Social and Information Networks

Prof. Ashton Anderson ashton@cs.toronto.edu

CSCC46H, Fall 2022 Lecture 1

What Are Networks?

Networks are a language for representing, describing, and understanding interconnected systems

How to understand the behaviours, decisions, beliefs, etc. of millions of people?

Social network

Educational settings: people learn and interact with each other in complex ways

EMOTIONS MAPPED BY NEW GEOGRAPHY

Charts Seek to Portray the Psychological Currents of Human Relationships.

1st grade

Moreno's sociograms, 1934

4th grade

8th grade

Everything on the Internet is passed through autonomous systems (routers, etc.)

Graph of the Internet (Autonomous Systems)

In companies, people communicate and work together in large hierarchies and structures

Email communication network (HP Research, 436 employees)

Org chart (left) and Email communication network (right) Microsoft, 200,000 employees [Jake Hofman, 2018]

Many diseases are transmitted socially (e.g. COVID-19)

Global spread of COVID-19

Power is transported everywhere with interconnected stations and lines

The power grid: a network

Science is a complex system of academics working together and being influenced by each other

Citation networks and maps of science [Börner et al., 2012]

A single person's interactions with friends and family are a huge part of their life

An "ego network": the neighbourhood around a single individual

One-way Communication

Maintained Relationships

Mutual Communication

The Economy is a network: e.g. Federal funds overnight lending

Transportation network (US only)

Political blogs prior to 2004 US Presidential election

The human brain has between 10-100 billion neurons connected to each other in complex ways

Hierarchies of cell systems

Patient networks

Genetic interaction networks

Gene co-expression networks

Many, many more examples

Cell-cell similarity networks

Disease pathways

But why should *you* care about networks?

Why study networks?

Networks are a universal language for describing complex data

Networks from science, nature, and technology are more similar than you might expect

Shared vocabulary between fields

CS, finance, tech, social sciences, physics, economics, statistics, biology

Data availability (and computational challenges)

Web/mobile, bio, health, medical

Impact!

Social networking, social media, drug design

Why study networks?

Complex systems are all around us

- Society is a collection of seven billion people
- Communications systems link electronic devices
- Information and knowledge is organized and linked
- Interactions between thousands of genes regulate life
- Our thoughts and selves are manifested in the connections between billions of neurons in the brain
- Information and diseases spread from person to person

Age and size of networks

Why now?

Networks: Impact

Google Market cap: \$1.4T

Facebook Market cap: \$500B

Cisco Market cap: \$220B

Networks and Applications

Ways to Analyze Networks

Predict the type of a given node (node classification)

Predict whether two nodes are linked (link prediction)

Predict common pathways (social influence/propagation)

- **Identify** densely linked clusters of nodes (community detection)
- **Measure** similarity between nodes/networks (network similarity)

(1) Networks: Social

Application: Friend Prediction

People you may know

Maggie Flynn is a mutual friend.

Becky Williams Swenson Denver, Colorado achelle Albright and 3 other mutual friends

1+ Add Friend Remove

(2) Networks: Infrastructure

Power grids connect you to electricity
(2) Networks: Infrastructure

Aug 14, 2003, 9:29pm **20 hours before**

Aug 15, 2003, 9:14pm 4 hours after

August 2003 blackout

(2) Networks: Infrastructure

This illustrates important themes of this class:

- We must understand how network structure affects the system
- We will develop quantitative tools to assess the interplay between network structure and the dynamic processes that happen on networks
- We will learn that in reality failures follow reproducible laws, and can be quantified, and to some extent predicted, using the language of network analysis

(3) Networks: Information and Knowledge

Multimodal Graphs

Application: Web Search

Q

Google Search I'm Feeling Lucky

Google offered in: Français

How do you go from a tiny text string to the 10 most relevant sites out of billions of pages?

Ļ

(4) Networks: Online Media

Connections between political blogs

Application: Polarization on Twitter

Retweet networks: polarized (left) and unpolarized (right)

Application: Understanding Virality

Information cascades in networks

Application: Product Adoption

Invitation cascades: 60–90% of LinkedIn users signed up due to an invitation from another user [Anderson et al., WWW '15]

Networks matter

need to know who is in contact with whom

(or serve relevant search results), you have to analyze the links

If you want to predict the spread of a disease, you

If you want to understand the structure of the Web

If you want to understand the dissemination of news or the evolution of science, you have to follow the flow

Ways to Analyze Networks

Develop the language of interconnectedness

Understand design principles and models of networks

systems

- What do we hope to achieve from studying networks?

 - Learn the patterns and statistical properties of network data
 - **Develop** algorithmic understanding of processes in networked

Networks: Structure, Dynamics, Incentives

What do we study in networks?

Structure and evolution

What is the structure of networks? Why and how do they come to have such structure? How do we harness the structure to extract useful information?

Processes and dynamics

Networks are the "skeleton" on which information, behaviours, and diseases spread How do information and diseases spread?

Incentives in networks

Behaviour is interconnected by depending on what others do How do decisions and behaviours depend on network structure and dynamics?

Reasoning about Networks

How do we reason about networks and collective behaviour?

Empirical analyses: Study network data to find organizational principles

How do we measure and quantify networks?

Mathematical models: Graph theory and statistical models

Models allow us to understand behaviors and distinguish surprising from expected phenomena

Algorithms for analyzing graphs: Computer science toolkit

Overcome hard computational challenges to solve important problems

Main Tool: Graph Theory

We'll make extensive use of graph theory in this course

Seven Bridges of Königsberg [Euler, 1735]

We'll also make extensive use of game theory in this course

Main Tool: Game Theory

The mathematical theory of strategic interaction

(Tentative) Course Overview

- Week I: Course overview, Introduction to graph theory, The Web as a Network
- Network Representations, Affiliation, Homophily, Strong and Weak Ties, Structural Holes **Week 2:**
- **Week 3:** Strong and Weak Ties; Community Detection
- Week 4: Signed Networks; Structural Balance; Homophily
- Week 5: Six Degrees; Decentralized Search
- Week 6: Power Laws and Rich-Get-Richer Phenomena
- **Week 7:** Link Analysis; PageRank
- **Week 8:** Game Theory
- **Week 9:** Congestion; Decision Cascades; Information Cascades
- **Week 10:** Contagion; Epidemics
- Week II: Voting
- **Week 12:** Review

Course webpage (<u>http://www.cs.toronto.edu/~ashton/cscc46/</u>)

Quercus (course announcements, assignments)

MarkUs (assignment submission)

Discord (chat)

Course resources

- 35% 4 assignments
- 10% 2 blog posts
- 5% Class citizenship
- 50% Final exam

Assignments are due on Wednesdays at 10am

Because I understand sometimes stuff happens, you get 4 "flex days": I flex day is a 24hour period that you can hand in assignments late with no penalty. You can use up to 2 flex days per assignment. After that, no late assignments will be accepted.

Course evaluation

Blog posts

- During the term, write two blog posts on the course blog about topics related to the course
- Should be fun! Pick your favourite topic and explore it in more detail
- Short essay-like posts aimed at your peers
- Commenting on others' posts counts as participation

Very talented students! Feel free to go to them for help

Tutorials

Mostly working through concrete examples as a group, Q&A (group office hours), and assignment help

Textbook

"Networks, Crowds & Markets" Easley & Kleinberg

Available free online / reasonably-priced hardcover

Very readable, engaging text

Some assignment exercises from the book

Questions?

About Me

 $0-18 \rightarrow 18-22 \rightarrow 22-29 \rightarrow$

Now: Assistant Professor of Computer Science at U of T

Head of the <u>Computational Social Science Lab</u> (researching questions in AI, data, and society) 🤓

(Want to get involved? Email me after the course!)

- 29–31 → 31+ Calgary \rightarrow Montreal \rightarrow San Francisco \rightarrow New York City \rightarrow Toronto $1M \rightarrow 4M \rightarrow 7M \rightarrow 20M \rightarrow 6M$

Computational Social Science Lab

Stage

Interests

McGill B.Soft.Eng '08

Theoretical Anything practical was impure

Stanford Master's '10

"Hmm...would be nice to feel more connected to the world" Game theory: computational/economic lens on strategic interaction Mix of theoretical and applied

Stanford Ph.D. '15

Discovered the joy and power of large-scale empirical analysis Computational social science: social research in the digital age Mostly empirical analysis supplemented with theoretical modeling, experimentation, and surveys

My path

Quantum algorithms and information

Artificial Intelligence Study algorithms

Create algorithms Algorithmic effects

Important societal questions Polarization, echo chambers, bias, info diffusion, social media impact

My research

Data

Large online data Often behavioural

"Data Science"

Society

My research

ARTS

Political polarization on Reddit

Discussion topics on Gab (alt-right platform)

Time spent (sec.)

Gender bias in text algorithms

Nature of human error in chess

Music exploration on Spotify

First topic: Network Analysis Fundamentals and The Structure of the Web

A Network

A network is a collection of objects where some pairs of objects are connected by links

Components of a Network

Objects: nodes, vertices Interactions: links, edges System: network, graph

ices N edges E raph G(N,E)

Networks or Graphs?

Network often refers to real systems Web, Social network, Metabolic network Language: Network, node, link

Graph is mathematical representation of a network Web graph, Social graph (a Facebook term) Language: Graph, vertex, edge

We will try to make this distinction whenever it is appropriate

The Internet in 1970

A first example

The Internet in 1970

A first example

Networks: a shared language

Choosing a Proper Representation

How to build a graph:

- What are nodes?
- What are edges?
- domain/problem determines our ability to use networks successfully:

 - question you can study

The choice of the proper network representation of a given

In some cases there is a unique, unambiguous representation In other cases, the representation is by no means unique The way you assign links will determine the nature of the

Choosing a Proper Representation

- If you connect individuals that work with each other, you will be exploring a **professional network**
- If you connect those that have a friendship relationship, you will be exploring a **friendship network**
- If you connect scientific papers that cite each other, you will be studying a **citation network**

If you connect all people with first names that share the same first letter, what are you studying?

It is a network, but is it meaningful?
Undirected Links: undirected (symmetrical, reciprocal)

Examples: Collaborations Friendship on Facebook

Undirected and Directed Networks

Directed Links: directed (arcs)

Examples:

- Phone calls
- Following on Twitter and TikTok

Connectivity of Graphs

Connected component (undirected):

- Any two vertices can be joined by a path
- No superset with the same property
- A disconnected graph is made up of two or more connected components

Largest Component: **Giant Component**

Isolated node (node H)

Connectivity of Graphs

Connected component (undirected):

- Any two vertices can be joined by a path
- No superset with the same property
- A disconnected graph is made up of two or more connected components

Bridge edge: If we erase it, the graph becomes disconnected.

Largest Component: **Giant Component**

Isolated node (node H)

Connectivity of Directed Graphs

Strongly connected directed graph

vice versa (e.g., A-B path and B-A path) Weakly connected directed graph

- has a path from each node to every other node and
- is connected if we disregard the edge directions

G

Is this graph weakly connected? Strongly connected?

Connectivity of Directed Graphs

Strongly connected directed graph

has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
Weakly connected directed graph

is connected if we disregard the edge directions

It is weakly connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions)

This week:

- Sign up for MarkUs (to be released on website)
- Log in to Quercus, MarkUs, and Discord
- Read Ch. 1, 2.1-2.4, 13.1-13.4

Next week:

- Network Representations, Affiliation, Homophily, Strong and Weak Ties, Structural Holes
- Read Ch. 3.1-3.3, 4.1-4.3

Contact me: <u>ashton@cs.toronto.edu</u>

End!

Please introduce yourselves!

On Discord, please write a quick blurb about yourself in #general! Tell us who you are, where you are, and a fun fact (and anything else you'd like to share)