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ABSTRACT
As artificial intelligence becomes increasingly intelligent—in some
cases, achieving superhuman performance—there is growing po-
tential for humans to learn from and collaborate with algorithms.
However, theways inwhichAI systems approach problems are often
different from the ways people do, and thus may be uninterpretable
andhard to learn from.Acrucial step inbridging this gapbetweenhu-
man and artificial intelligence is modeling the granular actions that
constitute human behavior, rather than simply matching aggregate
human performance.

We pursue this goal in a model system with a long history in
artificial intelligence: chess. The aggregate performance of a chess
player unfolds as theymake decisions over the course of a game. The
hundreds of millions of games played online by players at every skill
level form a rich source of data in which these decisions, and their
exact context, are recorded inminute detail. Applying existing chess
engines to this data, including an open-source implementation of
AlphaZero, we find that they do not predict humanmoves well.

We develop and introduce Maia, a customized version of Alpha-
Zero trained on human chess games, that predicts human moves
at a much higher accuracy than existing engines, and can achieve
maximum accuracy when predicting decisions made by players at
a specific skill level in a tuneable way. For a dual task of predicting
whether a human will make a large mistake on the next move, we
develop a deep neural network that significantly outperforms com-
petitive baselines. Taken together, our results suggest that there is
substantial promise in designing artificial intelligence systems with
human collaboration in mind by first accurately modeling granular
human decision-making.
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1 INTRODUCTION
Artificial intelligence is becoming increasingly intelligent, equalling
and surpassing peak human performance in an increasing range
of domains [6, 14]. In some areas, once algorithms surpass human
performance, people will likely stop performing tasks themselves
(e.g. solving large systems of equations). But there are many reasons
why other domains will continue to see a combination of human and
AI participation even after AI exceeds human performance—either
because of long transitional periods during which people and algo-
rithms collaborate; or due to regulations requiring human oversight
for important decisions; or because people inherently enjoy them.
In such domains, there are rich opportunities for well-designed algo-
rithms to assist, inform, or teach humans. The central challenge in
realizing these opportunities is that algorithms approach problems
very differently from the ways people do, and thus may be uninter-
pretable, hard to learn from, or even dangerous for humans to follow.

A basic step in these longer-range goals is thus to develop AI
techniques that help reduce the gap between human and algorithmic
approaches to solving problems in a given domain. This is a genre
of problem that is distinct frommaximizing the performance of AI
against an absolute standard; instead, it asks whether we can create
algorithms that more closely approximate human performance—
using fidelity to human output as the target rather than an absolute
standard of ground truth. This type of question has begun to arise in
a number of domains where human specialists with deep expertise
engage in decision-making with high stakes, for applications such
as medicine, law, hiring, or lending [10]. But it remains difficult even
to define the question precisely in general. Approximating human
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performance should not simplymeanmatching overall performance;
a human and an AI system performing the same classification task
with comparable levels of accuracymight nonetheless be making ex-
tremely different decisions on those cases where they disagree. The
crucial question is whether we can create AI systems that approx-
imately emulate human performance on an instance-by-instance ba-
sis, implicitlymodelinghumanbehavior rather than simplymatching
aggregate human performance. Moreover, the granularity matters—
each instance of a complex task tends to involve a sequence of indi-
vidual judgments, and aligninghuman andAI behavior benefits from
performing the alignment at the most fine-grained level available.

Furthermore, as human ability in domains varies widely, we want
systems that can emulate human behavior at different levels of exper-
tise in a tuneable way. However, we currently fail to understand cru-
cial dimensions of this question. In particular, consider a domain in
which the strongest AI systems significantly outperform the best hu-
man experts. Such AI systems tend to have natural one-dimensional
parameterizations along which their performance monotonically
increases—for example, we can vary the amount of training data
in the case of data-driven classification, or the amount of compu-
tation time or search depth in the case of combinatorial search. It
is natural, therefore, to consider attenuating the system along this
one-dimensional path—e.g., systematically reducing the amount of
training data or computation time—to successively match different
levels of aggregate human performance.We sometimes imagine that
this might make the systemmore human-like in its behavior; but in
fact, there is no particular reason why this needs to be the case. In
fact, we have very little understanding of this fundamental attenu-
ation problem: do simple syntactic ways of reducing an AI system’s
performance bring it into closer alignment with human behavior, or
do they move it further away? And if these simple methods do not
achieve the desired alignment, canwe find amore complex but more
principled parametrization of the AI system, such that successive
waypoints along this parametrization match the detailed behavior
of different levels of human expertise?

AModel System with Fine-Grained Human Behavior. In this
work, we undertake a systematic study of these issues in amodel sys-
tem with the necessary algorithmic capabilities and data on human
decision-making to fully explore the underlying questions. What
are the basic ingredients we need from such a model system?

(i) It should consist of a task for which AI has achieved superhu-
manperformance, so that anAI systemat least has the potential
to match the full range of human skill without running into
constraints imposed by its own performance.

(ii) There should be a large number of instances in which the con-
text of each human decision andwhich action the human chose
is recorded in as much fine-grained detail as possible.

(iii) These instances should include decisions made by people from
awide range of expertise, so thatwe can evaluate the alignment
of an AI system to many different levels of human skill.

In this work, we use human chess-playing as our model system.
Let us verify how the domain meets our desiderata. Programming
a computer to play chess at a high level was a long-standing holy
grail of artificial intelligence, and superhuman play was definitively
achieved by 2005 (point (i)). Humans have nonetheless continued

to play chess in ever-increasing numbers, playing over one billion
games online in 2019 alone. The positions players faced, the moves
they made, and the amounts of time they took to play each move
are digitally recorded and available as input to machine learning
systems (point (ii)). Finally, chess is instrumented by a highly accu-
rate rating system that measures the skill of each player, and chess
admits one of the widest ranges of skill between total amateurs and
world champions of any game (point (iii)).

What does it mean to accurately model granular human behavior
in chess? We take a dual approach. First and foremost, we aim to
be able to predict the decisions people make during the course of a
game. This stands in contrast withmainstream research in computer
chess, where the goal is to algorithmically play moves that are most
likely to lead to victory. Thus, given a position, instead of asking
“What move should be played?”, we are asking, “What move will a
human play?”. Furthermore, following our motivation of producing
AI systems that can align their behavior to humans atmany different
levels of skill, we aim to be able to accurately predict moves made by
players from a wide variety of skill levels. This refines our question
to: “What move will a human at this skill level play?”.

Secondly, we aim to be able to predict when chess players will
make a significant mistake. An algorithmic agent with an under-
standing of when humans of various levels are likely to go wrong
would clearly be a valuable guide to human partners.

Chess is also a domain in which the process of attenuating power-
ful algorithmshasbeenextensively studied.As chess enginesbecame
stronger, playing against them became less fun and instructive for
people. In response to this, online chess platforms and enthusiasts
started to developweaker engines so that people could play themand
stand a fighting chance. The most natural method, which continues
to be themain technique today, is limiting the depth of the game tree
that engines are allowed to search, effectively imposing “bounded
rationality” constraints on chess engines. But does this standard
method of attenuation produce better alignment with human behav-
ior? That is, does a chess engine that has been weakened in this way
do a better job of predicting humanmoves?

Anecdotally, there is a sense among chess players that although
weaker chess engines are (clearly) easier to defeat, they do not neces-
sarily seemmore human-like in their play. But there appears to be no
quantitative empirical evidence one way or the other for even this
most basic question. Thus, to establish a baseline, we begin in the
subsequent sections by testing whether depth-limited versions of
Stockfish, the reigning computerworld chess champion, successfully
predicts what humans of various strengths will play. Specifically, we
train 15 versions of Stockfish, each limited to searching the game tree
up to a specific depth, and we test its accuracy in predicting which
moves will be made by humans of various ratings. We find that each
version of Stockfish has a prediction accuracy that rises monoton-
ically with the skill level of the players it is predicting, implying that
it is not specifically targeting and matching moves made by play-
ers of lower skill levels. Moreover, while there are some interesting
non-monotonicities that we expose, we find that stronger versions
of Stockfish are better than other versions at predicting the moves
of human players of almost all skill levels. This is a key point: if your
goal is to use Stockfish to predict themoves of even a relativelyweak
human player, you will achieve the best performance by choosing
the strongest version of Stockfish you can, despite the fact that this
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version of Stockfish plays incomparably better chess than the human
it is trying to predict. Depth-limiting classic chess engines thus does
not pass our test of accurately modeling granular human behavior
in chess, in line with the anecdotal experience of chess players.

In 2016, DeepMind revolutionized algorithmic game-playingwith
the introduction of a sequence of deep reinforcement learning frame-
works culminating in AlphaZero, an algorithm that achieved super-
humanperformance inchess, shogi, andgoby learning fromself-play.
This led to much excitement in the chess world, not only for its un-
precedented strength, but also for its qualitatively different style of
play. In particular many commentators pointed out that AlphaZero,
and its open-source implementation counterpart Leela, played in
a more “human” style. Furthermore, these methods have a natural
one-dimensional pathway for attenuation, simply by stopping the
self-play training early. To testwhether this formof attenuation does
better at aligningwith human behavior, we performed the same type
of test with Leela that we didwith Stockfish.We found that although
Leela matches human moves with greater accuracy than depth-
limited Stockfish, its accuracy is relatively constant across the range
of player skill levels, implying that any one version of Leela isn’t
specifically targeting and modeling a given skill level. Thus, using
AlphaZero-style deep reinforcement learning off the shelf does not
pass our test of accuratelymodeling granular human behavior either.

AligningAlgorithmicandHumanBehavior.Havingestablished
the limitations of existing approaches, we now discuss our results in
aligning algorithmic and human behavior. As we show, we achieve
performance in our model system that is qualitatively different than
the state-of-the-art; and in so doing, we hope to suggest a road map
for how similar efforts in other domains might proceed.

In our approach, we repurpose the AlphaZero deep neural net-
work framework to predict human actions, rather than the most
likely winning move. First, instead of training on self-play games,
we train on human games recorded in datasets of online human play.
This encourages the neural net’s policy network to learn moves that
humans are likely to play. Second, and crucially, to make a move
prediction, we do not conduct any tree search—the policy network is
solely responsible for theprediction.Third,wemake further architec-
tural changes to maximize predictive performance, including incor-
porating the past history of the game. The resultingmodel, whichwe
callMaia, is then testedon its ability topredict humanmoves.Wefind
first of all that Maia achieves much higher move prediction accuracy
than either Stockfish or Leela. ButMaia also displays a type of behav-
ior that is qualitatively different from these traditional chess engines:
it has a natural parametrization under which it can be targeted to
predict humanmoves at a particular skill level. Specifically, we show
how to train nine separate Maia models, one for each bin of games
played by humans of a fixed (discretized) skill level, and we find that
the move prediction performance is strikingly unimodal, with each
Maiamodel peaking inperformancenear the ratingbin itwas trained
on. This is fundamentally different from the parametrized behavior
of either standard chess engines like Stockfish or neural network
engines like Leela: by developing methods attuned to the task of
modeling granular humandecisions,we can achieve high levels of ac-
curacy at this problem, and can target to a specific human skill level.

In our second main focus for the paper, we turn to predicting
whether human players will make a significant mistake on the next

move, often called a blunder. For this, we design a custom deep resid-
ual neural network architecture and train on the same data. We find
that this network significantly outperforms competitive baselines at
predicting whether humans will err.We then design a second task in
which we restrict our attention to the most popular positions in our
data—those that hundreds of people have faced—and aim to predict
whether a significant fraction of the population faced with a given
decision will make a mistake on it. Again, our deep residual network
outperforms competitive baselines.

Takentogether,ourresults suggest that there is substantialpromise
in designing artificial intelligence systems with human collabora-
tion in mind by first accurately modeling granular human decision-
making.

2 RELATEDWORK
Ourwork connects to several relevant literatures. First, the contrasts
between the approaches to problems taken by humans and AI mo-
tivates the study of interpretability, which seeks to define notions
of understandability or explainability for AI systems [5, 11, 18]. Our
approach here is motivated by similar issues, but seeks to design
AI systems whose observable behavior (through the chess moves
they make) is more directly aligned with the observable behavior
of humans in the domain. There are also connections to imitation
learning [16], inwhichAI systems learn by observing human actions;
the emphasis in this line of work tends to be on settings where hu-
mans outperform AI, whereas we are interested in using AI to align
with human behavior in settings where humans have significantly
weaker performance.

In human-computer interaction, human factors research, and
related areas, there has been interest in systems that could build
models of human decision-making, so as to provide more effective
forms of assistance [7], reductions in human error rate [9, 13], and
targeted educational content [2].

Finally, chess has long been used as amodel system for both artifi-
cial intelligence [12] and cognitive psychology [4], and recent work
has used powerful chess engines and chess information resources
to probe human decisions and errors [1, 3]. Our work uses chess to
focus on a crucial but poorly understood issue, the possibilities to
align algorithmic approaches with human ones.

3 DATAANDBACKGROUND
Our work leverages two radically different chess engines: Stockfish
and Leela. Stockfish is a traditional chess engine that uses heuristic
functions to evaluate positions, combinedwith a classical alpha-beta
game tree search. Its evaluation function uses a set of rules developed
byhumanexperts that assignvalues to the pieces and their positional
relationships in centipawn units, or cp (the positional equivalent of
1 pawn equals 100 centipawns). We use Stockfish’s evaluations to
estimate the win probability of humans from certain board positions
in our move matching analysis (Section 4.4), as well as to quantify
the mistakes made by humans in our blunder prediction analysis
(Section 5). In contrast, Leela, an open-source implementation of
AlphaZero, uses a deep neural network to approximate the value
of each position, combined with a Monte Carlo tree search (a type
of reinforcement learning). We repurpose Leela’s neural network
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architecture for our move matching task, but instead of learning
from self-play games, we learn from real human games.

Throughout our work, we use chess games played by humans
on Lichess.org. Lichess is a popular, free, open-source chess plat-
form, on which people have played over 1 billion games at a current
rate of over 1 million games per day. These games are played live at
quick time controls betweenhumanplayers of all skill levels, ranging
from total amateurs to the currentworld champion,Magnus Carlsen.
Lichess has a very active developer and support community, and
is known to have some of the most advanced measures in place to
remove cheaters andother bad actors.As a result, the games database
is virtually entirely composed of genuine human games.

During a regular game on Lichess, both players start with an
agreed-upon amount of time on their clock, typically between 3 and
10 minutes each for the entire game, and this time ticks down when
it is their turn to move. If a player runs out of time, they lose the
game. Games are clustered into different formats corresponding to
how fast they are, including HyperBullet (30 seconds per player),
Bullet (1 minute per player), Blitz (3–8 minutes per player), Rapid
(8–15 minutes per player), and Classical (longer). In this paper, we
ignore games played at the fastest time controls, HyperBullet and
Bullet, since players are often more focused on not losing on time
than playing quality moves.

EveryplayeronLichesshas a separate chess rating for each format
listed above. A rating is a single number that represents a player’s
skill,withhigher values indicatinghigher skill.OnLichess, the rating
system used is Glicko-2, which is a descendant of the ubiquitous Elo
rating system. A player’s rating goes up or down after every game,
depending on if they won or lost, and is updated intuitively: when a
player beats a much higher-rated opponent, their rating increases
more than when they beat a much lower-rated opponent. The mean
rating on Lichess is 1525, with 5% of people below 1000 and 10%
above 2000.

4 MOVE-MATCHING
We now turn to our main task, developing an algorithm that can
accurately predict the moves chosen by human chess players of vari-
ous skill levels. In this way, we can begin to build models of granular
human behavior that are targeted to specific skill levels.

4.1 Task setup
One advantage of operating in a model system, as we are, is that
one can formulate the fundamental tasks in a very clean manner.
Given a chess position that occurred in a game between two human
players, we want to correctly predict the chess move that the player
to move played in the game. Move-matching is thus a classification
task, and anymodel or algorithm that takes a chess position as input
and outputs a move has some performance on this task.

Since one of ourmain goals in thiswork is to develop an algorithm
that can mimic human behavior at a specific skill level, we need to
design an evaluation scheme that can properly test this. To this end,
we create a collection of test sets for evaluation, one for each narrow
rating range. First, we create rating bins for each range of 100 rating
points (e.g. 1200-1299, 1300-1399, and so on). We collect all games
where bothplayers are in the same rating range, and assign each such
game to the appropriate bin. We create 9 test sets, one for each bin

for the 9 rating ranges between 1100 and 1900 (inclusive). For each
test set, we draw 10,000 games from its corresponding bin, ignoring
Bullet and HyperBullet games. Within each game in a test set, we
discard the first 10 ply (a single move made by one player is one
“ply”) to ignoremost memorized openingmoves, andwe discard any
move where the player had less than 30 seconds to complete the
rest of the game (to avoid situations where players are making ran-
dommoves). After these restrictions, each test set contains roughly
500,000 positions each.

We will evaluate all models and engines with these 9 test sets,
generating a prediction curve for each one. This curve will tell us
how accurately a model is predicting human behavior as a function
of skill level. Let us reflect on how successfully modeling granular
human behavior would manifest in this curve.

First, we want high move-matching accuracy — correctly pre-
dicting which moves humans play is our primary goal. But there’s
an important barrier to any model’s performance on this task: a
singlemodel outputting a predictedmove for each position by defini-
tion can’t achieve near-perfect move-matching across all skill levels,
since players at different skill levels play differentmoves (hence their
difference in ability). How then do we want a model’s errors to be
distributed? This leads to a second desideratum after high move-
matching accuracy: we would like to have a parametrized family of
models, ordered by increasing levels of human skill, such that the
model in the family associated with skill 𝑥 would achieve maximum
accuracy on players of skill 𝑥 , with accuracy falling away on both
sides of 𝑥 .

4.2 Evaluating chess engines
As mentioned in the Introduction, developing chess-playing models
that capture human behavior is not a new problem. As chess engines
became stronger and stronger, eventually overtaking the best human
players in the world, playing against them became less fun and less
instructive. In order to create more useful algorithmic sparring part-
ners, online chess platforms and enthusiasts began altering existing
chess engines to weaken their playing strength. The most common
methodwas, and continues to be, limiting the depth of the game tree
that the engines are allowed to search. This attenuation is successful
in weakening engines enough for humans of most skill levels to be
able to compete with them. On Lichess, for example, the popular
“Play with the computer” feature lets one play against 8 different
versions of a chess engine, each of which is limited to a specific
depth. Weakening a chess engine does necessarily mean increasing
its similarity to human behavior, but we should start by posing this
as a question: Since this method gives rise to a parameterized family
of chess engines that smoothly vary in skill level (thus matching
aggregate human performance at various levels), we ask whether
these depth-limited engines already succeed at the move-matching
task we’ve defined. We will see next that they do not.

Stockfish. Stockfish is a free and open-source chess engine that
has won 5 of the last 6 computer chess world championships, and is
the reigning world champion at the time of writing [17]. Due to its
strength and openness, it is one of the most popular engines in the
world—all computer analysis onLichess, and the “Playwith the com-
puter” feature, is done using Stockfish.We tested 15 depth-limited

https://lichess.org
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Figure 1: Move-matching performance of a family of depth
limited Stockfish engines.

versions of Stockfish on the move-matching task, from depths 1–15,
and report results on a subset of them for clarity.

Figure 1 shows the prediction accuracy curves for each engine in
this subset.

First, we find that the Stockfish engines match human moves
between 33–41% of the time, establishing a baseline to compare
other models against. Furthermore, the accuracy is non-linear in
the engine’s depth limit: the Stockfish version limited at depth 1
matches human moves more often than the version limited at 5,
but less often than the version limited at depth 15, which achieves
the highest performance. Most importantly, all of the curves are
monotonically increasing in the strength of the human players being
matched against; for example, depth 15 matches 1900-rated players
5 percentage points more than it matches 1100-rated players. This
implies that although depth-limited Stockfish engines are designed
to play at lower levels, they are not playing moves that are more
typical of weak players than strong players — they do not target
specific skill levels as we want. Furthermore, the strongest versions
we tested, such as depths 11, 13, and 15 shown in Figure 1, have
almost identical performance, despite the fact that they differ quite
significantly in playing strength from each other. This implies that
as Stockfish increases (or decreases) in strength, it does so largely
orthogonally from how humans increase or decrease in strength.
This is a clear demonstration that algorithmically matching aggre-
gate human performance (winning and losing chess games) does
not necessarily imply matching granular human actions (playing
humanmoves). To do so, we need another algorithmic approach.

Leela. In 2016, Silver et al. revolutionized algorithmic game-playing
with the introduction of a sequence of deep reinforcement learning
frameworks culminating in AlphaZero, an algorithm that achieved
superhuman performance in chess, shogi, and Go by learning from
self-play [14, 15]. AlphaZero adopts a completely different approach
to playing chess than classical chess engines such as Stockfish. Most
engines derive their strength from conducting fast, highly optimized
game tree searches incorporating techniques such as alpha-beta
pruning, in combination with handcrafted evaluation functions that
score any given chess position according to human-learned heuris-
tics. Incomparison,AlphaZero learns fromself-playgamesand trains
a deep neural network to evaluate chess positions, and combines this
withMonte Carlo Tree Search to explore the game tree. This method
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Figure 2: Move-matching performance of a family of Leela
engines.

is many orders of magnitude slower than classical game tree search
methods, but the non-linear evaluation function is more flexible and
powerful than the linear functions used by traditional engines. Alp-
haZero’s introduction came with the announcement that it crushed
Stockfish in a 100-gamematch by a score of 28wins to 0with the rest
drawn (although some later contested the experimental conditions of
thismatch). This led tomuch excitement in the chess world, not only
for its unprecedented strength, but also for its qualitatively different
style of play. In particular, many commentators pointed out that
AlphaZero played in a more dynamic, human style [8]. Furthermore,
as the neural network slowly evolves from randommoving to world-
class strength, sampling it at various times in the training process
is a natural way of producing a parameterized family of engines.

Given this context, we next test whether Leela Chess Zero, a free,
distributed, open-source implementation of AlphaZero, succeeds
at our move-matching task. For this analysis, we select 8 different
versions of Leela’s 5th generation that significantly vary in strength.
Leela uses an internal rating system to rank its different versions,
but we note that these ratings are not comparable to Lichess ratings.
We refer to them as “Leela ordinal ratings” to emphasize this.

Figure 2 shows theprediction curves of the family of Leela engines.
The move-matching performance varies much more dramatically
for this set than it does for Stockfish. This is intuitive, as early ver-
sions of Leela are not that far removed from its initial random state,
whereas later versions are incredibly strong. We find that strong
versions achieve higher move-matching accuracy than any version
of Stockfish, scoring a maximum of 46%. However, all versions of
Leela we tested have prediction curves that are essentially constant,
or have a slight positive or slight negative slope. Thus, even Leela
does not match moves played by humans at a particular skill level
significantly better than it matches moves played by any other skill
level. For example, Leela ordinal rating 2700 matches human moves
40% of the time, no matter whether they are played by humans rated
1100, 1500, or 1900, and therefore it doesn’t characterize human play
at any particular level. Neither traditional chess engines nor neural-
network-based engines match humanmoves in a targeted way.

4.3 Maia
To accuratelymodel granular human behavior in a tuneable way, we
created anewdeepneural network chess engine based onAlphaZero.
Since we are trying to explicitly model human behavior, our most
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Figure 3: Move-matching performance of a family of Maia
models.

fundamental change is to replace training on self-play games with
training on human games. By doing so,we are leveraging the billions
of games played online as an incredibly rich resource from which
we can learn and model human actions. Whereas the policy head in
AlphaZero’s architecture tries to predict the best move, we tasked
our neural network to predict the next move a humanmade.

Our second major distinction from AlphaZero is the following:
while tree search is clearly important to strong chess-playing per-
formance, we found that it degrades our performance at predicting
humanmoves. As a result, we donot conduct any tree search tomake
amoveprediction.At test time,wequery theneural networkwith the
current board position, which outputs the move it deemsmost likely.
In effect, we are asking what our representation sees as the most
natural move to a human player, without explicitly calculating the
ramifications of the move by searching the game tree. We return to
this, and further architectural decisionswemade, later in this section.

Training.We constructed our training sets in a similar fashion to
howwe constructed our test sets (see Section 4.1). This resulted in 9
training sets and 9 validation sets, one for each rating range between
1100 and 1900, with 12 million games and 120,000 games each, re-
spectively (see the Appendix for full details). We note that 12 million
games is enough for Leela to go from random moving to a rating
of 3000 (superhuman performance), and therefore far outstrips the
usual training size for a single Leela network.

We then trained separate models, one for each rating bin, to pre-
dict the next move a humanwould make (policy) and the probability
that the active player will win the game (value). See the Supplement
(section 7.1) for full implementation details, and the repository1 for
the complete codebase.

Results. In Figure 4, we show how our models, which we call Maia,
perform on the move-matching test sets. Several important findings
are apparent. First, Maia models achieve high accuracy, far above
the state-of-the-art chess engines discussed earlier. The lowest ac-
curacy, when Maia trained on 1900-rated players predicts moves
made by 1100-rated players, is 46%— as high as the best performance
achievedby anyStockfishor Leelamodel on anyhuman skill levelwe
tested. Maia’s highest accuracy is over 52%. Second, every model’s
prediction curve is strikingly unimodal. Each model maximizes its
predictive accuracy on a test rating range near the rating range itwas

1https://github.com/CSSLab/maia-chess
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Figure 4: Comparison of move-matching performance for
Maia, Stockfish, and Leelamodels.

trained on. This means that eachmodel best captures how players at
a specific skill level play, anddisplays exactly the skill-level-targeting
behavior that we are seeking. Each model’s predictive performance
smoothly degrades as the test rating deviates further from the rating
range it was trained on, which is both necessary to some degree,
as humans of different levels make different moves, as well as de-
sired, since it indicates the model is specific to a particular skill level.
Maia thus succeeds at capturing granular human behavior in a tune-
able way that is qualitatively beyond both traditional engines and
self-play neural network systems.

For ease of comparison, Figure 4 overlays the move-matching
performance for the Stockfish, Leela, and Maia families of engines.
We also include test sets that extend to rating ranges of 1000 and 2500
to show how predictive performance extends to the extreme ends of
the skill distribution. Over the rating ranges that Maia models were
trained on (1100–1900), they strictly dominate Leela and Stockfish:
every Maia model outperforms every Leela and Stockfish model.
As the testing ratings increase after the last Maia training rating
(1900), the Maia models degrade as expected, and the best Leela and
Stockfish models begin to be competitive. This is intuitive, since the
strong engines are aligning better with strong humans, and theMaia
models shown here were not correspondingly trained on humans
of these strength levels. Maia 1900, however, still outperforms the
best Stockfish and Leela models by 5 percentage points.

Further architectural decisions. To achieve this qualitatively dif-
ferent behavior, we made two key architectural decisions.

First, as mentioned above, we do not conduct any tree search to
make amove prediction. AlthoughMonte Carlo tree search is crucial
to AlphaZero’s strength and playing style, it tends to degrade move
prediction performance in our setting. Here, we demonstrate this by
comparing base Maia with a version of Maia that does 10 rollouts of
tree search exploration (see [14] for a detailed explanation). Second,
we give Maia the previous 12 ply (6 moves for each player) that were
played leadingup to the givenposition.Wefind that this significantly
improves our move-matching accuracy.

https://github.com/CSSLab/maia-chess
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Figure 6: Per-move agreement between a selection of Maia,
Leela, and Stockfishmodels.

The effects of these two architectural decisions are shown in Fig-
ure 5. For all versions of Maia (here we show only those trained on
1100 and 1900 for clarity), including recent history and performing
no tree search give large boosts in performance (3 percentage points
and 5–10 percentage points, respectively). Increasing the number
of rollouts does not affect performance.

4.4 Model comparisons
We have established that Maia can model granular human decisions
in a much more accurate and targeted way than existing engines.
Here, we compare the different families of models to better under-
stand this relationship.

Modelagreement.Howsimilar areeachmodel’spredictions?Since
we evaluated every model on the same test sets, we can compare
their predictions and measure how often they agree. For every pair
of models, we measure how often they predict the samemove in a
given position across all positions in our test sets.

These per-move agreement rates are shown in Figure 6. Most
strikingly, the Maia models are very similar to each other, despite
the very different skill levels they were trained on. The highest inter-
Maia agreement is 79%, far higher than the agreement of any Leela
or Stockfish model with any other model. The lowest inter-Maia
agreement is 65%, which is still higher than the agreement of any

Maia Best Acc. Leela Best Acc. SF Best Acc.

1100 1200 50.8% 1000 1100 26.3% 1 1900 39.1%
1300 1400 51.8% 1600 1100 31.4% 5 1900 35.4%
1500 1700 52.2% 2200 1100 37.1% 9 1900 39.8%
1700 1800 52.7% 2700 1400 40.2% 11 1900 40.6%
1900 1900 52.9% 3200 1900 46.0% 15 1900 41.1%

Table 1: Where selected Maia, Leela, and Stockfish models
achieve their highest accuracy.

Maia model with a non-Maia model. The Maia models therefore
seem to predict moves that occupy a distinct “subspace”, despite
the differences in skill they are trained on. In contrast, Leela and
Stockfish agreement is lower and more dependent on similarity in
strength. For example, Leela 2700 and 3200, and Stockfish depth
9 and depth 11, agree with each other at relatively high rates, but
versions that are further apart in skill agree at very low rates.

Modelmaxima. It is instructive to examine where each of themod-
els achieve their best performance. In Table 1, we show each model,
the test set on which it achieved its maximum performance, and its
accuracy on this test set. Each model family displays qualitatively
different behavior. The Stockfish models all rise monotonically with
test set rating, and thus achieve their best performance on the high-
est rating test set, 1900. Leela versions, on the other hand, first tend
to monotonically decrease with rating, until they reach a certain
strength, when the slope becomes monotonically increasing. The
weaker models achieve their maximum on the lowest rated test set
and the strongermodels achieve it on the highest rated test set. (Leela
2700 is perfectly in the middle, achieving roughly the same perfor-
mance across the full range.) Maia models, in contrast, achieve their
maximum performance throughout the rating range, usually one
rating range higher than their training set. Theirmaximumaccuracy
is consistently above 50%.

Decision type. In chess, as in other domains, decisions tend to vary
in their complexity. Some chess positions only have one good move;
in others there are many good moves. One way to measure this com-
plexity is to consider the difference in quality between the best and
second best moves in the position. If this difference is small there are
at least two good moves to choose from, and if it’s large there is only
one goodmove. Here, we decompose ourmain results by calculating
howMaia and Leela models match humanmoves, over all test sets,
as a function of this difference. Wemeasure “move quality” by using
Stockfish depth 15’s evaluation function (the strongest engine of
all we tested), then converting its evaluation into a probability of
winning the game (see Supplement section 7.2 for more details).

In Figure 7,we see that as thedifference inquality between the two
best moves increases, all models increase in accuracy. This makes
sense — in many positions with only one good move, the good move
is an obvious one, such as recapturing a piece. More interestingly,
Maia’s improvement over Leela is relatively constant across the
range; it is as much better at predicting non-obvious moves as it is
predicting obvious moves in comparison with Leela.

Decision quality. Chess is also like other domains in that humans
regularly make mistakes. Here, we analyze how move prediction
performance varies with the quality of the humanmove. We again
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Figure 8: Move-matching performance as a function of the
quality of themove played in the game.

define move quality by translating Stockfish depth 15 evaluations
into win probabilities, and measure the difference between the best
move in the position and the move the human actually played. The
size of this gap thus becomes a rough proxy for how good or bad
the humanmove was. In Figure 8, we see that model performance
tends to improve as the quality of the played move increases. This
is intuitive, since good moves are easier to predict. Interestingly,
every Maia model is almost always better than every Leela model
across the entire range, including large errors (“blunders”, in chess
terminology). Although blunders are undesirable and humans try
to avoid them, Maia still does the best job of predicting them. To
follow up on this, in the next Sectionwe focus on predictingwhether
humans will blunder in a given position.

5 PREDICTING ERRORS
We now turn to our second task of predicting whether a human fac-
ing a given chess positionwill make a significantmistake, or blunder.
Strong performance on this genre of task would clearly be useful,
as algorithmic systems could be equipped with an understanding
of when humans might go wrong.

5.1 Blunder Prediction

Task.Our task is to predict if the nextmovemade by a human player
will be a blunder. Instead of predicting the next humanmove, we can

instead ask a more direct question: “Is a human likely to blunder in
the current position?” Answering this question accurately can serve
as a useful guide for human players, by suggesting whether a given
position might be difficult for them.

As in Section 4.4, we convert Stockfish’s evaluation of a given
position into a probability of winning the game (using a lookup
table mapping Stockfish centipawn evaluations into the empirical
probability of winning a game in our dataset; see the Supplement
for more details). We then label a move as a blunder if it worsens a
player’s win probability by 10 percentage points or more.

We evaluated two formulations of the task. In the first ("board
only"), models are only allowed to use the chess position as input.
In the second ("board and metadata"), models are provided metadata
about the players and the game in addition to the board state. This
metadata is limited to features that could be derived by a live ob-
server of the game, such as the players’ ratings, the percentage of
time remaining for each player, and the cp score of the board.

Data.We used the same set of chess games as we did for the move
prediction task, ending in September 2019 for the training set and
using October 2019 as the test set. Since some Lichess games are
annotated with high-quality Stockfish evaluations (any player on
Lichess can request this, e.g. for analysis or training), we restricted
our attention to these games, which account for 10% of all games.

To create the training set, we took all gameswith Stockfish evalua-
tions and timing information fromApril 2017 to September 2019 and
removed those played at fast time controls, as well as moves made
with under 30 seconds remaining. We then classified each move as a
blunder or non-blunder, and randomly down-sampled non-blunders
until they were 150% of the blunder set size. The games in October
2019 were similarly processed and used as a balanced test set. The fi-
nal training set contains 182M blunders and 272M non-blunders; the
test set contains 9M blunders and 9Mnon-blunders. During training,
half of the batches were sampled from the blunder set and half were
sampled from the non-blunder set.

Results.We first evaluated a set of baselines, which we trained on
a subset of moves from the full training set (100Kmoves from each
month, or 3M total). We performed a grid search across hyperparam-
eters and used a validation set to select the model with the highest
AUC. Random forests models performed best in both task formula-
tions, achieving 56.4% accuracy when given just the board and 63%
accuracy when given the board state and metadata.

We then trained a fully connected neural network with 3 hidden
layers that output a single number and used mean squared error
as the loss function (more details of the network configuration and
training appear in the Supplement). In both task formulations this
model outperformed the best baseline.

Finally, we trained a residual CNN that we designed based on Alp-
haZero (full details are in theSupplement).Whenprovidingmetadata
to the model, we normalized the values to [0,1] and supplied each
value as an additional channel; this achieved better performance
than feeding the metadata into a fully connected layer after the
CNNs. This network’s performance demonstrates a significant im-
provement over the fully connected network, achieving up to 71.7%
accuracy (see Table 2 for a summary of all the results).
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Model Board only Board andMetadata

Random Forest 56.4% 63.0%
Fully Connected 62.9% 66.0%
Residual CNN 67.7% 71.7%

Table 2: Blunder prediction testing accuracy.

In sum, we can also train AI systems to give us a better under-
standing of when people might go wrong.

5.2 Collective Blunder Prediction

Task. Throughout this paper we have mainly concerned ourselves
withprediction taskswhere thedecision instancesaremostlyunique—
chess positions usually occur once, and then never again. But some
positions recur many times. We now focus on the most common
positions in our data, and try to predictwhether a significant fraction
(>10%) of the population who faced a given position blundered in it.

Data.We grouped individual decision instances by the position the
player faced,normalizing thembystandardizingcoloranddiscarding
extraneous information (e.g. howmany ply it took to arrive at the po-
sition), and countedhowoften eachpositionoccurred inour data.We
kept all positions that occurredmore than10 times,whichproduceda
training dataset with 1.06million boards and a balanced test set with
119,000 boards. These boards are almost all from the early or latter
stages of the game, since that is when exact positions tend to recur.

Results.We trained fully connected, residual CNN, and deep resid-
ualCNNmodels. The 3-layer fully connectednetwork achieves 69.5%
accuracy, whereas both the residual CNN and deep residual CNN
perform even better (75.3% and 76.9%, respectively). This task is thus
easier than individual blunder prediction, which may be due to the
fact that grouping decisions together reduces noise. As we continue
to bridge the gap between superhuman AI and human behavior in
other domains, it will be interesting to contrast predicting individual
decision qualitywith predicting howgroups of people fare on similar
or identical decisions, as we have done here.

6 CONCLUSION
In an increasing number of domains, rapid progress on the goal of
superhuman AI performance has exposed a second, distinct goal:
producing AI systems that can be tuned to align with human behav-
ior at different levels of skill. There is a lotwe don’t understand about
achieving this goal, including the relation between an AI system’s
absolute performance and its success atmatchingfine-grained traces
of human behavior.

We explore these questions in a setting that is particularly well-
suited to analysis — the behavior of human chess players at a move-
by-move level, and the development of chess algorithms to match
this human move-level behavior. We begin from the finding that
existing start-of-the-art chess algorithms are ill-suited to this task:
the natural ways of varying their strength do not allow for targeting
them to align with particular levels of human skill. In contrast we
develop a set of new techniques, embodied in a new chess model
that we callMaia, which produces much higher rates of alignment
with human behavior; andmore fundamentally, it is parametrized in

such a way that it achieves maximum alignment at a tuneable level
of human skill. In the paper, we have seen some of the design choices
that lead to this type of performance, and some of the implications
for modeling different levels of human skill. We also extend our
methods to further tasks, including the prediction of human error.

There are a number of further directions suggested by this work.
First, it would be interesting to explore further where Maia’s im-
provements in human alignment are coming from, and whether
we can characterize subsets of the instances where additional tech-
niques are needed for stronger performance. Potentially related to
this is the question of whether an approach like Maia can expose
additional dimensions of human skill; we currently rely on the one-
dimensional rating scale, which has proven to be quite robust in
practice at categorizing chess players, but with increasingly power-
ful approaches to fine-grained alignment, we may begin identifying
novel distinctions among human players with the same rating. And
finally, it will be interesting to explore the use of these techniques in
an expanding collection of other domains, as we seek to model and
match fine-grained human behavior in high-stakes settings, on-line
settings, and interaction with the physical world.

Acknowledgments.We thank the anonymous reviewers for helpful com-
ments. AAwas supported in part by an NSERC grant, a Microsoft Research
Award, and a CFI grant. JK was supported in part by a Simons Investigator
Award, a Vannevar Bush Faculty Fellowship, a MURI grant, and aMacArthur
Foundation grant.

REFERENCES
[1] Ashton Anderson, Jon Kleinberg, and Sendhil Mullainathan. 2017. Assessing

human error against a benchmark of perfection. ACM Transactions on Knowledge
Discovery from Data (TKDD) 11, 4 (2017), 45.

[2] John R Anderson, C Franklin Boyle, and Brian J Reiser. 1985. Intelligent tutoring
systems. Science 228, 4698 (1985), 456–462.

[3] Tamal Biswas and Kenneth W Regan. 2015. Measuring Level-K Reasoning,
Satisficing, and Human Error in Game-Play Data. In 2015 IEEE 14th International
Conference on Machine Learning and Applications. IEEE, Miami, FL, 941–947.

[4] Neil Charness. 1992. The impact of chess research on cognitive science.
Psychological research 54, 1 (1992), 4–9.

[5] Finale Doshi-Velez and Been Kim. 2017. A Roadmap for a Rigorous Science of
Interpretability. Technical Report 1702.08608. arxiv.org.

[6] Andre Esteva, Brett Kuprel, RobertoANovoa, Justin Ko, SusanMSwetter, HelenM
Blau, and Sebastian Thrun. 2017. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 542, 7639 (2017), 115–118.

[7] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceeding
of the CHI ’99 Conference on Human Factors in Computing Systems, Marian G.
Williams andMarkW. Altom (Eds.). ACM, Pittsburgh Pennsylvania, 159–166.

[8] Garry Kasparov. 2018. Chess, a Drosophila of reasoning. Science (2018).
[9] Barry Kirwan. 1993. Human reliability assessment. Wiley, London, England.
[10] Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil

Mullainathan. 2018. Human decisions and machine predictions. The quarterly
journal of economics 133, 1 (2018), 237–293.

[11] Zachary C. Lipton. 2018. The mythos of model interpretability. CACM (2018).
[12] John McCarthy. 1990. Chess as the Drosophila of AI. In Computers, chess, and

cognition. Springer, New York, NY, 227–237.
[13] Gavriel Salvendy. 2012. Handbook of human factors and ergonomics. Wiley, NJ.
[14] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science (2018).

[15] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature (2017).

[16] Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. 2017. Third-Person Imitation
Learning. Technical Report 1703.0173. arxiv.org.

[17] Wikipedia. 2020. Top Chess Engine Championship. en.wikipedia.org/wiki/Top_
Chess_Engine_Championship#Tournament_results_(TCEC). Accessed: 20-02-09.

[18] Jiaming Zeng, Berk Ustun, and Cynthia Rudin. 2017. Interpretable classification
models for recidivism prediction. J. Royal Stat Society: Series A 180 (2017).

en.wikipedia.org/wiki/Top_Chess_Engine_Championship#Tournament_results_(TCEC)
en.wikipedia.org/wiki/Top_Chess_Engine_Championship#Tournament_results_(TCEC)


KDD ’20, August 23–27, 2020, Virtual Event, CA, USA R. McIlroy-Young, S. Sen, J. Kleinberg, and A. Anderson

7 SUPPLEMENT
Our full source code, data and models are available online2. The raw
data used are all downloaded from database.lichess.org, but convert-
ing the PGNs to files for our work is computationally expensive.
ProcessingApril 2017 to December 2019 into a tabular form, one row
per move, took about 4 days on a 160 thread 80 core server and used
2.5 TB of memory, and converting to the final format for our models
another 3 days. So we also host some of those files too. We hope
that the tabular data will be used in further work and have sought
to include all the available data.

Additionally ourmovepredictionmodels can beused asUCI chess
engines and can be played against as the following bots on Lichess:
maia1 (Trained ELO 1100), maia5 (Trained ELO 1500) and maia9
(Trained ELO 1900).

7.1 Move Prediction

Training. To generate our training and validation sets, we consid-
ered all games played between January 2016 and November 2019
(we reserved December 2019 for the test sets only) and binned them
into rating ranges of width 100. To removemovesmade under severe
time pressure, we ignored games played at Bullet or HyperBullet
time controls and removed all moves made in a game after either
player had less than 30 seconds remaining. We additionally wanted
to ensure our training set covers the entire time range of our dataset.
To do so, we put games from each year (2017, 2018, 2019) into blocks
of 200,000 games each, reserved the last three blocks from 2019 for
use as validation sets, and randomly selected 20 blocks of games
from each year. This generated training sets of 12 million games and
test sets of 200,000 games per rating bin.

Figure 9 shows how the data are processed.

Lichess Database Split by ELO Randomly sample bins

Train/Validate splitPreprocess DataTrain Net

Figure 9: Data Flow

Additional model information. Our model architecture is com-
prised of 6 blocks of 2 CNNs each with 64 channels. During training,
moves are read sequentially fromagame, but are only sampledwith a
probability of 1

32 . During back propagation, both the policy head and
value head losses are equally weighted, with the policy head using
a cross entropy loss while the value head uses MSE.We optimized
all of our hyperparameters using our validation sets.

During training the sampled moves are put into a shufflebuffer
with 250,000 slots before being used in a batch. Each model was
trained in 400,000 steps using a batch size of 1024 and a learning rate
of 0.01, preceded by a burn-in at .1 and succeeded by to drops by a
factor 10, starting at step 200000. The final output of both heads goes
from the tower of residual CNN blocks and into separate CNN layers
followed by two fully connected layers for the policy head leading
to a single number output, or 2 more CNN layers terminating in an

2github.com/CSSLab/maia-chess

output of 8×8×73 which encodes the move. During testing only
legal moves are considered from the output.

We chose to use 6 blocks and 64 filters, which was partially due
to computational costs. Going to a larger network, such as 24 blocks
and 320 filters, yielded a small performance boost at a significant
cost in compute.

Figure 10 there is ananoverviewof themodel in table 3has and the
complete configuration files can be found on our code repository2.
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Figure 10: Visualization of themove prediction network

Task Move Prediction
Model Type Maia

Blocks 6
Channels 64
Batch Size 1024
Total Steps 400000
Initial Learning Rate 0.1
Learning Rate Scaling Factor .1
Learning Rate Scaling Steps 80000, 200000, 360000
Optimizer ADAM
Framework Tensorflow 2.0
Table 3: Move predictionmodel configuration

7.2 Centipawn to win probability
The conversion of centipawn score to win probability was done
empirically by rounding to the nearest 10 centipawns (.1 pawns) and
using the ratio wining players to the total number of observations
at that value. Figure 11, shows the distribution for different player
ratings, but for our work we only looked at skill. The discontinuity
near 0 is because a value of exactly 0 indicates following a loop is the
optimal path for both players. Note that the starting board is rating
as 20 centipawns in favour of white.

7.3 Individual Blundermodels

BaselineModels. The baseline models we tested are: decision tree,
logit, linear regression, randomforest andnaïvebayes.Wealso tested
SVM and perceptron models but they failed to finish in under 2 days.
All models were from the Python library Scikit Learn.

NeuralModels.Boardswere represented as a 8×8×17 dimensional
array with the 12 channels encoding pieces, 4 channels encoding
castling, and one encoding whether the active player is white.

The residual CNN network has 6 residual blocks with two set of
2D CNNs with 64 channels and a 3×3 kernel. It was trained in the

https://database.lichess.org/
https://lichess.org/@/maia1
https://lichess.org/@/maia5
https://lichess.org/@/maia9
https://github.com/CSSLab/maia-chess
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Figure11:Conversionbetweenboarddifficultyandempirical
win probability, each point has 100,000 ormore samples.

same way as the fully connected network, using an initial learning
rate of 0.0002. Due to the small size of the input, the CNNs apply 0
padding to the inputs on all sides and use a stride length of 1 to make
the output size equal to the input size.

The the configuration of both models used for individual blunder
detection are shown in tables 4 and 5, for the fully connected and
R-CNNmodels respectively.

Using themovepredictionmodels for blunderpredictionwasas at-
tempted but the results were far exceeded by the specialized models.

Task Move Prediction

Model Type Blunder Prediction
Fully Connected

Layer sizes 1028, 512, 256
Activation Function Hyperbolic Tangent
Batch Size 2000
Total Steps 1400000
Initial Learning Rate 0.002
Learning Rate Scaling Factor 0.1
Learning Rate Scaling Steps 20000, 1000000, 1300000
Optimizer ADAM
Framework Pytorch 1.3

Table 4: Blunder prediction Fully connected model configu-
ration

Task Move Prediction

Model Type Blunder Prediction
Residual CNN

Blocks 6
Channels 64
Batch Size 2000
Total Steps 1400000
Initial Learning Rate 0.0002
Learning Rate Scaling Factor 0.1
Learning Rate Scaling Steps 20000, 1000000, 1300000
Optimizer ADAM
Framework Pytorch 1.3

Table 5: Blunder prediction R-CNNmodel configuration

7.4 Grouped Blundermodels
We started with the same dataset as for individual behavior, then for
every sample converted the board into a normalized form that only
had piece locations and made the active player white. Then for each
month we counted the number of games that encountered it and
howmany blunder weremade per month for each normalized board.
These were joined into the complete dataset if they had more than
1 samples in a month. Finally all boards with less than 10 samples
total were discarded. The testing set was formed from a 10% sample.
The final training dataset has 1,066,055 boards, while the testing set
has 118,582. One side effect of sampling only popular positions is
that the middle game vanishes from our data.

The models used for the grouped blunder prediction task are the
same as for the individual, but the fully connect model has an initial
learning rate of 0.0001, while the R-CNN has an initial learning rate
of 0.00001. The deep R-CNN also has 8 blocks and 256 filters. They
also employ an early stopping criteria of 64 testing steps (done ev-
ery 200 training steps) with no improvement in accuracy. Our final
models were stopped before they fully memorized the data, as their
accuracy on the holdout set started decreasing past 50 iterations.
The final models stop at stop 378k, 248k and 248k respectively. The
validation accuracy vs step is very consistent between the models,
with the deep just being slightly higher.

The models used for this are the same architecturally to the indi-
vidual task, but normalization of the input boards causes the last 5
channels of the input board to be the same regardless of input. The
balancing of positive and negative samples was also used.
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