
Prof. Ashton Anderson 
ashton@cs.toronto.edu

CSCC46H, Fall 2022 
Lecture 9

Social and Information Networks

mailto:ashton@cs.toronto.edu


Logistics

Blog posts A–J due Friday, Nov 11
Blog posts K–R due Friday, Nov 18 
Blog posts S–Z due Friday, Nov 25
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Today
A3 due next week
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Today

Game Theory: Congestion games
Decision-Based Diffusion

Information Diffusion
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Today: Game Theory in the Wild and Influence 
Through Networks
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If people are connected through a network, it’s possible for them to 
influence each other’s knowledge, behaviour and actions

Today: why?

Informational 

Direct benefit

Social conformity



Getting to UTSC: 401 or Gardiner?
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7

UTSC

Mississauga

UnionYorkdale

401 Gardiner



Getting to UTSC: 401 or Gardiner?

8

UTSC

Mississauga

UnionYorkdale

401 Gardiner



Getting to UTSC: 401 or Gardiner?

9

UTSC

Mississauga

UnionYorkdale

401 Gardiner



Getting to UTSC: 401 or Gardiner?

10

UTSC

Mississauga

UnionYorkdale

401 Gardiner



Traffic routing
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x/100 min 45 min

45 min

A

C

D

B

y/100 min

Let’s model this as a simple network, with two kinds of edges:

Constant edges (wide highways that don’t get congested)

Traffic-dependent edges (quick routes that can get congested)



Traffic routing
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x/100 min 45 min

45 min
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y/100 min

Let’s model this as a simple game on a network, with two kinds of edges:

Constant edges (wide highways that don’t get congested)

Traffic-dependent edges (quick routes that can get congested)

There are 4000 drivers. Each one can choose A-C-B or A-D-B.



Traffic modeled as a game
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x/100 min 45 min

45 min

A
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D

B

y/100 min

Players: Drivers 1,2,3…,4000

Strategies: Two strategies each: A-C-B or A-D-B

Payoffs: ?



Traffic modeled as a game
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x/100 min 45 min

45 min

A

C

D

B

y/100 min

Players: Drivers 1,2,3…,4000

Strategies: Two strategies each: A-C-B or A-D-B 

Payoffs: Negative drive time

A-C-B time: - (x/100 + 45)

A-D-B time: - (45 + y/100)



Traffic Equilibrium?
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x/100 min 45 min

45 min
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■ 4000 drivers

■ Two route options: A-C-B or A-D-B.

■ Consider a few outcomes (strategy for each player):

▪ Payoffs when 4000 choose top (ACB), 0 choose bottom (ADB):        

▪ Top path:         4000/100 + 45 = 85 min

▪ Bottom path:   45 + 0/100 = 45 min

▪ Payoffs when 0 choose top, 4000 choose bottom:   

▪ Top:        0/100 + 45 = 45 min

▪ Bottom:  45 + 4000/100  = 85 min



Equilibrium in traffic?
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x/100 min 45 min

45 min

A

C

D

B

y/100 min

■ 4000 drivers

■ Two route options: A-C-B or A-D-B.

■ Payoffs when 2000 choose top, 2000 choose bottom:   

▪ Top:        2000/100 + 45 = 65 min

▪ Bottom:  45 + 2000/100  = 65 min

This is an equilibrium because no one has an incentive to deviate



Equilibrium in traffic?
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x/100 min 45 min

45 min

A

C

D

B

y/100 min

Payoffs when 2000 choose top, 2000 choose bottom:   

Top:        2000/100 + 45 = 65 min

Bottom:  45 + 2000/100  = 65 min
This is an equilibrium because no one has an incentive to deviate

If someone currently using A-C-B decides to switch to A-D-B:

Top:        2000/100 + 45 = 65.00 min

Bottom:  45 + 2001/100  = 65.01 min

Currently:

Switch:



Traffic modeled as a game
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x/100 min 45 min

45 min

A

C

D

B

y/100 min

Players: Drivers 1,2,3…,4000

Strategies: A-C-B, A-D-B

Payoffs: Negative drive time

A-C-B time: -(x/100 + 45)

A-D-B time: -(45 + y/100)

Notice that this actually describes many equilibria:  any set of strategies “2000 choose top, 
2000 choose bottom” is an equilibrium (players are interchangeable, so any set of 2000 can 
be using ACB and any set of 2000 can be using ADB)

For any other set of strategies, deviation benefits someone (therefore isn’t an equilibrium)

You want to lower your drive time, so we take 
the negative drive time as the “payoff”



Traffic modeled as a game
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Now Elon Musk adds a teleport!

Players can take it if they want — or not

0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min



Traffic modeled as a game
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Players: Drivers 1,2,3…,4000

Strategies: A-C-B, A-D-B, A-C-D-B

Payoffs: Negative drive time

A-C-B time: - (x/100 + 45)

A-D-B time: - (45 + y/100)

A-C-D-B time: - (x/100 + y/100)

0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min



Would you teleport?
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Say we are at the equilibrium from before: 2000 ACB, 2000 ADB, 0 ACDB

A-C-B time: - (x/100 + 45)

2000/100 + 45 = 65 minutes

A-D-B time: - (45 + y/100)

2000/100 + 45 = 65 minutes

A-C-D-B time: - (x/100 + y/100)

2000/100 + 2000/100 = 40 minutes

0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min



New equilibrium?
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Payoffs when 0 ACB, 0 ADB, 4000 ACDB
A-C-B time: - (x/100 + 45)

 

A-D-B time: - (45 + y/100)

 

A-C-D-B time: - (x/100 + y/100)

 

0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min



New equilibrium?
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Payoffs when 0 ACB, 0 ADB, 4000 ACDB
A-C-B time: - (x/100 + 45)

4000/100 + 45 = 85 minutes

A-D-B time: - (45 + y/100)

45 + 4000/100 = 85 minutes

A-C-D-B time: - (x/100 + y/100)

4000/100 + 4000/100 = 80 minutes

0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min



New equilibrium?
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Payoffs when 0 ACB, 0 ADB, 4000 ACDB
A-C-B time: - (x/100 + 45) = 4000/100 + 45 = 85 minutes

A-D-B time: - (45 + y/100) = 45 + 4000/100 = 85 minutes

A-C-D-B time: - (x/100 + y/100) = 4000/100 + 4000/100 = 80 minutes 

0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min

ACDB is a strictly dominant strategy
Everyone playing ACDB is the only equilibrium!



What just happened?
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Equilibrium: 65 minutes for everyone

Same network but  
with an extra teleport0 min

x/100 min 45 min

45 min

A

C

D

B

y/100 min

Equilibrium: 80 minutes for everyone

x/100 min 45 min

45 min

A

C

D

B

y/100 min



Braess’s Paradox
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6.2. REASONING ABOUT BEHAVIOR IN A GAME 161

A Related Story: The Prisoner’s Dilemma. The outcome of the Exam-or-Presentation

Game is closely related to one of the most famous examples in the development of game the-

ory, the Prisoner’s Dilemma. Here is how this example works.

Suppose that two suspects have been apprehended by the police and are being interro-

gated in separate rooms. The police strongly suspect that these two individuals are respon-

sible for a robbery, but there is not enough evidence to convict either of them of the robbery.

However, they both resisted arrest and can be charged with that lesser crime, which would

carry a one-year sentence. Each of the suspects is told the following story. “If you confess,

and your partner doesn’t confess, then you will be released and your partner will be charged

with the crime. Your confession will be su�cient to convict him of the robbery and he will

be sent to prison for 10 years. If you both confess, then we don’t need either of you to testify

against the other, and you will both be convicted of the robbery. (Although in this case

your sentence will be less — 4 years only — because of your guilty plea.) Finally, if neither

of you confesses, then we can’t convict either of you of the robbery, so we will charge each

of you with resisting arrest. Your partner is being o↵ered the same deal. Do you want to

confess?”

To formalize this story as a game we need to identify the players, the possible strategies,

and the payo↵s. The two suspects are the players, and each has to choose between two possi-

ble strategies — Confess (C) or Not-Confess (NC). Finally, the payo↵s can be summarized

from the story above as in Figure 6.2. (Note that the payo↵s are all 0 or less, since there are

no good outcomes for the suspects, only di↵erent gradations of bad outcomes.)

Suspect 1

Suspect 2
NC C

NC �1,�1 �10, 0
C 0,�10 �4,�4

Figure 6.2: Prisoner’s Dilemma

As in the Exam-or-Presentation Game, we can consider how one of the suspects — say

Suspect 1 — should reason about his options.

• If Suspect 2 were going to confess, then Suspect 1 would receive a payo↵ of �4 by

confessing and a payo↵ of �10 by not confessing. So in this case, Suspect 1 should

confess.

• If Suspect 2 were not going to confess, then Suspect 1 would receive a payo↵ of 0 by

confessing and a payo↵ of �1 by not confessing. So in this case too, Suspect 1 should

confess.

So confessing is a strictly dominant strategy — it is the best choice regardless of what the

other player chooses. As a result, we should expect both suspects to confess, each getting a

Routing:

Prisoner’s Dilemma:



Sometimes strategies can hurt you
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A Related Story: The Prisoner’s Dilemma. The outcome of the Exam-or-Presentation

Game is closely related to one of the most famous examples in the development of game the-

ory, the Prisoner’s Dilemma. Here is how this example works.

Suppose that two suspects have been apprehended by the police and are being interro-

gated in separate rooms. The police strongly suspect that these two individuals are respon-

sible for a robbery, but there is not enough evidence to convict either of them of the robbery.

However, they both resisted arrest and can be charged with that lesser crime, which would

carry a one-year sentence. Each of the suspects is told the following story. “If you confess,

and your partner doesn’t confess, then you will be released and your partner will be charged

with the crime. Your confession will be su�cient to convict him of the robbery and he will

be sent to prison for 10 years. If you both confess, then we don’t need either of you to testify

against the other, and you will both be convicted of the robbery. (Although in this case

your sentence will be less — 4 years only — because of your guilty plea.) Finally, if neither

of you confesses, then we can’t convict either of you of the robbery, so we will charge each

of you with resisting arrest. Your partner is being o↵ered the same deal. Do you want to

confess?”

To formalize this story as a game we need to identify the players, the possible strategies,

and the payo↵s. The two suspects are the players, and each has to choose between two possi-

ble strategies — Confess (C) or Not-Confess (NC). Finally, the payo↵s can be summarized

from the story above as in Figure 6.2. (Note that the payo↵s are all 0 or less, since there are

no good outcomes for the suspects, only di↵erent gradations of bad outcomes.)

Suspect 1

Suspect 2
NC C

NC �1,�1 �10, 0
C 0,�10 �4,�4

Figure 6.2: Prisoner’s Dilemma

As in the Exam-or-Presentation Game, we can consider how one of the suspects — say

Suspect 1 — should reason about his options.

• If Suspect 2 were going to confess, then Suspect 1 would receive a payo↵ of �4 by

confessing and a payo↵ of �10 by not confessing. So in this case, Suspect 1 should

confess.

• If Suspect 2 were not going to confess, then Suspect 1 would receive a payo↵ of 0 by

confessing and a payo↵ of �1 by not confessing. So in this case too, Suspect 1 should

confess.

So confessing is a strictly dominant strategy — it is the best choice regardless of what the

other player chooses. As a result, we should expect both suspects to confess, each getting a

Routing:

Prisoner’s Dilemma:

X
X



How bad can it get?
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Routing:

Ratio between socially optimal and selfish routing (called the “Price of Anarchy”)?

This example: 80/65 = 1.23x worse

Worst case: How bad can it get?

For selfish routing, “Price of Anarchy” = 4/3



Diffusion of Decisions
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Social Decisions
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Lots of decisions you make depend on what your friends are doing

Where to go?

What game to play?

What software to use?

What OS to use?



Snapchat vs. Instagram
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BluRay vs. HD DVD
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Electric Car vs. Diesel Truck
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How to Reason About Social Decisions?
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You

Given that your friends have all chosen one way or another, what should you choose?



How to Reason About Social Decisions?
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You

“Network Effects”



Game Theoretic Model of Cascades

Model every friendship edge as a 2 player coordination game
2 players – each chooses technology A or B

Each person can only adopt one “behavior”, A or B
You gain more payoff if your friend has adopted the same behavior as you

36

[Morris 2000]

Local view of the network of node v

Social Networks + Game Theory can help us think about this question!



The Model for Two Nodes
Payoff matrix:

If both v and w adopt behaviour A, they each get payoff a > 0
If v and w adopt behaviour B, they each get payoff b > 0
If v and w adopt the opposite behaviours, they each get 0

In some large network:
Each node v is playing a copy of the  
coordination game with each of its neighbours
Payoff: sum of node payoffs per game

37



Calculation of Node v
Let v have d neighbours — some adopt A and some adopt B

Say fraction p of v’s neighbours adopt A and 1-p adopt B
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q
ba
bp =
+

>
Threshold:
v chooses A if

p… frac. v’s neighbours choosing A
q… payoff threshold

Payoffv = a·p·d         if v chooses A 
= b·(1-p)·d    if v chooses B

Thus: v chooses A if: 
a·p·d > b·(1-p)·d



Example Scenario
Scenario:  
Graph where everyone starts with B 
Small set S of early adopters of A 

Hard-wire S – they keep using A no matter what payoffs tell them to do

Assume payoffs are set in such a way that nodes say: 
If more than 50% of my friends take A 
I’ll also take A

(this means: a = b-ε and q>1/2)

39



Example Scenario
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If more than 
q=50% of my 
friends are red 
I’ll be red

},{ vuS =



Example Scenario
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Example Scenario
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Example Scenario
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Example Scenario
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Another example with a=3 and b=2
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q
ba
bp =
+

>

q = 2/5 

(new technology better,  
so q<1/2)



Another example with a=3 and b=2
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Another example with a=3 and b=2
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q
ba
bp =
+

>

q = 2/5 

(new technology better,  
so q<1/2)

After three steps it stops



Result: coexistence of A and B, boundaries in the network 
where the two meet

• Different dominant political/religious views between 
adjacent communities

• Different social networking sites dominated by different 
age groups and lifestyles

• Windows vs. Mac (there are industries that heavily use 
Mac, even though Windows generally dominates)

Another example with a=3 and b=2
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A spread to nodes with sufficiently dense 
internal connectivity

But it could never bridge the “gaps” that 
separate nodes 8–10 and 11–14, and node 6 and 
node 2



Another example with a=3 and b=2
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What could A do to improve its reach?

Raise quality of the product:
• If payoff in underlying coordination game improves 

from a=3 to a=4
• Threshold to switch drops from q=2/5 to q=1/3
• All nodes eventually switch to A

Slightly increasing the quality of innovations can 
dramatically alter their reach



Another example with a=3 and b=2
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What could A do to improve its reach?

Convince key people to be early adopters
• Sometimes it’s impossible to raise the quality any 

higher than it already is
• Threshold stays the same (here q=2/5)
• If 12 or 13 switch, then all nodes 11–17 switch
• If 11 or 14 switch, nothing else happens

Certain people occupy structurally important positions



Another example with a=3 and b=2
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What are the impediments to spread?

Densely connected communities
• 1–3 are well-connected with each other but poorly 

connected to the rest of the network
• Similar story for 11–17
• Homophily impedes diffusion

A cluster of density p is a set of nodes such that every node in 
the set has at least a p fraction of its neighbours in the set

Nodes {1,2,3} are a cluster of density p = ?

Nodes {11,12,13,14,15,16,17} are a cluster of density p = ?



Another example with a=3 and b=2
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What are the impediments to spread?

Densely connected communities
• 1–3 are well-connected with each other but poorly 

connected to the rest of the network
• Similar story for 11–17
• Homophily impedes diffusion

A cluster of density p is a set of nodes such that every node in 
the set has at least a p fraction of its neighbours in the set

Nodes {1,2,3} are a cluster of density p = 2/3

Nodes {11,12,13,14,15,16,17} are a cluster of density p = 2/3



Another example with a=3 and b=2
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Fact: Consider a set of initial adopters of 
behavior A, with a threshold of q for nodes in 
the remaining network to adopt behavior A. 

• If the remaining network contains a cluster 
of density greater than 1−q, then the set of 
initial adopters will not cause a complete 
cascade. 

• Moreover, whenever a set of initial adopters 
does not cause a complete cascade with 
threshold q, the remaining network must 
contain a cluster of den- sity greater than 
1−q

In this model, densely connected communities are impediments to 
diffusion — and they are the only impediments to diffusion



Monotonic Spreading
Observation: Use of A spreads monotonically 
(Nodes only switch B→A, but never back to B)
 
Why? Proof sketch:

Nodes keep switching from B to A: B→A

Now, suppose some node switched back  
from A→B, consider the first node u to  
do so (say at time t)

Earlier at some time t’ (t’<t) the same  
node u switched B→A

So at time t’ u was above threshold for A

But up to time t no node switched back to  
B, so node u could only have more neighbors  
who used A at time t compared to t’.  
There was no reason for u to switch at the first place!

54

!! Contradiction !!

0

1

2

3

5
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Infinite Graphs
Consider infinite graph G 

(but each node has finite number of neighbors!)

We say that a finite set S causes a complete cascade in G with threshold 
q if, when S adopts A, eventually every node in G adopts A

Example: Path

55

ba
bq
+

=

v chooses A if p>q

If q<1/2 then cascade occurs 

S p… frac. v’s nbrs. with A
q… payoff threshold



Infinite Graphs

S

S

If q<1/3 then  
cascade occurs 

Infinite Tree:

Infinite Grid:

56

If q<1/4 then  
cascade occurs 



Cascade Capacity
Def:  The cascade capacity of a graph G is the largest q for which some finite 
set S can cause a complete cascade

Fact: There is no (infinite) G where cascade capacity > ½

Proof idea:
Suppose such G exists: q>½,  
finite S causes cascade

Show contradiction: Argue that  
nodes stop switching after a  
finite # of steps
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S



Cascade Capacity
Fact: There is no G where cascade capacity > ½

Proof sketch:
Suppose such G exists: q>½, finite S causes cascade

Contradiction: Switching stops after a finite # of steps
Define “potential energy”
Argue that it starts finite (non-negative)  
and strictly decreases at every step

“Energy”: = |dout(X)|
|dout(X)| := # of outgoing edges of active set X
The only nodes that switch have a  
strict majority of its neighbors in S
|dout(X)| strictly decreases
It can do so only a finite number of steps
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X



Today: Game Theory in the Wild and Influence 
Through Networks
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■ If people are connected through a network, it’s possible for 
them to influence each other’s behaviour and actions

■Today: why?

▪ Informational 

▪ Direct benefit

▪ Social conformity

X


