Social and Information Networks

CSCC46H, Fall 2022 Lecture 6

> Prof. Ashton Anderson ashton@cs.toronto.edu

Logistics

Blog posts K-R due Friday

Today

Power laws Inequality Unpredictability

How is popularity distributed?

A deeper look at one of our central questions: how connected are people? How many people do people tend to know?

Most know some, and some know a ton

How is popularity *distributed* in the population?

Recall: Degree Distributions

Every node has some number of neighbours, which is their degree

The degree distribution is just the histogram of degrees in the network

The normal/Gaussian distribution Most values are clustered around a typical value

Aguess

From "Height and the Normal Distribution: Evidence from Italian Military Data"

Heights of males in the Italian army Most values are clustered around a typical value

MSN: Degree Distribution

Count, P(k)*n

Plot: fraction of nodes with degree k: $p(k) = \frac{|\{u|d_u = k\}|}{N}$

Degree, k

MSN: Degree Distribution

	3.5e+007
	3e+007
	2.5e+007
N	2e+007
	1.5e+007
	1e+007
	5e+006
	0

Count, P(k)*n

Degree, k

MSN: Log-Log Degree Distribution

Degree, k

Degree distributions in networks

Degree distributions are **heavy-tailed**

Gaussians, which have exponentially decreasing tails, have almost no mass far from their mean

The same is not true of heavy-tailed distributions

The Power Law Distribution

The main heavy-tailed distribution we will consider is the **power law**:

p(x

For example, Newton's law of universal gravitation follows an "inverse-square law", e.g. a power law:

F(r)

To make it an actual distribution, include a normalizing constant c

p(x)

$$x) \propto x^{-\alpha}$$

$$= G \frac{m_1 m_2}{r^2}$$

Where the distance r is the quantity that is changing

$$c) = cx^{-\alpha}$$

Above a certain x value, the power law is **always** higher than the exponential

Exponential vs. Power-Law

Exponential vs. Power-Law

Think: 2⁻¹⁰⁰⁰ is unimaginably tiny, but 1/1000² is only one in a million (~10⁻³⁰² vs. 10⁻⁶)

Exponential vs. Power-Law

y ... logarithmic axis

Power-law vs. Exponential on log-log and semi-log (log-lin) scales

x ... linear y ... logarithmic

We know that height is distributed normally (Gaussian)

But what if it were a power law?

Height as a Power Law

Height as a Power Law

Why is the mean of the power law so far out?

Height as a Power Law

Power Laws in Networks

$$P(E) = \begin{pmatrix} E_{\max} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\max}-E}$$

 $P(k) \propto k^{-\alpha}$

Exponential vs. Power-Law

Test for a power law

How can you tell if empirical data follows a power law?

Let f(x) be the fraction of items that have value x

and constant c]

 $f(x) = cx^{-\alpha}$ $\log f(x) = \log cx^{-\alpha}$ $\log f(x) = \log c - \alpha \log x$

Plot $\log f(x)$ as a function of $\log x$

Straight line with slope $-\alpha$!

- Question: does $f(x) = c/x^{\alpha}$ approximately hold? [for some exponent α

Node Degrees in Networks

Take a network, plot a histogram of P(k) vs. k

Flickr social network n = 584,207,m = 3,555,115

Node Degrees in Networks

Plot the same data on log-log scale:

Power laws are everywhere

Power laws are everywhere

Power-Law Degree Exponents

Power-law degree exponent is typically $2 < \alpha < 3$ Web graph: $\alpha_{in} = 2.1, \alpha_{out} = 2.4$ [Broder et al. 00] Autonomous systems: $\alpha = 2.4$ [Faloutsos³, 99] **Actor-collaborations**: $\alpha = 2.3$ [Barabasi-Albert 00] Citations to papers: $\alpha \approx 3$ [Redner 98] Online social networks: $\alpha \approx 2$ [Leskovec et al. 07]

Scale-Free Networks

Definition:

Networks with a power-law tail in their degree distribution are called "scale-free networks"

Where does the name come from?

- Scale invariance: There is no characteristic scale
- Scale-free function: $f(ax) = a^{\lambda} f(x)$

• Power-law function: $f(ax) = a^{\lambda}x^{\lambda} = a^{\lambda}f(x)$

f(x)

$$f(cx) = a(cx)^{-\alpha} = c^{-\alpha} \cdot ax^{-\alpha} = c^{-\alpha}f(x) \propto f(x)$$

The power law is the unique function with this property!

$$) = ax^{-\alpha}$$

Log() or Exp() are not scale free! $f(ax) = \log(ax) = \log(a) + \log(x) = \log(a) + f(x)$ $f(ax) = \exp(ax) = \exp(x)^a = f(x)^a$

Anatomy of the Long Tail

Mathematics of Power-Laws

Heavy-Tailed Distributions

Degrees are heavily skewed: Distribution P(X > x) is heavy tailed if: $\lim_{x\to\infty}\frac{P(X>x)}{e^{-\lambda x}}=\infty$ Note:

• Normal PDF: $p(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Exponential PDF: $p(x) = \lambda e^{-\lambda x}$ • then $P(X > x) = 1 - P(X \le x) = e^{-\lambda x}$ are not heavy tailed!

Heavy-Tailed Distributions

Various names, kinds and forms:

Long tail, Heavy tail, Zipf's law, Pareto's law

Heavy tailed distributions: P(x) is proportional to:

> power law power law with cutoff stretched exponential log-normal

 $x^{-\alpha}$ $x^{-\alpha} \mathrm{e}^{-\lambda x}$ $x^{\beta-1} \mathrm{e}^{-\lambda x^{\beta}}$ $\frac{1}{x} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$

Mathematics of Power-laws

What is the normalizing constant? $p(x) = Z x^{-\alpha} \qquad Z = ?$

• p(x) is a distribution: $\int p(x) dx = 1$

$$p(x) = \frac{\alpha - x_m}{x_m}$$

$$[\infty^{1-\alpha} - x_m^{1-\alpha}]$$

Need: $\alpha > 1$!

of the power-law distribution $\mathbf{x} \in [\mathbf{x}_m, \infty]$

 \mathbf{x}_{m}

Integral: $\int (ax)^n = \frac{(ax)^{n+1}}{a(n+1)}$

Mathematics of Power-laws

What's the expected value of a power-law random variable X?

•
$$E[X] = \int_{x_m}^{\infty} x p(x) dx = Z \int_{x_m}^{\infty} x^{-\alpha+1} dx$$

$$= \frac{Z}{2-\alpha} [x^{2-\alpha}]_{x_m}^{\infty} = \frac{(\alpha-1)x_m^{\alpha-1}}{-(\alpha-2)} [\infty^{2-\alpha} - x_m^{2-\alpha}]$$

 $\Rightarrow E[X] =$

$$=\frac{\alpha-1}{\alpha-2}x_m$$

Power-law density:

$$p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$$

$$Z = \frac{\alpha - 1}{x_m^{1-\alpha}}$$

Mathematics of Power-Laws

Power-laws have infinite moments!

$$E[X] = \frac{\alpha - 1}{\alpha - 2} x_m$$

• If $\alpha \leq 2: E[X] = \infty$

• If $\alpha \leq 3 : Var[X] = \infty$

Average is meaningless, as the variance is too high! Consequence: Sample average of n samples from a power-law with exponent α

In real networks **2** < α < **3** so: E[X] = constVar[X] = ∞

Why are Power-Laws Surprising

Can not arise from sums of independent events!

- Recall: in G_{np} each pair of nodes in connected independently with prob. p
 - *X*... degree of node *v*
 - $X_w \dots$ event that w links to v
 - $X = \sum_{w} X_{w}$
 - $E[X] = \sum_{w} E[X_{w}] = (n-1)p$
- Now, what is P(X = k)? Central limit theorem!
 - X_1, \ldots, X_n : random vars with mean μ , variance σ^2
 - $S_n = \sum_i X_i$: $E[S_n] = n\mu$, $Var[S_n] = n\sigma^2$, $SD[S_n] = \sigma\sqrt{n}$
 - $P(S_n = E[S_n] + x \cdot SD[S_n]) \sim \frac{1}{2\pi} e^{-\frac{x^2}{2}}$

Random vs. Scale-free network

Random network

(Erdos-Renyi random graph) Degree distribution is Binomial

Scale-free (power-law) network

Degree distribution is Power-law

Consequence: Network Resilience

How does network connectivity change as nodes get removed? [Albert et al. 00; Palmer et al. 01]

Nodes can be removed in two main ways: Random failure:

Remove nodes uniformly at random

Targeted attack:

Remove nodes in order of decreasing degree

This is important for **robustness of the internet** as well as epidemiology

Network Resilience

Real networks are resilient to <u>random failures</u> G_{np} has better resilience to <u>targeted attacks</u> But this is a very small fraction of all web pages

- Need to remove all pages of degree >5 to disconnect the Web

Inequality

A Thought Experiment

One of the crucial properties of heavy-tailed distributions is **inequality** (in some sense this follows from the *definition* of a heavy-tailed distribution)

Some nodes have millions of connections, some have one

A Thought Experiment

Do Drake/Ariana Grande/The Beatles "deserve" their fame?

If you ran the world over again, would they still have been as big?

Run the experiment!

before-heard music)

- Salganik, Dodds, and Watts '06 ran an experiment called MusicLab
- Got ~2,000 people to come to their music download site (never-

Run the experiment!

• 🛶 • 🥰 💿 😭 M http://www.mus	📣 🗸 🧭 🔞 🕅 http://www.musiclab.columbia.edu/me/control/		
	[Help] [Log off]	# of down loads	
	PARKER THEORY: "she said"	159	
	THE FASTLANE: "til death do us part (i dont)"	103	
	SELSIUS: "stars of the city"	62	
	STUNT MONKEY: "inside out"	56	
	BY NOVEMBER: "if i could take you"	55	
	FORTHFADING: "fear"	49	
	HYDRAULIC SANDWICH: "separation anxiety"	43	
	SILENT FILM: "all i have to say"	40	
	UNDO: "while the world passes"	36	
	BENEFIT OF A DOUBT: "run away"	32	
	A BLINDING SILENCE: "miseries and miracles"	27	
	MISS OCTOBER: "pink agression"	26	
	STAR CLIMBER: "tell me"	24	
	FAR FROM KNOWN: "route 9"	22	
	HALL OF FAME: "best mistakes"	21	
	EMBER SKY:	19	

Download counts shown in social influence world, not shown in control world

MusicLab:

success

o 00 0 12 24

- Rank: m indep
 - "quality"
- Success is inherently unpredictable from quality

MusicLab:

What causes power laws?

What underlying process is keeping the line so straight?

And in such a variety of settings?

Central Limit Theorem : Gaussian :: Power Laws?

Preferential Attachment Model

Key idea: rich get richer

Normal distributions can come from many independent random variables averaging out

Power laws can arise from the rich getting richer

Another way to put it: from the **feedback** introduced by correlated events

Rich Get Richer

Example in networks: new nodes are more likely to link to nodes that already have high degree

Herbert Simon's result:

Power-laws arise from "Rich get richer" (cumulative advantage)

Examples [Price '65]

Citations: New citations to a paper are proportional to the number it already has

Herding: If a lot of people cite a paper, then it must be good, and therefore I should cite it too

Think back to wealth

People with different amounts of money

All put it in the bank and get compound interest

Rich get richer (literally)

The Exact Model

We will analyze the following model:

- Nodes arrive in order 1,2,3, ..., n
- When node *j* is created it makes a single out-link to an earlier node *i* chosen:
 - 1) With prob. *p*, *j* links to *i* chosen uniformly at random (from among all earlier nodes)
 - 2) With prob. 1 p, node j chooses i uniformly at random and links to node l that i points to
 - This is same as saying: With prob. 1 p, node j links to node l with prob. proportional to d_l (the in-degree of l)
 - Our graph is directed: Every node has out-degree 1

The Model Gives Power-Laws

<u>Claim</u>: The described model generates networks where the fraction of nodes with in-degree k scales as:

 $P(d_i = k)$

 $\alpha = 1 +$

So we get power-law degree distribution with exponent:

$$k) \propto k^{-(1+rac{1}{q})}$$
 where q=1-p

$$\frac{1}{q} = 1 + \frac{1}{1-p}$$

Degrees Over Time: What We Know

Initial condition:

• $d_i(t) = 0$, when t = i (node *i* just arrived)

Expected change of $d_i(t)$ over time:

Node i gains an in-link at step t + 1 only if a link from a newly created node t + 1 points to it.

What's the probability of this event?

- With prob. p node t + 1 links randomly:
 - Links to our node i with prob. 1/t
- With prob. 1 p node t + 1 links preferentially:
 - Links to our node *i* with prob. $d_i(t)/t$

Prob. node t + 1 links to i is: $p \frac{1}{t} + (1 - p) \frac{d_i(t)}{t}$

Continuous Approximation

- Consider deterministic and continuous **approximation** to the degree of node *i* as a function of time t
 - t is the number of nodes that have arrived so far
 - In-Degree $d_i(t)$ of node i (i = 1, 2, ..., n) is a continuous quantity and it grows **deterministically** as a function of time *t*
- Plan: Analyze $d_i(t)$ continuous in-degree of node *i* at time t > i
 - Note: Node i arrives to the graph at time t

Analyzing this probabilistic discrete process is too involved

Continuous Degree

Time is now continuous, and degrees $d_i(t)$ evolve deterministically

Initial condition: $d_i(i) = 0$, as before

Growth equation:

Remember that before, $p_{t} + \frac{(1-p)d_{i}(t)}{t}$ prob that d_i increases is $\frac{p}{t} + \frac{(1-p)d_{i}(t)}{t}$

Now:
$$\frac{dd_i}{dt} = \frac{p}{t} + \frac{dd_i}{dt}$$

$$\frac{1-p)d_i}{t}$$

What is the rate of growth of d_i ?

 $\frac{dd_i}{dt} = \frac{p + qd_i}{t}$

 $\frac{1}{p + qd_i} \frac{dd_i}{dt} = \frac{1}{t}$

$$\int \frac{1}{p + qd_i} \frac{dd_i}{dt} dt = \int$$

 $\ln(p + qd_i) = q\ln t + c$

 $p + qd_i = At^q$

$$\Rightarrow d_i(t) = \frac{1}{q} (d_i(t))$$

q = (1 - p)

Divide by $p + q d_i(t)$

 $At^q - p$

integrate

Exponentiate and let $A = e^c$

A=?

What is the constant A?

What is the value of constant A?

• We know: $d_i(i) = 0$

• So: $d_i(i) = \frac{1}{a}(Ai^q - p) = 0$

 $\Rightarrow A = \frac{p}{iq}$

• And so $\Rightarrow d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i} \right)^q - 1 \right)$

i = 1 i = 2 i = 3

$$d_i(t) = \frac{1}{q} (At^q - p)$$

What is fraction of nodes with degree at least k?

Given k and time t, what fraction of all functions $d_i(t)$ satisfy $d_i(t) \ge k$?

$$d_i(t) = \frac{p}{q} \left[\frac{1}{q} \right]$$
$$i \le t \left[\frac{q}{q} \right]$$

$$d_1(t) \qquad d_2(t)$$
$$i = 1 \qquad i = 2$$

What is fraction of nodes with degree at least **k**?

 $i \le \frac{1}{t}t \left| \frac{q}{p}k + 1 \right|$

$$d_1(t) \qquad d_2(t)$$
$$i = 1 \qquad i = 2$$

Recall that are t nodes at time t

$${}^{1/q} = \left[\frac{q}{p}k+1\right]^{-1/q}$$

What is the fraction of nodes with degree exactly k?

$$F(k) = \left[\frac{q}{p}k+1\right]^{-1/q}$$
$$\Rightarrow f(k) = \frac{1}{p}\left[\frac{q}{p}k+1\right]^{-1}$$

$$d_1(t)$$
 $d_2(t)$

and f(k) = -dF/dk

1 - 1/q

We're done!!

$$\Rightarrow f(k) = \frac{1}{p} \left[\frac{q}{p} k + 1 \right]$$

As we vary q (= I-p):

- to infinity (huge values rare)
- 2 (typical power law, huge values happen)

gree

Fraction of nodes with k in-links is proportional to $k^{-(1+1/q)}$

• when q is close to 0, link formation is random choices, exponent goes

• when q is close to I, link formation is rich-get-richer, exponent goes to

Preferential attachment: Good news

Preferential attachment gives power-law degrees!

Intuitively reasonable process

Can tune p to get the observed exponent On the web, **P[node has degree d] ~ d**-2.1 2.1 = 1+1/(1-p) <u>p~0.1</u>

Many models lead to Power-Laws

Copying mechanism (directed network) Select a node and an edge of this node Attach to the endpoint of this edge

Walking on a network (directed network)

neighbor of this node

Attaching to edges

Select an edge and attach to both endpoints of this edge

Node duplication

Duplicate a node with all its edges Randomly prune edges of new node

- The new node connects to a node, then to every first, second, ...

Power Laws

They're everywhere

They're "heavy-tailed"

They can arise from rich-get-richer dynamics

They mean the world is more unpredictable, and less meritocratic, than you might think