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Power laws
Inequality
Unpredictability



How Is popularity distributed?

A deeper look at one of our central questions: how connected are
people! How many people do people tend to know!?

Most know some, and some know a ton

How is popularity distributed in the population!?



Recall: Degree Distributions

Every node has some number of neighbours, which is their degree

The degree distribution is just the histogram of degrees in the
network

Degree Histogram
w»




0.5 [ Y T Y T Y T Y

0.45
0.4
0.35 F

0.3 -

0.25 F
0.2
0.15

0.1

0.05

The normal/Gaussian distribution
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Heights of males in the Italian army
Most values are clustered around a typical value



Count, P(kK)*n

MSN: Degree Distribution

Plot: fraction of nodes
with degree k:
B ‘{u‘du — k}‘
p(k) = ——

Degree, k



Count, P(k)™n

MSN: Degree Distribution
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MSN: Log-Log Degree Distribution
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Density

Degree distributions in networks
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Degree distributions are heavy-tailed

Gaussians, which have exponentially decreasing tails, have almost no mass
far from their mean

The same is hot true of heavy-tailed distributions



The Power Law Distribution

The main heavy-tailed distribution we will consider is the power law:

p(r) o< x

For example, Newton’s law of universal gravitation follows an “inverse-square law”,
e.g.a power law:

Mo

F(r)=G

72

To make it an actual distribution, include a normalizing constant ¢

84

p(x) = cx™



Exponential vs. Power-Law

1

\
g O° \ p(z) = cz™™?
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/ p(z) =cx™"
0.2
p(z) = @ 20 40 60 80 100

Above a certain x value, the power law is always higher than the exponential



Exponential vs. Power-Law

1

|
0.6 -
< \ p(z) = cx™"7
Q.
| / p(z) = cz™
0.2
p(x) = C—w/ 20 40 60 80 100

Think: 2-1000 js unimaginably tiny, but 1/10002 is only one in a million
(~10-302 ys, | 0-6)



Exponential vs. Power-Law

Power-law vs. Exponential on log-log and semi-log (log-lin) scales
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p(x)=cx
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Height as a Power Law

We know that height is distributed normally (Gaussian)

But what if it were a power law!?



Height as a Power Law

Power Law vs. Normal Distribution of Human Height
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Height as a Power Law

Power Law vs. Normal Distribution of Human Height
(Log Transformed)
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Power Laws In Networks

Expected based on G,
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Number of nodes with k links

Exponential vs. Power-Law

Bell Curve

Power Law Distribution
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Test for a power law

How can you tell if empirical data follows a power law!?
Let f(x) be the fraction of items that have value x

Question: does f(x) = c¢/x* approximately hold? [for some exponent
and constant c}

f(x) =cx™® o TR

8 S0t b

log f(x) = logcax™
log f(x) =logec — alogx

Degree, k

Plot log f(x) as a function of log x

Straight line with slope -a!



Take a network, plot a histogram of P(k) vs. k

Probability, p;, = P(X=k)

0.7
0.6
0.5
0.4
0.3
0.2

0.1 |

| | | | | |
B Plot: fraction of nodes
— with degree k:
| B ‘{uldu — k}l
p(k) = ——+
0 500 100015002000 25003000 350040

Degree, k

Node Degrees in Networks
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Node Degrees in Networks

Plot the same data on log-log scale:
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Power laws are everywhere
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Power-Law Degree Exponents

In-degree (total, remote-only? distr.

Power-law degree exponent is typically 2 < a < 3 le+1o — T
Web graph: ] '_
A, = 2.1,a,,.,= 2.4 [Broder et al. 00]

Autonomous systemes:

a = 2.4 [Faloutsos3, 99]
Actor-collaborations:

a = 2.3 [Barabasi-Albert 00]
Citations to papers:

a = 3 [Redner 98]
Online social networks:

a = 2 [Leskovec et al. 07]
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Scale-Free Networks

Definition:

Networks with a power-law tail in
their degree distribution are called
“scale-free networks”

Where does the name come from?
Scale invariance: There is no characteristic scale

Scale-free function: f(ax) = a’f(x)

= Power-law function: f(ax) = atxt = a)‘f(x)

F(z) = az™
flcx)=a(cx) ™ =c % - ax *=c “f(x) x f(x)

Log() or Exp() are not scale free!
f(ax) = log(ax) = log(a) +log(x) = log(a) + f(x)
f(ax) = exp(ax) = exp(x)* = f(x)



Anatomy of the Long Tail

RHAPSODY N AMAZON.COM [ NETFLIX

Online services carry far more inventory than traditional retailers TOTAL INVENTORY: ~ TOTAL INVENTORY: . TOTAL INVENTORY:
Rhapsody, for example, offers 19 times as many songs as 735,000 songs : 2.3 million books : 25,000 DVDs
Wal-Mart's stock of 39,000 tunes. The appetite for Rhapsody's - :

more obscure tunes (charted below in yellow) makes up the
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Mathematics of Power-Laws



Heavy-Tailed Distributions

Degrees are heavily skewed:
Distribution P(X > x) is heavy tailed if:

- P(X > x)
lim 3 = 00
X —> 00 e X
Note:
. _G=w?
Normal PDF: p(x) = e 207

V2mo
Exponential PDF: p(x) = le ™
thenP(X >x)=1—-P(X <x) =e ¥
are not heavy tailed!



Heavy-Tailed Distributions

Various names, kinds and forms:

Long tail, Heavy tail, Zipf’s law, Pareto’s law

Heavy tailed distributions:

P(x) is proportional to:

power law x
power law AT
with cutoft ‘
stret Ched. L B—1 A"
exponential

1 (In T — 1)
log-normal | = exp [ S



Mathematics of Power-laws
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Mathematics of Power-laws

What'’s the expected value of a power-law
random variable X?

00

E[X] = fxoo xp(x)dx =7 [ x"*dx
_ L —aloo __ (a_l)x%t_l —-a —Q
=T (X747 = (a—2) [00° X ]
a—1 Need: o> 2!
> E|X| = X

Power-law density:




Mathematics of Power-Laws

Power-laws have infinite moments!
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Why are Power-Laws Surprising

Can not arise from sums of independent events!

Recall: in G, each pair of nodes in connected
independently with prob. p

X... degree of node v

X, ... eventthat wlinkstov

X = ZWXW
E[X] — ZWE[XW] = (n— 1)p
Now, what is P(X = k)? Central limit theorem!

X1, ..., X,,: random vars with mean w, variance o7
S, =>:X;: E[S,] = nu, Var[S,,] = no?, SD[S,,] = o/n

XZ
P(S, = E[S,,] + x-SD[S,]) ~ —e 2

21T



Random vs. Scale-free network

Random network

(Erdos-Renyi random graph) Scale-free (power-law) network

Degree

distribution Is

Power-law
Degree distribution 1s Binomial




Consequence: Network Resilience

How does network
connectivity change

as nodes get removed!

[Albert et al. 00; Palmer et al. O1]

Nodes can be removed in two main ways:
Remove nodes uniformly at random

Remove nodes in order of decreasing degree

This is important for robustness of the internet as well as
epidemiology



Mean path length

Network Resilience
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Real networks are resilient to random failures

G,, has better resilience to targeted attacks

Need to remove all pages of degree >5 to disconnect the Web
But this is a very small fraction of all web pages



Inequality



A Thought Experiment

One of the crucial properties of heavy-tailed distributions is inequality (in
some sense this follows from the definition of a heavy-tailed distribution)

Some nodes have millions of connections, some have one



A Thought Experiment

Do Drake/Ariana Grande/The Beatles “deserve” their fame!?

If you ran the world over again, would they still have been as big?




Run the experiment!

Salganik, Dodds, and Watts 06 ran an experiment called MusicLab

Got ~2,000 people to come to their music download site (never-

before-heard music)

Social influence
condition

e

[ Subjects

/
N

Independent
condition




Run the experiment!

NaMusic Lab o Song Selection Mo Zilla o e

File Edit View Go Bookmarks Tools Help Q i
<§I - B - @ v @ ‘"M http://www.musiclab.columbia.edu/me/control/ v| |[CL
-]
[Help] [Log off]
PARKER THEORY: 159
"she said"
THE FASTLANE: 103
“til death do us part (i dont)’
SELSIUS: 62
“stars of the city"
STUNT MONKEY: 56
“inside out"
BY NOVEMBER: 55
“if icould take you"
FORTHFADING: 49
“fear’
HYDRAULIC SANDWICH: 43
“sepamtion anxiety”
SILENT FILM: 40
“all i have to say”
UNDO: 36
“while the world passes”
BENEFITOF A DOUBT: 32
“run away”’
A BLINDING SILENCE: 27
"miseries and miaclkes”
MISS OCTOBER: 26
“pink agression”
STAR CLIMBER: 24
.n“ m'
FAR FROM KNOWN: 22
"moute 9"
HALL OF FAME: 21
"best mistakes”
EMBER SKY: 19
“this upcoming winter" -
-
e
|

Download counts shown in social influence world, not shown in control world



MusicLab

pl T L5 K PR AN w.
%ox @oc_ ° o 2 o
® oo0 © 05 o -
&8 %%c8% o oo o @ @ e R—
om..o “Mo% oﬂﬂm x e ooMo @ - o 4 m
r OOM 8000000 ..ﬂo o 2 ok-
® 00°% oo 0 p ) c
: o < 00“ O%OOOMU%OO a
t N o 00800000 ohv e o, [ © o
. o nwo%oo & @000 ™
o o M o °_ %aeS g
P“ 9% o000 oﬂo%@o“u %o%oo
° O o 0 o . 8
L : . _°9 da) X
Lo Q¥ < O Q0

aauanjui

AN ™ <

w Huey

SUCCESS

Success is inherently unpredictable from quality



MusicLab:

The iTunes Marketplace

Justin Timberiake

Madonna

Tom Petlty

Fairly Popular Band You Roommate's Band
/ Kinda Popular Band  Not A Popular Band \

/ l

: S———__ 7
ITunes O0NYS 6. 100k downlcadsiweek

i1 Tunes Music Sales

5k-100k downloads/w=k

Who ends up here Is pretty random!



What causes power laws?

What underlying process is keeping the line so straight!?

And in such a variety of settings!
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Preferential Attachment Model



Key idea: rich get richer

Normal distributions can come from many independent random
variables averaging out

Power laws can arise from the rich getting richer

Another way to put it: from the feedback introduced by



Rich Get Richer

Example in networks: new nodes are more likely to link to nodes that
already have high degree

Herbert Simon’s result:

Power-laws arise from “Rich get richer” (cumulative
advantage)

Examples [Price "65]

Citations: New citations to a paper are proportional to the number it
already has

Herding: If a lot of people cite a paper, then it must be good, and
therefore | should cite it too



Think back to wealth

People with different amounts of money

All put it in the bank and get compound interest

Rich get richer (literally)

10"
10
10 \
Ll © wealth O
0 = 10 1

10 10 10 10



The Exact Model

Node |

l‘

We will analyze the following model:
Nodes arrive in order 1,2,3, ..., n
When node j is created it makes a
single out-link to an earlier node t chosen:

1) With prob. p, j links to i chosen uniformly at
random (from among all earlier nodes)

'

2) With prob. 1 — p, node j chooses i uniformly at
random and links to node / that i points to

This is same as saying: With prob. 1 — p, node j links to
node I with prob. proportional to d, (the in-degree of )

Our graph is directed: Every node has out-degree 1



The Model Gives Power-Laws

Claim: The described model generates networks where the fraction of
nodes with in-degree k scales as:

P(d; = k) < k(3

So we get power-law 1 1
degree distribution a =1+ = 1 | _
with exponent: q p




Degrees Over Time: What We Know

Node |

Initial condition:
d;(t) =0,whent =1 (nodeijustarrived)
Expected change of d,;(t) over time:

Node i gains an in-link at step t 4+ 1 only if a link
from a newly created node t + 1 points to it.

What'’s the probability of this event?

With prob. p node t + 1 links randomly:
Links to our node i with prob. 1/t

With prob. 1 — p node t + 1 links preferentially:
Links to our node i with prob. d;(t)/t

di(t)

Prob. node t 4+ 1 links to 1 is: p% + (1 —p) n

f




Continuous Approximation

Consider deterministic and continuous
approximation to the degree of node 1 as a
function of time t

t is the number of nodes that have arrived so far

In-Degree d;(t) of node i (i = 1,2,...,n)is a
continuous quantity and it grows
deterministically as a function of time ¢

Plan: Analyze d,(t) — continuous in-degree
of nodetattimet > 1

Note: Node i arrives to the graph at time t



Continuous Degree

Time is now continuous, and degrees dj(t) evolve deterministically

Initial condition: dj(i) = 0, as before

Growth equation:

Remember that before, P (1 o p)di (t)
prob that d; increases is f f

Now:



What is the rate of growth of d;?

ddi_p—Fde’
dt
1 dd; 1
p+qd; dt  t

In(p+qd;) =qlnt +c
p + qd; = At”
1
= di(t) = ~(At? —p)

q=(1-p)

Divide by
p+qd;(t)

integrate

Exponentiate
and let A = e

A=!



What iIs the constant A?

What is the value of constant A?
1
We know: d;(i) =0 d;(t) = p (At — p)

So: d; (i) = é(mq —p)=0

_ P
=>A—iq

Observation: Old nodes

q
And so = di (t) P ((E) — 1) (smalli values) have

i higher in-degrees d; (t)

q
. ® o - ..

i=1 =2 1I=3 i=t-1 1=t




What is fraction of nodes with degree at least
K?

Given k£ and time ¢, what fraction of all functions d;(t) satisfy d;(t) > k?

i g -
— Z —

d;(t) = g

i<tdk 11

i =1 i=2 i=3 t* i=t1 i=t



What is fraction of nodes with degree at least
K?

Fraction that satisfy is: < —

1 |q
{

i=1 1=2 1=3 I=t-1 1=t



What is the fraction of nodes with degree exactly k?

i 1—1/4q
Fk)= |2k +1 and  f(k) = —dF/dk
P
1T 1—1-1/q
= fk) = |2k +1
p [p

1=1 1=2 1=3 I=t-1 1=t



We’'re done!!

Degree

Fraction of nodes with k in-links is proportional to &~ (!*1/9)

As we vary q (= |-p):

e when g is close to 0, link formation , exponent goes
to infinity (huge values rare)
e when q is close to |, link formation , exponent goes to

2 (typical power law, huge values happen)



Preferential attachment: Good news

Preferential attachment gives
power-law degrees!

Intuitively reasonable process

Can tune P to get the observed exponent
On the web, P[node has degree d] ~ d-2-1
2.1 = I+1/(l-p) p~0.I




Many models lead to Power-Laws

Copying mechanism (directed network)

Select a node and an edge of this node
Attach to the endpoint of this edge

Walking on a network (directed network)

The new node connects to a node, then to every first, second, ...
neighbor of this node

Attaching to edges
Select an edge and attach to both endpoints of this edge

Node duplication

Duplicate a node with all its edges

Randomly prune edges of new node



P(x)

P(x)

P(x)

P(x)

They’re everywhere

Power Laws

They’re “heavy-tailed”
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