0 is then given by

(25) SDP-ValΨ({vi}) =
∑
ψ∈Ψ

wt(ψ)Prelax(v|ψ) = E
θ∈Θ

[Prelax(θ)].

Given a vector solution {vi}, one natural attempt at an approximation algorithm
is to set xi to be true with probability 1−ξi

2 (where ξi = vi · v0), independently—the
intuition being that the linear term ξi gives an indication of “how true” xi should
be. This assignment has the same expected value on the linear terms as the vector
solution, and the expected value of a quadratic term xixj is ξiξj . However, typically
the scalar product vi · vj does not equal ξiξj—this happens only when the parts of
vi and vj orthogonal to v0 are orthogonal to each other. In other words, the scalar
product vi · vj can contribute more than ξiξj to the objective function. To quantify
this, write the vector vi as

(26) vi = ξiv0 +
√
1− ξ2i ṽi,

where ξi = vi ·v0 and ṽi is the part of vi orthogonal to v0, normalized to a unit vector
(if ξi = ±1, we define ṽi to be a unit vector orthogonal to all other vectors vj). Then,
we can rewrite the quadratic term vi · vj as

(27) vi · vj = ξiξj +
√
1− ξ2i

√
1− ξ2j ṽi · ṽj .

As it turns out, the relevant parameter when analyzing the quadratic terms is the
scalar product ṽi · ṽj , i.e., the difference (scaled by an appropriate factor) between the
value vi ·vj corresponding to xixj in the SDP, compared to the expected value of xixj
in the independent rounding. Motivated by this, we make the following definition.

Definition 3.3. The inner angle ρ̃(θ) of a configuration θ = (ξ1, ξ2, ρ) is

(28) ρ̃(θ) =
ρ− ξ1ξ2√

1− ξ21
√
1− ξ22

.

In the case where ξ1 = ±1 or ξ2 = ±1, we define ρ̃(θ) = 0.
Note that, in the notation above, the inner angle is exactly the scalar product

ṽi ·ṽj . In particular we have ρ̃(θ) ∈ [−1, 1] for every configuration θ, since there always
exist vectors v0, v1, v2 having the inner products specified by θ. Also, note that ρ̃(θ)
is exactly the correlation coefficient between two random bits x, y ∈ {−1, 1}n having
E[x] = ξi, E[y] = ξj , and E[xy] = ρ (cf. Definition 2.13 and the following discussion).

We are now ready to define the “positivity condition” alluded to in section 1.1.
Definition 3.4. A configuration θ = (ξ1, ξ2, ρ) is positive if P̂3 · ρ̃(θ) ≥ 0.
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Intuitively, positive configurations should be more difficult to handle, since they
are the configurations where we need to do something better than just setting the
variables independently in order to get a good approximation ratio.

What Goemans and Williamson [22] do to round the vectors back to Boolean
variables is to pick a random hyperplane through the origin, and decide the value of
the variables based on whether their vectors are on the same side of the hyperplane as
v0 or not. Feige and Goemans [15] suggested several generalizations of this approach,
using preprocessing (e.g., first rotating the vectors) and/or more elaborate choices
of hyperplanes. In particular, consider a rounding scheme where we pick a random
vector r ∈ Rn+1 and then set the variable xi to true if

(29) r · ṽi ≤ T (v0 · vi)

for some threshold function T : [−1, 1] → R. This scheme (and more general ones)
was first analyzed by Lewin, Livnat, and Zwick [35]. A very similar family of schemes,
called RPR2 roundings, was earlier analyzed by Feige and Langberg [16]. In an RPR2

rounding, a variable xi is set to true with probability f(〈r, vi〉) for some function
f : R → [0, 1]. As mentioned in section 1.3, , RPR2 roundings have been shown to
give optimal results for Max Cut [40]. The crucial difference between RPR2 and
the rounding in (29) is that (29) gives the direction v0 a special treatment, quite
different from how the other directions are handled, which in turn means that the
linear terms 〈v0, vi〉 are handled very differently from the quadratic terms 〈vi, vj〉. In
Max Cut, this is not relevant, as there are no linear terms that need to be handled,
but for a general 2-CSP the scheme in (29) appears more useful than RPR2. On
the flip side, the special treatment of v0 makes it more cumbersome to recover the
Goemans–Williamson Max Cut algorithm (the rounding of which can be viewed as
a special case of RPR2)—see section 7 for details.

To describe the performance ratio yielded by this scheme, we begin by setting up
some notation.

Definition 3.5. A rounding is a continuous function R : [−1, 1] → [−1, 1] which
is odd, i.e., satisfies R(ξ) = −R(−ξ). We denote by R the set of all such functions.

The reason that we require a rounding function to be odd is that a negated literal
−xi should be treated the opposite way as xi. A rounding R will specify a threshold
function T as described above by the simple relation R(x) = 1 − 2Φ(T (x)), where Φ
is the normal distribution function (it will turn out to be more convenient to describe
the rounding in terms of R rather than in terms of T ).

Definition 3.6. Recall the definition of Γρ(μ1, μ2) (Definition 2.15). The roun-
ded value of a configuration θ with respect to a rounding function R ∈ R is

(30) Pround(θ,R) = Prelax

(
R(ξ1), R(ξ2), 4Γρ̃(θ)(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1

)
.

This seemingly arbitrary definition is motivated by the following lemma (which
essentially traces back to Lewin, Livnat, and Zwick [35], though they never made it
explicit).

Lemma 3.7. There is an algorithm which, for every ε > 0, given a Max CSP(P )
instance Ψ, a semidefinite solution {vi}ni=0 to Ψ, and a rounding function R ∈ R, finds
an assignment to Ψ with expected value

(31) E
θ∈Θ

[Pround(θ,R)]− ε.

The algorithm runs in time polynomial in n, log(1/ε), and the time required to evalute
the rounding function R.
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Proof. Let us first assume that manipulations of real numbers are exact and can
be done in constant time. We show that in this case the lemma holds without the
ε. The effect caused by real number arithmetic not being exact can then be made
as small as desired by using a sufficient amount of precision. We leave the details of
this to the interested reader, but let us mention that it is crucial that the ξ-values of
Θ are computed exactly (the reason being that R(ξ + ε) can be completely different
from R(ξ)).

The algorithm works as described above: First, we pick a random vector r ∈ Rn+1

(i.e., each coordinate of r is a standard normal random variable). Then, we set the
variable xi to true if

(32) ṽi · r ≤ T (vi · v0),

where we define the threshold function T as

(33) T (x) = Φ−1

(
1−R(x)

2

)
.

We will first assume that all values are computed exactly and address the issue of
rounding errors toward the end of this section. To analyze the performance of this
algorithm, we need to analyze the expected values E[xi] and E[xixj ].

We begin with the linear terms. These are easy, because ṽi · r is just a standard

normal random variable, implying that xi is set to true with probability 1−R(ξi)
2 .

Thus, we have that the expected value E[xi] = R(ξi).
For the quadratic terms, we analyze the probability that two variables xi and

xj are rounded to the same value. It is readily verified that the covariance between
the two scalar products ṽi · r and ṽj · r is ρ̃, and thus the probability that both
ṽi ≤ T (vi · v0) and ṽj ≤ T (vj · v0) is simply Γρ̃(R(ξi), R(ξj)). By symmetry, the
probability that both xi and xj are set to false is then Γρ̃(−R(ξi),−R(ξj)). Using
Proposition 2.16, the expected value of xixj is then given by

E[xixj ] = 2 (Γρ̃ (R(ξi), R(ξj)) + Γρ̃ (−R(ξi),−R(ξj)))− 1

= 4Γρ̃ (R(ξi), R(ξj)) +R(ξi) +R(ξj)− 1.(34)

Thus, the expected value of the solution found (over the random choice of r) is given
by

E
(ξ1,ξ2,ρ)∈Θ

[
P̂0 + P̂1R(ξ1) + P̂2R(ξ2) + P̂3(4Γρ̃(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1)

]
= E

θ∈Θ
[Pround(θ,R)] ,(35)

and we are done.
We remark that the rounding procedure used in the proof of Lemma 3.7 is from

the class of roundings Lewin, Livnat, and Zwick [35] called T HRESH−. The rounding
function R specifies an arbitrary rounding procedure from T HRESH−.3

A statement similar to Lemma 3.7 holds for Max CSP
+(P ), the difference being

that, since there are no longer any negated literals, we can change the definition of a
rounding function slightly and not require it to be odd (which could potentially give
us a better algorithm). Motivated by Lemma 3.7, we make the following sequence of
definitions.

3In the notation of [35], we have S(x) = T (x)
√
1− x2, or equivalently R(x) = 1 −

2Φ(S(x)/
√
1− x2).
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Definition 3.8. The approximation ratio of a rounding R for a family of con-
figurations Θ is given by

(36) αP (Θ, R) =
Eθ∈Θ [Pround(θ,R)]

Eθ∈Θ [Prelax(θ)]
.

If E[Prelax(θ)] = 0, we let αP (Θ, R) = ∞.
Definition 3.9. The approximation ratio of a family of configurations Θ is

given by

(37) αP (Θ) = max
R∈R

αP (Θ, R).

It is not too hard to check that the max is attained by some R so that the use of
max instead of sup is valid. For a fixed Θ, αP (Θ, R) depends only on the value of R(ξ)
for at most d = 2|Θ| different ξ, and we can view supR αP (Θ, R) as being a supremum
over a subset of Rd, which is easily verified to be compact and convex. Furthermore,
one can check that αP (Θ, R) is continuous in R, and hence the supremum is attained.

Definition 3.10. Recall the definition of a positive configuration from Defini-
tion 3.4. The approximation ratios of P for families of k configurations and families
of k positive configurations, respectively, are given by

αP (k) = min
|Θ|=k

αP (Θ), βP (k) = min
|Θ|=k

every θ ∈ Θ is positive

αP (Θ).(38)

As in Definition 3.9, it can be seen that the min is attained so that the use of
min instead of inf is valid: the set of all families of k configurations can be viewed as
a compact convex subset of [−1, 1]4k.

We would like to point out that we do not require that the family of configurations
Θ can be derived from an SDP solution to someMax CSP(P ) instance Ψ—we require
only that each configuration in Θ satisfies the inequalities in (24). In other words, we
have a lot more freedom when searching for a Θ which makes αP (k) or βP (k) small,
than we would have when searching for Max CSP(P ) instances and corresponding
vector solutions.

Finally, we define the α and β ratios of P .
Definition 3.11. The α and β ratios of P are

α(P ) = lim
k→∞

αP (k), β(P ) = lim
k→∞

βP (k).(39)

It is not hard to see that the limits are indeed attained, since αP (k) and βP (k)
for increasing k form decreasing sequences in [0, 1]. The inequality αP (k + 1) ≤
αP (k) holds, since any family on k configurations can be viewed as a family on k+ 1
configurations in which we add an additional configuration which is given probability
0 and similarly for βP (k).

These are the approximation ratios arising in Theorems 1.1 and 1.2. Ideally,
of course, we would like to prove hardness of approximating Max CSP(P ) within
α(P ) rather than β(P ), getting rid of the requirement that every θ ∈ Θ must be
positive. The reason that we need it shows up when we do the proof of sound-
ness for the PCP constructed in section 5, and we have not been able to get around
this. However, as we state in Conjecture 1.3, we do not believe that this restriction
affects the approximation ratio achieved: by the intuition above, positive configura-
tions seem to be the ones that are hard to round, so restricting our attention to such
configurations ought not be a problem. And indeed, the configurations we use to show
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hardness forMax 2-And are all positive, as are all configurations which have appeared
in previous proofs of hardness for 2-CSPs (e.g., for Max Cut and Max 2-Sat).

4. The approximation algorithm. The approximation algorithm for Max

CSP(P ) (Theorem 1.1) is based on the following theorem.
Theorem 4.1. For any ε > 0, the value of a Max CSP(P ) instance on k clauses

can be approximated within αP (k)− ε in time poly(k) · (1/ε)O(1/ε
2).

Note that this theorem immediately implies Theorem 1.1, since αP (k) ≥ α(P ).
We remark that the exact value of αP (k) is virtually impossible to compute for large
k, making it somewhat hard to compare Theorem 4.1 with existing results. However,
for Max Cut, Max 2-Sat, and Max 2-And, it is not hard to prove that α(P ) is at
least the performance ratio of existing algorithms. See section 7 for details.

Proof. Let Ψ be a Max CSP(P ) instance and {vi}ni=0 be an optimal solution
to the semidefinite relaxation of Ψ. Note that if we could find an optimal rounding
function R for Ψ, the theorem would follow immediately from Lemma 3.7 (and we
wouldn’t need the ε). However, since we cannot in general hope to find an optimal R,
we’ll discretize the set of possible angles and find the best rounding for the modified
problem (for which there will be only a constant number of possible solutions).

We will use the simple facts that we always have Val(Ψ) ≥ P̂0 ≥ max(|P̂1|, |P̂2|, |P̂3|)
(to see that the second inequality holds, note that otherwise there would be x1, x2
such that P (x1, x2) < 0).

Construct a new SDP solution {ui}ni=0 by letting u0 = v0 and, for each 1 ≤ i ≤ n,
letting ui be the vector vi rotated toward or away from v0 so that u0 · ui is an
integer multiple of ε′ (where ε′ will be chosen small enough). In particular, we have
|u0 · ui− v0 · vi| ≤ ε′/2. For the quadratic terms, Feige and Goemans [15] proved that
for i, j ≥ 1, we have

(40) ui · uj = ζiζj + ρ̃ij ·
√

1− ζ2i

√
1− ζ2j ,

where we define ζi := u0 · ui and ρ̃ij := vi·vj−ξiξj√
1−ξ2i

√
1−ξ2j

(in [15], this is the equation for

wi ·wj towards the end of section 4). In other words, the rotation does not affect the
value of ρ̃ij . Thus, we have

(41) vi · vj − ui · uj = ξiξj − ζiζj + ρ̃ij

(√
1− ξ2i

√
1− ξ2j −

√
1− ζ2i

√
1− ζ2j

)
.

Let us then estimate this difference. First, we have

(42) |ξiξj − ζiζj | = |(ξi − ζi)ξj + ζi(ξj − ζj)| ≤ |(ξi − ζi)ξj |+ |ζi(ξj − ζj)| ≤ ε′.

For the
√
· terms, note that for every δ ∈ [0, 1], the difference

√
1− x+ δ −

√
1− x

(for x ∈ [δ, 1]) is maximized by x = 1 and hence bounded by
√
δ. Thus,

(43)

∣∣∣∣√1− ξ2i −
√
1− ζ2i

∣∣∣∣ ≤ √
ξ2i − ζ2i ≤

√
ε′,

and hence by the same argument as in (42), we have

(44)

∣∣∣∣ρ̃ij (√
1− ξ2i

√
1− ξ2j −

√
1− ζ2i

√
1− ζ2j

)∣∣∣∣ ≤ 2|ρ̃ij |
√
ε′ ≤ 2

√
ε′.

Thus, we get that

(45) |vi · vj − ui · uj | ≤ ε′ + 2
√
ε′.
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However, the vectors {ui}ni=0 could possibly violate some of the triangle inequalities.
To remedy this, we adjust it slightly, by again defining a new SDP solution {v′i}ni=0

as follows (ε′′ will be chosen momentarily):

(46) v′i =
√
1− ε′′ui +

√
ε′′wi

for i ∈ {0, . . . , n}. Here, each wi is a unit vector which is orthogonal to every other wj
and to all the v′i vectors (such a set of wi vectors is trivial to construct by embedding
all vectors in R2(n+1)). These new vectors satisfy v′i · v′j = (1− ε′′)ui · uj for all i �= j.
And since the original SDP solution {vi}ni=0 satisfies the triangle inequalities, we have
that

ui · uj + uj · uk + uk · ui ≥ −1− 3ε′ − 6
√
ε′,(47)

v′i · v′j + v′j · v′k + v′k · v′i ≥ −(1 + 3ε′ + 6
√
ε′)(1− ε′′).(48)

Letting ε′′ = 3ε′+6
√
ε′, the right-hand side is at least −1, and this triangle inequality

is satisfied. The other three sign combinations are handled identically. In other words,
{v′i}ni=0 is a feasible SDP solution. Its value can be lower-bounded by

SDP-Val({vi})− SDP-Val({v′i}) ≤ |P̂1|(ε′/2 + ε′′) + |P̂2|(ε′/2 + ε′′)

+ |P̂3|(ε′ + 2
√
ε′ + ε′′)

≤ |P̂0|(11ε′ + 20
√
ε′′).(49)

Choosing ε′ small enough (e.g., ε′ = (ε/62)2), this is bounded by ε
2 Val(Ψ).

Now, consider an optimal rounding function R for {v′i}, and construct a new
rounding function R′ by letting R′(ξ) be the nearest integer multiple of ε/8 to R(ξ) (so
that |R(ξ)−R′(ξ)| ≤ ε/16 for all ξ). We then have for any configuration θ′ = (ξ′1, ξ

′
2, ρ

′)

Pround(θ
′, R)− Pround(θ

′, R′) ≤ |P̂1|ε/16 + |P̂2|ε/16 + |P̂3|(4ε/16 + ε/16 + ε/16)

≤ (ε/2)Val(Ψ).(50)

To see this, we refer to Proposition 2.17, which implies that

(51) |Γρ̃(R(ξ′1), R(ξ′2))− Γρ̃(R
′(ξ′1), R

′(ξ′2))| ≤ ε/16.

Note that we need only to define R′ for values of ξ which are integer multiples
of ε′. Since, for each of the ≈ 2/ε′ such values of ξ, there are only ≈ 16/ε possible
values for R′(ξ), the number of possible R′ is constant, (1/ε)Θ(1/ε′). Thus, we can
find a rounding which is at least as good as R′ in polynomial time by simply trying
all possible choices of R′, evaluating each one, and picking the best function found.
Using Lemma 3.7, this means that we can find a solution to Ψ with expected value
at least

E
θ′∈Θ′

[Pround(θ
′, R′)] ≥ E

θ′∈Θ′
[Pround(θ

′, R)]− ε

2
Val(Ψ)

= αP (Θ
′) SDP-Val({v′i})−

ε

2
Val(Ψ)

≥ αP (Θ
′) SDP-Val({vi})− εVal(Ψ)

≥ (αP (k)− ε)Val(Ψ),(52)

where Θ′ denotes the set of configurations arising from the SDP solution
{v′i}ni=0.

We remark that the dependency of ε in the running time of the algorithm is not
particularly good; it scales as (1/ε)Ω(1/ε2).
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5. The PCP reduction. Theorem 1.2 immediately follows from the following
Theorem 5.1 below. Taking k large enough so that βP (k) ≤ β(P ) + ε and invoking
Theorem 5.1 gives hardness of approximating Max CSP(P ) within β(P ) + 2ε.

Theorem 5.1. Assuming the UGC, it is NP-hard to approximate Max CSP(P )
within βP (k) + ε for any ε > 0 and k ∈ N.

We prove Theorem 5.1 by constructing a PCP verifier which checks a supposed
long coding of a good assignment to a Unique Label Cover instance and decides
whether to accept or reject based on the evaluation of the predicate P on certain bits
of the long codes. The verifier is parametrized by a family of k positive configurations
Θ = {θ1, . . . , θk} and a probability distribution on Θ. Again, we point out that the
requirement that the configurations of Θ are positive is by necessity rather than by
choice, and if we could get rid of it, the hardness of approximation yielded would
exactly match the approximation ratio from Theorem 1.1. The set Θ corresponds to
a set of vector configurations for the semidefinite relaxation of Max CSP(P ). When
proving soundness, i.e., in the case where there is no good assignment to the Unique

Label Cover instance, we prove that the best strategy for the prover corresponds
to choosing a good rounding function R for the family of configurations Θ. Choosing
a set of configurations which are hard to round, we obtain the desired result.

Since we can negate variables freely, we will assume that the purported long codes
are folded over true (by selecting for each pair (x,−x) of inputs one representative,
say, x, and then looking up the value at −x by reading the value at x and negating the
answer). Intuitively, this ensures that the prover’s rounding function is odd, i.e., that
R(ξ) = −R(−ξ). For a permutation σ on [L] and a bitstring x ∈ {−1, 1}L, we denote
by σx ∈ {−1, 1}L the string x permuted according to σ, i.e., σx = xσ(1)xσ(2) . . . xσ(L).
The verifier is given in Algorithm 1. Note that, because θ is a configuration, (24)
guarantees that we can choose x1 and x2 with the desired distribution in step 4.

Algorithm 1: The verifier VΘ.

VΘ(X , Σ = {fv}v∈V )
1. Pick a random configuration θ = (ξ1, ξ2, ρ) ∈ Θ according to the distri-

bution on Θ.
2. Pick a random v ∈ V .
3. Pick e1 = {v, w1} and e2 = {v, w2} randomly from E(v).
4. Pick x1, x2 ∈ {−1, 1}L such that each bit of xi is picked independently

with expected value ξi and that the jth bits of x1 and x2 are ρ-correlated
for j = 1, . . . , L.

5. For i = 1, 2, let bi = fwi(σ
v
eixi) (folded over true).

6. Accept with probability P (b1, b2).

We now analyze the completeness and soundness of the verifier. Both of these
analyses are, by now, fairly standard. For example, they are generalizations of the
analysis for Max 2-Sat in [5], which in turn is a generalization of the analysis for
Max Cut in [30], and similar analyses can be found in most of the recent unique
games-hardness results.

Arithmetizing the acceptance predicate, we find that the acceptance probability
of VΘ can be written as

(53)

E
θ∈Θ

[
E

v,e1,e2,x1,x2

[
P̂0 + P̂1fw1(σ

v
e1x1) + P̂2fw2(σ

v
e2x2) + P̂3fw1(σ

v
e1x1)fw2(σ

v
e1x2) | θ

]]
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2450 PER AUSTRIN

5.1. Completeness.
Lemma 5.2 (completeness).
If Val(X) ≥ 1− η, then there is a proof Σ such that

(54) Pr[VΘ(X,Σ) accepts] ≥ (1− 2η) E
θ∈Θ

[Prelax(θ)].

Proof. Fix a labeling � of the vertices of X such that the fraction of satisfied edges
is at least 1 − η, and let fv : {−1, 1}L → {−1, 1} be the long code of the label of the
vertex v. Note that for a satisfied edge {v, w} and an arbitrary string x ∈ {−1, 1}L,
fw(σ

v
ex) equals the value of the �(v)th bit of x.
Fix a choice of θ = (ξ1, ξ2, ρ). By the union bound, the probability that either

of the two edges e1, e2 chosen by VΘ are not satisfied is at most 2η. For a choice
of edges that are satisfied, the expected value of fwi(σ

v
eixi) is the expected value of

the �(v)th bit of xi, i.e., ξi, and the expected value of fw1(σ
v
e1x1)fw2(σ

v
e2x2) is the

expected value of the �(v)th bit of x1x2, i.e., ρ.
Thus, the probability that VΘ accepts Σ is at least

(55) E
θ∈Θ

[
(1− 2η)(P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ)

]
= (1 − 2η) E

θ∈Θ
[Prelax(θ)],

and the proof is complete.

5.2. Soundness.
Lemma 5.3 (soundness). For every ε > 0 there is a γ > 0 such that if Val(X) ≤ γ,

then for any proof Σ, we have

(56) Pr[VΘ(X,Σ) accepts] ≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε.

Proof. For ξ ∈ [−1, 1] and v ∈ V , define gξv : B
n
(1−ξ)/2 → {−1, 1} by

(57) gξv(x) = E
e={v,w}∈E(v)

[fw(σ
v
ex)] ,

and define the function Rv(ξ) := E
[
gξv(x)

]
. Note that since we fold the purported

long codes over true, we have that both gξv and Rv are odd functions, and in particular
that Rv ∈ R. We remark that for a fixed v and different values of ξ, the functions gξv
are the same function, but since the probability distributions of their inputs have an
almost disjoint support (in the probabilistic sense), we might as well treat them as
independent of each other.

We can now write VΘ’s acceptance probability as

Pr[VΘ accepts] = E
θ

[
E

v,x1,x2

[
P̂0 + P̂1g

ξ1
v (x1) + P̂2g

ξ2
v (x2) + P̂3g

ξ1
v (x1)g

ξ2
v (x2) | θ

]]
= E
θ,v

[
P̂0 + P̂1Rv(ξ1) + P̂2Rv(ξ2) + P̂3 Sρ̃(θ)(g

ξ1
v , g

ξ2
v )

]
.(58)

Assume that

Pr[VΘ accepts] ≥ E
θ,v

[Pround(θ,Rv)] + ε

= E
θ,v

[
P̂0 + P̂1Rv(ξ1) + P̂2Rv(ξ2) + P̂3(4Γρ̃(Rv(ξ1), Rv(ξ2))(59)

+ Rv(ξ1) +Rv(ξ2)− 1)
]
+ ε.
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Combining this with (58), this implies that there exists a θ = (ξ1, ξ2, ρ) ∈ Θ such that

(60) E
v

[
P̂3 ·

(
Sρ̃(θ)(g

ξ1
v , g

ξ2
v )− 4Γρ̃(θ)(Rv(ξ1), Rv(ξ2))−Rv(ξ1)−Rv(ξ2) + 1

)]
≥ ε.

Using the fact that the absolute value of the expression inside the expectation is
bounded by 2|P̂3|, this implies that for at least a fraction ε′ := ε

3|P̂3| of all v ∈ V , we

have

(61) P̂3 · Sρ̃(θ)(gξ1v , gξ2v ) ≥ P̂3

(
4Γρ̃(θ)(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1

)
+ ε′.

Let Vgood be the set of all such v. Using that θ is a positive configuration (i.e.,

P̂3ρ̃(θ) ≥ 0), we then get that for v ∈ Vgood,

(62) Sρ̃(θ)(g
ξ1
v , g

ξ2
v ) ≥ 4Γ|ρ̃(θ)|(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1 + ε′/|P̂3|

if P̂3 > 0, or

(63) Sρ̃(θ)(g
ξ1
v , g

ξ2
v ) ≤ 4Γ−|ρ̃(θ)|(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1− ε′/|P̂3|

if P̂3 < 0 (note that by (61), we can not have P̂3 =). In either case, majority is stablest
(Corollary 2.19) implies that there are constants τ and k (depending only on ε, θ, and

P ) such that for any v ∈ Vgood we have Inf≤ki (gξ1v ) ≥ τ (and also that Inf≤ki (gξ2v ) ≥ τ ,
though we will not use that). Fixing θ and dropping the bias parameter ξ1 for the
remainder of the proof, we have that for any v ∈ Vgood,

(64) τ ≤ Inf≤ki (gv) ≤ E
e={v,w}

[
Inf≤kσv

e (i)
(fw)

]
,

where the second inequality holds, since Inf≤ki is convex. Since Inf≤kσv
e (i)

(fw) ≤ 1 for

all e, this implies that for at least a fraction τ/2 of all edges e = {v, w} ∈ E(v), we

have Inf≤kσv
e (i)

(fw) ≥ τ/2. For v ∈ V , let

(65) C(v) =
{
i ∈ L | Inf≤ki (fv) ≥ τ/2 ∨ Inf≤ki (gv) ≥ τ

}
.

Intuitively, the criterion Inf≤ki (fv) ≥ τ/2 means that the purported long codes of the

label of v suggest i as a suitable label for v, and the criterion Inf≤ki (gv) ≥ τ means that
many of the purported long codes for the neighbors of v suggest that v should have the
label i. By the fact that

∑
i Inf

≤k
i (fv) ≤ k, we must have |C(v)| ≤ 2k/τ+k/τ = 3k/τ .

We now define a labeling by picking independently for each v ∈ V a (uniformly)
random label i ∈ C(v) (or an arbitrary label in case C(v) is empty). For a label

v ∈ Vgood with Inf≤ki (gv) ≥ τ , the probability that v is assigned label i is 1/|C(v)| ≥
τ/3k. Furthermore, by the above reasoning and the definition of C, at least a fraction
τ/2 of the edges e = {v, w} from v will satisfy σve (i) ∈ C(w). For such an edge, the
probability that w is assigned the label σve (i) is 1/|C(w)| ≥ τ/3k. Thus, the expected
fraction of satisfied edges adjacent to any v ∈ Vgood is at least τ/2 ·(τ/3k)2, and so the

expected fraction of satisfied edges in total4 is at least ε′ · τ3

18k2 , and thus there is an

4We remind the reader of the convention of section 2.2 that the choices of random vertices and
edges are according to the probability distributions induced by the weights of the edges, and so
choosing a random v ∈ V and then a random e ∈ E(v) is equivalent to just choosing a random
e ∈ E.
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assignment satisfying at least this total weight of edges. Note that this is a positive

constant that depends only on ε, θ, and P . Making sure that γ < ε′τ3

18k2 , we get a
contradiction to the assumption of the acceptance probability (59), implying that the
soundness is at most

Pr[VΘ accepts Σ] ≤ E
θ,v

[Pround(θ,Rv)] + ε(66)

≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε,(67)

and we are done.

5.3. Wrapping it up. Combining the two lemmas and picking η small enough,
we get that it is unique games-hard to approximate Max CSP(P ) within

(68) max
R∈R

Eθ∈Θ[Pround(θ,R)]

Eθ∈Θ[Prelax(θ)]
+O(ε) = αP (Θ) +O(ε) .

Picking a Θ with |Θ| = k that minimizes αP (Θ), we obtain Theorem 5.1.

6. Application to MAX 2-AND. Using the machinery developed in sections 3
and 5, we are able to obtain an upper bound of β(P ) ≤ 0.87435 for the case when
P (x1, x2) = x1 ∧ x2, i.e., the Max 2-And problem, establishing Theorem 1.4. We
do this by exhibiting a set Θ of k = 4 (positive) configurations on 2 distinct nonzero
ξ-values (and a probability distribution on the elements of Θ) such that αP (Θ) <
0.87435.

Before doing this, let us start with an even simpler set of configurations, sufficient
to give an inapproximability of 0.87451, only marginally worse than 0.87435. This set
of configurations Θ = {θ1, θ2} contains only one nonzero ξ-value and is given by

θ1 = (0,−ξ, 1− ξ) with probability 0.64612,
θ2 = (0, ξ, 1− ξ) with probability 0.35388,

where ξ = 0.33633.
To compute the hardness factor given by this set of configurations, we must

compute

(69) αP (Θ) = max
R∈R

Eθ∈Θ[Pround(θ,R)]

Eθ∈Θ[Prelax(θ)]
.

Since P (x1, x2) = 1−x1−x2+x1x2

4 , we have that for an arbitrary configuration θ =
(ξ1, ξ2, ρ),

Prelax(θ) =
1− ξ1 − ξ2 + ρ

4
,

Pround(θ,R) =
1−R(ξ1)−R(ξ2) + 4Γρ̃(θ)(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1

4
= Γρ̃(θ)(R(ξ1), R(ξ2)).

In our case, using the two configurations given above, R is completely specified
by its value on the angle ξ (since R(0) = 0 and R(−ξ) = −R(ξ)). Figure 6.1 gives a
plot of the right-hand side of (69) as a function of the value of R(ξ). The maximum
turns out to occur at R(ξ) ≈ 0.29412 and gives a ratio of approximately 0.87450517.
Thus, we see that αP (Θ) ≤ 0.87451. We remark that it is not very difficult to make
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Fig. 6.1. Approximation ratio as a function of R.

this computation rigorous—it can be proven analytically that the curve of Figure 6.1
is indeed convex, and so the only maximum can be computed to within high precision
(using easy bounds on the derivative) using a simple golden section search.

Let us now turn to the larger set of configurations, based on four configurations
mentioned earlier. This set of configurations Θ = {θ1, θ2, θ3, θ4} is as follows:

θ1 = (0,−ξA, 1− ξA) with probability 0.52850,
θ2 = (0, ξA, 1− ξA) with probability 0.05928,
θ3 = (ξA,−ξB, 1− ξA − ξB) with probability 0.29085,
θ4 = (−ξA, ξB, 1− ξA − ξB) with probability 0.12137,

where ξA = 0.31988 and ξB = 0.04876.
As before, to compute the approximation ratio given by Θ, we need to find the

best R for Θ, and, again, such an R is completely specified by its values on the nonzero
ξ-values. In other words, we now need to specify the values of R on the two angles
ξA and ξB . Figure 6.2(a) gives a contour plot of approximation ratio as a function
of the values of R(ξA) and R(ξB). There are now two local maxima: one around
the point (R(ξA), R(ξB)) ≈ (0.27846, 0.044376), and one around the point (1,−1).
Figure 6.2(b) gives a contour plot of the area around the first point. This maximum
turns out to be approximately 0.87434075. At the point (1,−1) (which is indeed the
other maximum), the approximation ratio is approximately 0.87434007. Thus, we
have αP (Θ) ≤ 0.87435.

In general, given a family Θ, the very problem of computing αP (Θ) is a difficult
numeric optimization problem. However, for the Θ we use, the number of distinct
ξ-values used is small so that computing αP (Θ) in this case is a numeric optimization
problem in two variables, which we are able to handle.

It seems likely that additional improvements can be made by using more and
more ξ-values, though these improvements will be quite small. Indeed, using larger
Θ we are able to improve upon Theorem 1.4, but the improvements we have been
able to make are minute (of order 10−5), and it becomes a lot more difficult to verify



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2454 PER AUSTRIN

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.5

0.5

0.75

0.75

0.75

0.75

0.75

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.85

0.85

0.87
0.87

0.87

0.87

0.87

0.874
(a) The entire range of R

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.05

0

0.05

0.1

0.15

0.87

0.87

0.873

0.873

0.873

0.873

0.873

0.874

0.874

0.874

0.874

0.874

0.874

0.8743

0.8743
0.8743

0.87434

(b) Restricted to the critical area

Fig. 6.2. Approximation ratio as a function of R.

them. Note that θ1 and θ2 used in the larger set of configurations are very similar to
the first set of configurations—they are of the same form, and the ξ-value used is only
slightly different. It appears that it is useful to follow this pattern when adding even
more configurations: the values of ξA and ξB are adjusted slightly, and we add two
configurations of the form (±ξB ,∓ξC , 1−ξB−ξC). Essentially this type of sequence of
configurations has appeared before, see, e.g., the analysis of lower bounds for certain
Max Di-Cut algorithms in [49].

6.1. About the numerical computations. To search for our families of con-
figurations, we used the fmincon routine in Matlab’s optimization toolbox, which
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searches for a local minimum. To reduce the number of variables, this search was
restricted to the specific form of configurations we used. For example, in our family
of four configurations, there are five parameters: ξA, ξB , and three parameters for the
probability distribution over θ1, . . . , θ4.

When evaluating families of configurations in the search, we also used fmincon

to compute αP (Θ) = maxR∈R αP (Θ, R), i.e., to find the best rounding for a family
of configurations. Since fmincon finds only a local optimum and the minimization
over Θ requires reasonably reliable evaluations of αP (Θ), some extra care was taken
here by running the local search several times, with random starting guesses as well
as with the best rounding found for the previous family of configurations.

Finally, once a candidate family of configurations Θ was found, a more careful
computation of αP (Θ) was performed by computing αP (Θ, R) for a fine grid of round-
ing functions (giving Figures 6.1 and 6.2) and then searching for local maxima with
appropriate starting guesses.

Computing αP (Θ, R) for a family of configurations Θ and a rounding R requires
the evaluation of the bivariate normal distribution function. For this, we use a Matlab
implementation by Genz [19], based on the algorithm of [14] and improvements de-
scribed in [20] for |ρ| close to 1. This approximation has an error close to the precision
provided by a standard double precision floating point number (i.e., roughly 15 digits
of precision).

7. Comparison with previous results. In this section, we show that the
approximation ratio α(P ) achieved by the algorithm in section 4 is at least the ap-
proximation ratio of the best existing algorithms for Max Cut, Max 2-And, and
Max 2-Sat and that the inapproximability ratio β(P ) obtained in section 5 is at
most the previous best inapproximability ratios.

7.1. Previous algorithms. The best existing algorithms for Max 2-Sat and
Max 2-And are the LLZ algorithms [35]. These algorithms work by using some fixed
rounding R, which works well for every configuration, and hence also for every family
of configurations. It is easy to see that the ratios of these algorithms can be at most
α(P ), since the ratio α(P ) is obtained by taking, for every instance, the best rounding
for that instance, which in particular is better than the fixed rounding used by LLZ.

Somewhat ironically, the case of Max Cut is less obvious and requires a bit
more care. Rather than Max Cut, we will do the slightly more general case of Max

2-Xor (of course, an algorithm for Max 2-Xor is also an algorithm for Max Cut).
Recall that the Goemans–Williamson rounding works by picking a standard normal
random vector r and then setting xi true if r · vi ≤ 0. In our framework, using the
representation vi = ξiv0 +

√
1− ξ2i ṽi, this rounding can equivalently be formulated

as follows: pick a standard normal variable r0 ∈ R and a standard normal vector r,
and then set xi true if

r · ṽi ≤
−ξir0√
1− ξ2i

(if |ξi| = 1, the right-hand side of the above expression is defined to be +∞ or −∞
according to the sign of −ξir0). Hence the Goemans–Williamson rounding algorithm
can be interepreted as an algorithm in which we pick a random threshold function T
according to a certain distribution over threshold functions and then apply threshold
rounding using T . Clearly, the ratio obtained by such an approach is no better than
the ratio obtained by picking the best threshold function, and hence the approximation
ratio αGW of the Goemans–Williamson algorithm is bounded by α(⊕).
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7.2. Previous hardness. The best existing hardness result for Max 2-Sat is
[5], where it was proved that Max 2-Sat is hard to approximate within αLLZ + ε ≈
0.94016. In this paper, a family Θ consisting of the two configurations

θ1 = (ξ, ξ,−1− 2ξ), θ2 = (−ξ,−ξ,−1− 2ξ)(70)

were used, for some ξ < 0, with probabilities (1 + Δ)/2 and (1 −Δ)/2, respectively.
A computation of α∨(Θ, R) for this family shows that

(71) α∨(Θ, R) =
2− (1 + Δ)R(ξ)− 2Γρ̃(R(ξ), R(ξ))

2−Δξ − |ξ| ,

where ρ̃ = ρ̃(θ1) = ρ̃(θ2) = |ξ|−1
|ξ|+1 . We leave the details of this computation (which

consist of elementary manipulations and one application of Proposition 2.16) to the
interested reader. Since θ1 and θ2 are both positive configurations, we recover the
result of [5], giving inapproximability of Max 2-Sat within a factor

(72) max
R(ξ)∈[−1,1]

2− (1 + Δ)R(ξ) − 2Γρ̃(R(ξ), R(ξ))

2−Δξ − |ξ| .

In [5] it is shown that, with an appropriate choice of ξ and Δ, this quantity is at most
αLLZ .

Let us then move toMax Cut. As in the previous section, let us first consider the
Max 2-Xor problem. To prove hardness for Max 2-Xor, it suffices to consider the
single configuration θ = (0, 0, ρ) for some ρ ∈ [−1, 1]. A computation of α⊕({θ}, R)
then gives

(73) α⊕({θ}, R) =
2− 2R(0)− 4Γρ(R(0), R(0))

1− ρ
=

2− 4Γρ(0, 0)

1− ρ
,

where the second equality uses that R(0) = 0 for any rounding R. Recall that Γρ(0, 0)
is the probability that two jointly Gaussian random variablesX and Y with covariance
ρ are both smaller than 0, which equals (see, e.g., [39, Theorem B.1])

(74) Γρ(0, 0) =
1

2
− 1

2π
arccosρ.

Hence

(75) α⊕({θ}, R) =
2 arccosρ

π(1 − ρ)
.

The minimum value of this expression over ρ ∈ [−1, 1] is, by definition, exactly αGW .
Now, Max Cut, as opposed to Max 2-Xor, is a Max CSP

+ problem rather
than a Max CSP problem, so it does not quite make sense to talk about hardness
for Max Cut being a special case of Theorem 1.2. However, while we have only
mentioned Max CSP

+ problems in passing, analogues of Theorems 1.1 and 1.2 are
true for Max CSP

+ problems (see section 8). A crucial difference is, however, that
one can no longer assume that R(0) = 0, which we used for the Max 2-Xor hardness.
This means that in this case, the hardness we get is

(76) max
R(0)∈[−1,1]

2− 2R(0)− 4Γρ(R(0), R(0))

1− ρ
+ ε.

Fortunately, it is easy to prove that the expression x+2Γρ(x, x) is minimized by x = 0
(see [5, full version, Proposition D.1] for the derivative of Γρ). Hence, (76) is at most
2 arccos ρ
π(1−ρ) + ε, and by chosing an appropriate ρ we again get a hardness of αGW + ε.
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8. Concluding remarks. We remark that it is a fairly straightforward task to
adapt these results to the Max CSP

+(P ) problem, obtaining statements analogous
to Theorems 1.1 and 1.2. The only difference is that we drop the requirement that
a rounding function has to be odd (since we cannot fold the long codes over true
anymore, we would not be able to enforce such a constraint). However, in doing so,
we also lose the possibility to force a rounding function R to satisfy R(0) = 0. The
configurations that we use for proving hardness of Max 2-And rely heavily on this
property, and it is for this reason that those results do not apply to the Max Di-Cut

problem directly. In other words, we are not able to obtain a statement similar to
Theorem 1.4 for the Max Di-Cut problem. Whether this is because the Max Di-

Cut problem is easier to approximate than Max 2-And or whether we just have to
spend some more time searching for a “bad” set of configurations, we do not know,
but we conjecture that the latter is true and that they are equally hard. However,
today we do not even know whether balanced instances of the Max Di-Cut problem
are the hardest or not.

If P is monotone, the Max CSP
+(P ) problem is trivially solvable, so there

are cases where Max CSP
+(P ) is easier than Max CSP(P ). Lacking results on

Max Di-Cut, it would be interesting to determine whether there are other examples
than these trivial ones. A good candidate would probably be an “almost monotone”
P (recall that P is real-valued.).

Appendix. Proofs of bounds for correlation under noise.
In this section, we prove Theorem 2.18. The proof is essentially the same as the

proof of Dinur, Mossel, and Regev [13] for a similar theorem. They consider a more
general class of noise operators than the ones we need and functions over the m-ary
hypercube rather than just the Boolean hypercube. On the other hand, they consider
only the uniform distribution on the hypercube.

Theorem A.1 (Theorem 2.18 restated). For any ε > 0, q1 ∈ (0, 1), q2 ∈ (0, 1),
and ρ ∈ (−1, 1), there is a τ > 0, k ∈ N such that for any two functions f : Bnq1 → [0, 1]

and g : Bnq2 → [0, 1] satisfying E[f ] =
1−μf

2 , E[g] =
1−μg

2 , and

min
(
Inf≤ki (f), Inf≤ki (g)

)
≤ τ

for all i ∈ [n], the following hold:

Sρ(f, g) ≤
〈
χμf

, U|ρ|χμg

〉
+ ε,(77)

Sρ(f, g) ≥
〈
χμf

, U|ρ|(1− χ−μg )
〉
− ε.(78)

Proof. First, note that it suffices to prove (77), since if it is true, we have

Sρ(f, g) = Sρ(f,1)− Sρ(f,1− g)

≥
〈
χμf

, U|ρ|1
〉
−

〈
χμf

, U|ρ|χ−μg

〉
− ε

=
〈
χμf

, U|ρ|(1− χ−μg )
〉
− ε,(79)

where we note that Sρ(f,1) =
〈
χμf

, U|ρ|1
〉
=

1−μf

2 .
The proof will be based on the following lemma.
Lemma A.2. Let q1 ∈ (0, 1), q2 ∈ (0, 1), and ρ ∈ (−1, 1). Then for any ε > 0,

η < 1, there exists τ > 0 and k > 0 such that for any functions f : Bnq1 → [0, 1], g :

Bnq2 → [0, 1] satisfying E[f ] =
1−μf

2 , E[g] =
1−μg

2 ,

(80) max
(
Inf≤ki (f), Inf≤ki (g)

)
≤ τ for all i,
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and

(81)
∑
|S|≥d

f̂2
S ≤ η2d,

∑
|S|≥d

ĝ2S ≤ η2d for all d,

it holds that

(82) Sρ(f, g) ≤
〈
χμf

, U|ρ|χμg

〉
+ ε.

Note that the Fourier coefficients of f and g are with respect to different mea-
sures. Before proving Lemma A.2, we show how to use it to complete the proof of
Theorem 2.18.

Pick η < 1 large enough so that |ρ|j(1− η2j) < ε/4 for all j, and let τ ′, k′ be the
values given by Lemma A.2 with the parameters q1, q2, ρ, ε/4, and η. Set k large
enough so that both |ρ|k ≤ ε/4 and k ≥ k′. Let

(83) Sf =
{
i | Inf≤ki (f) ≥ τ ′

}
, Sg =

{
i | Inf≤ki (g) ≥ τ ′

}
.

Define f ′ : BSq1 → [0, 1] and g′ : BSq2 → [0, 1] by

f ′ =
∑
S⊆[n]
S∩Sf=∅

η|S|f̂SUSq1 ,(84)

g′ =
∑
S⊆[n]
S∩Sg=∅

η|S|ĝSUSq2 .(85)

For i ∈ Sf we have Inf≤k
′

i (f ′) = 0, whereas for i �∈ Sf , we have Inf≤k
′

i (f ′) ≤
Inf≤ki (f) ≤ τ ′ and similarly for g′. Thus, we have that max(Inf≤ki (f ′), Inf≤ki (g′)) ≤ τ ′

for every i. Furthermore,

(86)
∑
|S|≥d

f̂ ′2
S ≤ η2d

∑
S

f̂2
S ≤ η2d

and similarly for g′, so Lemma A.2 gives that

(87) Sρ(f
′, g′) ≤

〈
χμf

, U|ρ|χμg

〉
+ ε/4.

What remains is to bound the difference between Sρ(f, g) and Sρ(f
′, g′). We have

| Sρ(f, g)− Sρ(f
′, g′)| =

∣∣∣∣∣∣∣∣
∑

S∩Sf=∅
S∩Sg=∅

ρ|S|
(
1− η2|S|

)
f̂S ĝS +

∑
S∩(Sf∪Sg) �=∅

ρ|S|f̂S ĝS

∣∣∣∣∣∣∣∣
≤

∑
S∩Sf=∅
S∩Sg=∅

ε

4
|f̂S ĝS|+

∑
S∩(Sf∪Sg) �=∅

|S|≤k

|f̂S ĝS|+
∑

S∩(Sf∪Sg) �=∅
|S|≥k

∣∣∣ρkf̂S ĝS∣∣∣
≤

∑
S⊆[n]

ε

2
|f̂S ĝS |+

∑
S∩(Sf∪Sg) �=∅

|S|≤k

|f̂S ĝS |.(88)
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By Cauchy–Schwarz, the first term is bounded by ε
2 · ‖f‖ · ‖g‖ ≤ ε/2. The second

term is bounded by (again using Cauchy–Schwarz)

(89)
∑

i∈Sf∪Sg

∑
i∈S

|S|≤k

|f̂S ĝS| ≤
∑

i∈Sf∪Sg

√
Inf≤ki (f)

√
Inf≤ki (g).

Now, we have that both |Sf | and |Sg| are bounded by k/τ ′. Furthermore, at least

one of Inf≤ki (f) and Inf≤ki (g) is bounded by τ (the value of which we have not yet
determined), and since both are bounded by 1 we have

(90)
∑

i∈Sf∪Sg

√
Inf≤ki (f)

√
Inf≤ki (g) ≤ 2k/τ ′ ·

√
τ.

Setting τ ≤ 1
8 (
ετ ′
k )2, this is at most ε/4. Thus, we conclude that

(91) Sρ(f, g) ≤ Sρ(f
′, g′) + 3ε/4 ≤

〈
χμf

, U|ρ|χμg

〉
+ ε,

and we are done.

A.1. Proof of Lemma A.2. What remains is the proof of Lemma A.2. Before
proceeding with this, we have to introduce some new notation.

Definition A.3. Let f : Bnq → R be a function with Fourier expansion

(92) f =
∑
S⊆[n]

f̂SU
S
q .

We define the real analogue f̃ : Rn → R to be

(93) f̃(z1, . . . , zn) =
∑
S⊆[n]

f̂SŨ
S(z1, . . . , zn),

where ŨS(z1, . . . , zn) =
∏
i∈S zi.

Note that the set of functions {ŨS}S⊆[n] forms an orthonormal basis (w.r.t. the
scalar product defined in section 2.4). It is a fairly straightforward exercise to verify
that 〈

f̃ , Uρg̃
〉
=

∑
S⊆[n]

ρ|S|f̂S ĝS = Sρ(f, g)(94)

for any ρ ∈ [−1, 1].
Definition A.4. For any function f with range R define

(95) chop(f)(x) =

⎧⎨⎩
f(x) if f(x) ∈ [0, 1],
0 if f(x) < 0,
1 if f(x) > 1.

The proof of Lemma A.2 relies on two powerful theorems. The first is a version
of Mossel, O’Donnell, and Oleszkiewicz’s invariance principle.

Theorem A.5 (Mossel, O’Donnell, and Oleszkiewicz [39], Theorem 3.20 under
hypothesis H3). For any q ∈ (0, 1), τ > 0, and 0 < η < 1, let K = log(1/min(q, 1−
q)), k = log(1/τ)/K. Then for any f : Unq → [0, 1] satisfying

(96) Inf≤ki (f) ≤ τ for all i and
∑
|S|≥d

f̂2
S ≤ η2d for all d,
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the following holds:

(97) ‖f̃ − chop(f̃)‖ ≤ τΩ((1−η)/K).

(In the notation of [39], we have ζ(R) = 0 and ζ(S) = (f̃(z)− chop(f̃)(z))2.)
The second is the following powerful theorem of Borell [7].
Theorem A.6 (Borell [7]). Let ρ ∈ [0, 1] and F,G : Rn → [0, 1] with E[F ] =

1−μf

2 , E[G] =
1−μg

2 . Then

(98) 〈F,UρG〉 ≤
〈
χμf

, Uρχμg

〉
.

Note that Theorem A.6 implies that 〈F,U−ρG〉 ≤
〈
χμf

, Uρχμg

〉
. To see this, take

G′(x) = G(−x) so that 〈F,U−ρG〉 = 〈F,UρG′〉 and E[G] = E[G′]. Thus, we have
〈F,UρG〉 ≤

〈
χμf

, U|ρ|χμg

〉
for any ρ ∈ [−1, 1].

We are now ready to prove the lemma.

Proof of Lemma A.2. Let μ′
f = 1−E[chop(f̃)]

2 , μ′
g = 1−E[chop(g̃)]

2 . Set ε′ = ε/3.

Pick τ small enough so that Theorem A.5 gives that both ‖ chop(f̃) − f̃‖ ≤ ε′ and
‖ chop(g̃)− g̃‖ ≤ ε′, and pick k accordingly. Now, we have

Sρ(f, g) =
〈
f̃ , Uρg̃

〉
=

〈
chop(f̃), Uρ chop(g̃)

〉
+

〈
f̃ − chop(f̃), Uρ chop(g̃)

〉
+

〈
Uρf̃ , g̃ − chop(g̃)

〉
,(99)

where we used that 〈f̃ , Uρg̃〉 = 〈Uρf̃ , g̃〉. By Cauchy–Schwarz, the last two terms are
bounded by

(100) ‖f̃ − chop(f̃)‖ · ‖Uρ chop(g̃)‖ + ‖Uρf̃‖ · ‖g̃ − chop(g̃)‖,

which in turn is bounded by 2ε′, since both ‖Uρ chop(g̃)‖ and ‖Uρf̃‖ are at most 1.
Thus,

Sρ(f, g) ≤
〈
chop(f̃), Uρ chop(g̃)

〉
+ 2ε′.(101)

Applying Borell’s theorem to chop(f̃) and chop(g̃), we have〈
chop(f̃), Uρ chop(g̃)

〉
≤

〈
χμ′

f
, U|ρ|χμ′

g

〉
.(102)

To relate this to 〈χμf
, U|ρ|χμg 〉, note that we have

|μf − μ′
f | = |E[f̃ − chop(f̃)]|/2 =

∣∣∣〈f̃ − chop(f̃),1
〉∣∣∣ /2

≤ ‖f̃ − chop(f̃)‖/2 ≤ ε′/2(103)

and similarly for |μg − μ′
g|. Applying Proposition 2.17, this gives

(104)
〈
χμ′

f
, U|ρ|χμ′

g

〉
≤

〈
χμf

, U|ρ|χμg

〉
+ ε′/2.

In conclusion, we have Sρ(f, g) ≤ 〈χμf
, U|ρ|χμg 〉+ 3ε′, as desired.
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A.2. Proof of Corollary 2.19.
Corollary A.7 (Corollary 2.19 restated). Let ε > 0, q1, q2 ∈ (0, 1), and ρ ∈

(−1, 1). Then there are τ > 0, k ∈ N such that for all functions f : Bnq1 → [−1, 1],

g : Bnq2 → [−1, 1] satisfying E[f ] = μf , E[g] = μg, and min(Inf≤ki (f), Inf≤ki (g)) ≤ τ
for all i, we have

(105) 4Γ−|ρ|(μf , μg)− ε ≤ Sρ(f, g)− μf − μg + 1 ≤ 4Γ|ρ|(μf , μg) + ε.

Proof. Set f̃ = 1−f
2 , μ̃f = E[f̃ ] =

1−μf

2 , and define g̃ and μ̃g analogously. Thus,

Sρ(f, g) = 4 Sρ(f̃ , g̃) + μf + μg − 1. By Theorem 2.18,

(106) Sρ(f̃ , g̃) ≥
〈
χμf

, U|ρ|(1 − χ−μg )
〉
− ε/4

for any f, g, where every variable has sufficiently small low-degree influence in at least
one of the functions. Now, note that

(U|ρ|(1− χ−μg ))(x) = Pr
y

[
|ρ|x+

√
1− ρ2y ≥ Φ−1(1 − μ̃g)

]
= Pr

y

[
−|ρ|x+

√
1− ρ2y ≤ Φ−1(μ̃g)

]
= U−|ρ|χμg (x).

Combining this with (106) and the definition of Γρ, we get

(107) Sρ(f, g) ≥ 4Γ−|ρ|(μ) + μf + μg − 1− ε.

The upper bound follows similarly, using (19).
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[6] A. Blum and D. Karger, An Õ(n3/14)-coloring algorithm for 3-colorable graphs, Inform.
Process. Lett., 61 (1997), pp. 49–53.

[7] C. Borell, Geometric bounds on the Ornstein-Uhlenbeck velocity process, Z. Wahrsch. Verw.
Gebiete, 70 (1985), pp. 1–13.

[8] M. Charikar, K. Makarychev, and Y. Makarychev, Near-optimal algorithms for maximum
constraint satisfaction problems, in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2007, pp. 62–68.

[9] M. Charikar and A. Wirth, Maximizing quadratic programs: Extending Grothendieck’s in-
equality, in Proceedings of the IEEE Symposium on Foundations of Computer Science
(FOCS), 2004, pp. 54–60.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2462 PER AUSTRIN

[10] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar, On the hard-
ness of approximating multicut and sparsest-cut, in Proceedings of the 20th Annual IEEE
Conference on Computational Complexity, 2005, pp. 144–153.

[11] E. Chlamtac and G. Singh, Improved approximation guarantees through higher levels of SDP
hierarchies, in APPROX-RANDOM, Springer, New York, 2008, pp. 49–62.

[12] I. Dinur, E. Friedgut, and O. Regev, Independent sets in graph powers are almost contained
in Juntas, Geom. Funct. Anal., 18 (2008), pp. 77–97.

[13] I. Dinur, E. Mossel, and O. Regev, Conditional hardness for approximate coloring, in Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), 2006, pp. 344–353.

[14] Z. Drezner and G. O. Wesolowsky, On the computation of the bivariate normal integral, J.
Stat. Comput. Simul., 35 (1990), pp. 101–107.

[15] U. Feige and M. Goemans, Aproximating the value of two Prover proof systems, with ap-
plications to MAX 2SAT and MAX DICUT, in Proceedings of the Israel Symposium on
Theory of Computing Systems (ISTCS), 1995, pp. 182–189.

[16] U. Feige and M. Langberg, The RPR2 rounding technique for semidefinite programs, J.
Algorithms, 60 (2006), pp. 1–23.

[17] U. Feige and G. Schechtman, On the optimality of the random hyperplane rounding technique
for MAX CUT, Random Structures Algorithms, 20 (2002), pp. 403–440.

[18] A. M. Frieze and M. Jerrum, Improved approximation algorithms for MAX k-CUT and MAX
BISECTION, Algorithmica, 18 (1997), pp. 67–81.

[19] A. Genz, BVNL: A Matlab Function for the Computation of Bivariate Normal CDF Proba-
bilities, http://www.math.wsu.edu/faculty/genz/software/software.html.

[20] A. Genz, Numerical computation of rectangular bivariate and trivariate normal and t proba-
bilities, Stat. Comput., 14 (2004), pp. 251–260.

[21] K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis, Integrality gaps of 2−o(1) for vertex
cover SDPs in the Lovász-Schrijver hierarchy, in Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), 2007, pp. 702–712.

[22] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115–
1145.

[23] V. Guruswami, R. Manokaran, and P. Raghavendra, Beating the random ordering is hard:
Inapproximability of maximum acyclic subgraph, in Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 2008, pp. 573–582.

[24] E. Halperin, R. Nathaniel, and U. Zwick, Coloring k-colorable graphs using relatively small
palettes, J. Algorithms, 45 (2002), pp. 72–90.
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