Social and Information Networks

CSCC46H, Fall 2022
Lecture 6

Prof. Ashton Anderson
ashton@cs.toronto.edu

Logistics

Blog posts K-R due Friday

Today

Power laws
Inequality
Unpredictability

How is popularity distributed?

A deeper look at one of our central questions: how connected are people? How many people do people tend to know?

Most know some, and some know a ton

How is popularity distributed in the population?

Recall: Degree Distributions

Every node has some number of neighbours, which is their degree
The degree distribution is just the histogram of degrees in the network

A guess

The normal/Gaussian distribution Most values are clustered around a typical value

A guess

From "Height and the Normal Distribution: Evidence from Italian Military Data"
Heights of males in the Italian army Most values are clustered around a typical value

MSN: Degree Distribution

Count, $P(k)^{*} n$
?

Plot: fraction of nodes with degree k :

Degree, k
$p(k)=\frac{\left|\left\{u \mid d_{u}=k\right\}\right|}{N}$

MSN: Degree Distribution

Degree, k

MSN: Log-Log Degree Distribution

Degree distributions in networks

Degree distributions are heavy-tailed

Gaussians, which have exponentially decreasing tails, have almost no mass far from their mean

The same is not true of heavy-tailed distributions

The Power Law Distribution

The main heary-tailed distribution we will consider is the power law:

$$
p(x) \propto x^{-\alpha}
$$

For example, Newton's law of universal gravitation follows an "inverse-square law", e.g. a power law:

$$
F(r)=G \frac{m_{1} m_{2}}{r^{2}} \quad \begin{gathered}
\text { Where the distance } r \text { is the quantity } \\
\text { that is changing }
\end{gathered}
$$

To make it an actual distribution, include a normalizing constant c

$$
p(x)=c x^{-\alpha}
$$

Exponential vs. Power-Law

Above a certain x value, the power law is always higher than the exponential

Exponential vs. Power-Law

Think: 2^{-1000} is unimaginably tiny, but $\mathrm{I} / 1000^{2}$ is only one in a million $\left(\sim 10^{-302}\right.$ vs. $\left.10^{-6}\right)$

Exponential vs. Power-Law

Power-law vs. Exponential on log-log and semi-log (log-lin) scales

Height as a Power Law

We know that height is distributed normally (Gaussian)

But what if it were a power law?

Height as a Power Law

Why is the mean of the
power law so far out?

Height as a Power Law

Power Laws in Networks

Expected based on $G_{n p}$

$$
P(E)=\binom{E_{\max }}{E} p^{E}(1-p)^{E_{\max }-E}
$$

Found in data

$P(k) \propto \boldsymbol{k}^{-\alpha}$

Exponential vs. Power-Law

Test for a power law

How can you tell if empirical data follows a power law?
Let $f(x)$ be the fraction of items that have value x

Question: does $f(x)=c / x^{\alpha}$ approximately hold? [for some exponent α and constant c]

$$
\begin{aligned}
f(x) & =c x^{-\alpha} \\
\log f(x) & =\log c x^{-\alpha} \\
\log f(x) & =\log c-\alpha \log x
\end{aligned}
$$

Plot $\log f(x)$ as a function of $\log x$

Straight line with slope $-\alpha$!

Node Degrees in Networks

Take a network, plot a histogram of $\mathrm{P}(\mathrm{k})$ vs. k

Node Degrees in Networks

Plot the same data on log-log scale:

Power laws are everywhere

Power laws are everywhere

Power-Law Degree Exponents

Power-law degree exponent is typically $2<a<3$
Web graph:

$$
a_{\text {in }}=2.1, a_{\text {out }}=2.4 \text { [Broder et al. 00] }
$$

Autonomous systems:
$\mathrm{a}=2.4$ [Faloutsos ${ }^{3}$, 99]
Actor-collaborations:

$$
\mathrm{a}=2.3 \text { [Barabasi-Albert 00] }
$$

Citations to papers:

$$
a \approx 3 \text { [Redner 98] }
$$

Online social networks:
a ≈ 2 [Leskovec et al. 07]

Scale-Free Networks

- Definition:

Networks with a power-law tail in their degree distribution are called
"scale-free networks"

- Where does the name come from?
- Scale invariance: There is no characteristic scale
- Scale-free function: $f(a x)=a^{\lambda} f(x)$

The power law is the unique function with this property!

- Power-law function: $f(a x)=a^{\lambda} x^{\lambda}=a^{\lambda} f(x)$

$$
\begin{gathered}
f(x)=a x^{-\alpha} \\
f(c x)=a(c x)^{-\alpha}=c^{-\alpha} \cdot a x^{-\alpha}=c^{-\alpha} f(x) \propto f(x)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Log() or } \operatorname{Exp}() \text { are not scale free! } \\
& f(a x)=\log (a x)=\log (a)+\log (x)=\log (a)+f(x) \\
& f(a x)=\exp (a x)=\exp (x)^{a}=f(x)^{a}
\end{aligned}
$$

Anatomy of the Long Tail

ANATOMY OF THE LONG TAIL

Online services carry far more inventory than traditional retailers. Rhapsody, for example, offers 19 times as many songs as Wal-Mart's stock of 39,000 tunes. The appetite for Rhapsody's Wal-Wart's stock of 39,000 tunes. The appetite for Rhapsody's
more obscure tunes (charted below in yellow) makes up the more obscure tunes (charted below in yellow) makes up the
so-called Long Tail. Mesnwhile, even as consumers flock to so-called Long Tail. Meanwhile, even as consumers flock to
mainstream books, music, and films (right), there is real demand mainstream books, music, and fil
for niche fare found only online.
verage number of plays per month on Rhapsody

available only

 on RhapsodyRHAPSODY
TOTALIINEFITOEY 735,000 songs

Whet Mart We Mart

then 3 acto nemer

TOTAL inventeay: 2.3 million books

typical
 iwes themetonts:

NETFLIX

TOTAL BNENTORY: 25.000 DVDs
thical
 Paxim

THE MEH GROWTH MARKET:

OBSCURE PRODUCTS YOU CANT GET ANYUHERE BUT ONLINE

Mathematics of Power-Laws

Heavy-Tailed Distributions

- Degrees are heavily skewed:

Distribution $P(X>x)$ is heavy tailed if:

$$
\lim _{x \rightarrow \infty} \frac{P(X>x)}{\boldsymbol{e}^{-\lambda x}}=\infty
$$

- Note:
- Normal PDF: $p(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
- Exponential PDF: $p(x)=\lambda e^{-\lambda x}$
- then $P(X>x)=1-P(X \leq x)=e^{-\lambda x}$
are not heavy tailed!

Heavy-Tailed Distributions

Various names, kinds and forms:
Long tail, Heavy tail, Zipf's law, Pareto's law

Heavy tailed distributions:
$\mathrm{P}(\mathrm{x})$ is proportional to:

power law	$x^{-\alpha}$
power law with cutoff stretched	$x^{-\alpha} \mathrm{e}^{-\lambda x}$
exponential	$x^{\beta-1} \mathrm{e}^{-\lambda x^{\beta}}$
log-normal	$\frac{1}{x} \exp \left[-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right]$

Mathematics of Power-laws

- What is the normalizing constant?

$$
p(x)=Z x^{-\alpha} \quad Z=?
$$

- $\boldsymbol{p}(\boldsymbol{x})$ is a distribution: $\int \boldsymbol{p}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}=\mathbf{1}$

$p(x)$ diverges as $x \rightarrow 0$
so x_{m} is the minimum value
$x \in\left[x_{m},{ }^{\infty}\right]$

$$
p(x)=\frac{\alpha-1}{x_{m}}\left(\frac{x}{x_{m}}\right)^{-\alpha}
$$

Integral:
$\int(a x)^{n}=\frac{(a x)^{n+1}}{a(n+1)}$

Mathematics of Power-laws

- What's the expected value of a power-law random variable X ?

$$
\begin{aligned}
& =E[X]=\int_{x_{m}}^{\infty} x p(x) d x=Z \int_{x_{m}}^{\infty} x^{-\alpha+1} d x \\
& =\frac{Z}{2-\alpha}\left[x^{2-\alpha}\right]_{x_{m}}^{\infty}=\frac{(\alpha-1) x_{m}^{\alpha-1}}{-(\alpha-2)}\left[\infty^{2-\alpha}-x_{m}^{2-\alpha}\right]
\end{aligned}
$$

$$
\Rightarrow E[X]=\frac{\alpha-1}{\alpha-2} x_{m}
$$

Need: $\alpha>2$!

Power-law density:

$$
\begin{aligned}
& p(x)=\frac{\alpha-1}{x_{m}}\left(\frac{x}{x_{m}}\right)^{-\alpha} \\
& Z=\frac{\alpha-1}{x_{m}^{1-\alpha}}
\end{aligned}
$$

Mathematics of Power-Laws

- Power-laws have infinite moments!

$$
E[X]=\frac{\alpha-1}{\alpha-2} x_{m}
$$

In real networks
$2<\alpha<3$ so
$E[X]=$ const
$\operatorname{Var}[X]=\infty$

- If $\alpha \leq 2: E[X]=\infty$
- If $\alpha \leq 3: \operatorname{Var}[X]=\infty$
- Average is meaningless, as the variance is too high!
- Consequence: Sample average of n samples from a power-law with exponent α

Why are Power-Laws Surprising

Can not arise from sums of independent events!

- Recall: in $\boldsymbol{G}_{\boldsymbol{n} \boldsymbol{p}}$ each pair of nodes in connected independently with prob. \boldsymbol{p}
- \boldsymbol{X}... degree of node \boldsymbol{v}
- $\boldsymbol{X}_{\boldsymbol{w}} \ldots$ event that \boldsymbol{w} links to \boldsymbol{v}
- $\boldsymbol{X}=\sum_{\boldsymbol{w}} \boldsymbol{X}_{\boldsymbol{w}}$
- $E[X]=\sum_{w} E\left[X_{w}\right]=(n-1) p$
- Now, what is $P(X=k)$? Central limit theorem!
- $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$: random vars with mean μ, variance σ^{2}
- $\boldsymbol{S}_{\boldsymbol{n}}=\sum_{i} \boldsymbol{X}_{\boldsymbol{i}}: E\left[S_{n}\right]=\boldsymbol{n} \boldsymbol{\mu}, \operatorname{Var}\left[S_{n}\right]=\boldsymbol{n} \boldsymbol{\sigma}^{2}, \mathrm{SD}\left[S_{n}\right]=\boldsymbol{\sigma} \sqrt{\boldsymbol{n}}$
- $\boldsymbol{P}\left(\boldsymbol{S}_{\boldsymbol{n}}=E\left[S_{n}\right]+\boldsymbol{x} \cdot \mathbf{S D}\left[S_{n}\right]\right) \sim \frac{1}{2 \pi} \mathbf{e}^{-\frac{\mathrm{x}^{2}}{2}}$

Random vs. Scale-free network

Random network
(Erdos-Renyi random graph)

Scale-free (power-law) network

Degree
distribution is
Power-law

Consequence: Network Resilience

How does network
connectivity change
as nodes get removed?
[Albert et al. 00; Palmer et al. 01]

Nodes can be removed in two main ways:

Random failure:

Remove nodes uniformly at random

Targeted attack:

Remove nodes in order of decreasing degree
This is important for robustness of the internet as well as epidemiology

Network Resilience

Internet network

$G_{n p}$ network

Real networks are resilient to random failures
G_{np} has better resilience to targeted attacks
Need to remove all pages of degree >5 to disconnect the Web But this is a very small fraction of all web pages

Inequality

A Thought Experiment

One of the crucial properties of heavy-tailed distributions is inequality (in some sense this follows from the definition of a heavy-tailed distribution)

Some nodes have millions of connections, some have one

A Thought Experiment

Do Drake/Ariana Grande/The Beatles "deserve" their fame?

If you ran the world over again, would they still have been as big?

Run the experiment!

Salganik, Dodds, and Watts '06 ran an experiment called MusicLab

Got $\sim 2,000$ people to come to their music download site (never-before-heard music)

Run the experiment!

Download counts shown in social influence world, not shown in control world

MusicLab:

MusicLab:

Who ends up here is pretty random!

What causes power laws?

What underlying process is keeping the line so straight?
And in such a variety of settings?

Central Limit Theorem : Gaussian :: \qquad : Power Laws?

Preferential Attachment Model

Key idea: rich get richer

Normal distributions can come from many independent random variables averaging out

Power laws can arise from the rich getting richer

Another way to put it: from the feedback introduced by correlated events

Rich Get Richer

Example in networks: new nodes are more likely to link to nodes that already have high degree

Herbert Simon's result:
Power-laws arise from "Rich get richer" (cumulative advantage)

Examples [Price "65]

Citations: New citations to a paper are proportional to the number it already has
Herding: If a lot of people cite a paper, then it must be good, and therefore I should cite it too

Think back to wealth

People with different amounts of money

All put it in the bank and get compound interest

Rich get richer (literally)

The Exact Model

We will analyze the following model:

- Nodes arrive in order $1,2,3, \ldots, n$
- When node \boldsymbol{j} is created it makes a single out-link to an earlier node \boldsymbol{i} chosen:
- 1) With prob. $\boldsymbol{p}, \boldsymbol{j}$ links to \boldsymbol{i} chosen uniformly at random (from among all earlier nodes)
- 2) With prob. $\mathbf{1}$ - \boldsymbol{p}, node \boldsymbol{j} chooses \boldsymbol{i} uniformly at random and links to node l that i points to
- This is same as saying: With prob. $\mathbf{1}-\boldsymbol{p}$, node \boldsymbol{j} links to node \boldsymbol{l} with prob. proportional to $\boldsymbol{d}_{\boldsymbol{l}}$ (the in-degree of \boldsymbol{l})
- Our graph is directed: Every node has out-degree 1

The Model Gives Power-Laws

Claim:The described model generates networks where the fraction of nodes with in-degree k scales as:

$$
P\left(d_{i}=k\right) \propto k^{-\left(1+\frac{1}{q}\right)} \quad \text { where } \mathrm{q}=1-\mathrm{p}
$$

So we get power-law degree distribution with exponent:

$$
\alpha=1+\frac{1}{q}=1+\frac{1}{1-p}
$$

Degrees Over Time: What We Know

- Initial condition:
- $\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})=\mathbf{0}$, when $\boldsymbol{t}=\boldsymbol{i} \quad$ (node i just arrived)
- Expected change of $\boldsymbol{d}_{i}(t)$ over time:
- Node \boldsymbol{i} gains an in-link at step $\boldsymbol{t}+\mathbf{1}$ only if a link
 from a newly created node $\boldsymbol{t}+\mathbf{1}$ points to it.
- What's the probability of this event?
- With prob. \boldsymbol{p} node $\boldsymbol{t}+\mathbf{1}$ links randomly: - Links to our node \boldsymbol{i} with prob. $\mathbf{1 / t}$
- With prob. $\mathbf{1}-\boldsymbol{p}$ node $\boldsymbol{t}+\mathbf{1}$ links preferentially: - Links to our node \boldsymbol{i} with prob. $\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t}) / \boldsymbol{t}$
- Prob. node $t+1$ links to i is: $p \frac{1}{t}+(1-p) \frac{d_{i}(t)}{t}$

Continuous Approximation

Analyzing this probabilistic discrete process is too involved

- Consider deterministic and continuous approximation to the degree of node \boldsymbol{i} as a function of time \boldsymbol{t}
- \boldsymbol{t} is the number of nodes that have arrived so far
- In-Degree $\boldsymbol{d}_{\boldsymbol{i}}(\boldsymbol{t})$ of node $\boldsymbol{i}(i=1,2, \ldots, n)$ is a continuous quantity and it grows deterministically as a function of time \boldsymbol{t}
- Plan: Analyze $d_{i}(t)$ - continuous in-degree of node \boldsymbol{i} at time $\boldsymbol{t}>\boldsymbol{i}$
- Note: Node \boldsymbol{i} arrives to the graph at time \boldsymbol{t}

Continuous Degree

Time is now continuous, and degrees $\mathrm{di}_{\mathrm{i}}(\mathrm{t})$ evolve deterministically

Initial condition: $\mathrm{d}_{\mathrm{i}}(\mathrm{i})=0$, as before

Growth equation:
Remember that before, prob that d_{i} increases is

$$
\frac{p}{t}+\frac{(1-p) d_{i}(t)}{t}
$$

$$
\text { Now: } \quad \frac{d d_{i}}{d t}=\frac{p}{t}+\frac{(1-p) d_{i}}{t}
$$

What is the rate of growth of \boldsymbol{d}_{i} ?

$$
\begin{aligned}
\frac{d d_{i}}{d t} & =\frac{p+q d_{i}}{t} & & q=(1-p) \\
\frac{1}{p+q d_{i}} \frac{d d_{i}}{d t} & =\frac{1}{t} & & \begin{array}{l}
\text { Divide by } \\
p+q d_{i}(t)
\end{array} \\
\int \frac{1}{p+q d_{i}} \frac{d d_{i}}{d t} d t & =\int \frac{1}{t} d t & & \\
\ln \left(p+q d_{i}\right) & =q \ln t+c & & \text { integrate } \\
p+q d_{i} & =A t^{q} & & \begin{array}{l}
\text { Exponentiate } \\
\text { and let } A=e^{c}
\end{array} \\
\Rightarrow d_{i}(t) & =\frac{1}{q}\left(A t^{q}-p\right) & & \mathbf{A}=?
\end{aligned}
$$

What is the constant A?

What is the value of constant A ?

- We know: $d_{i}(i)=0$

$$
d_{i}(t)=\frac{1}{q}\left(A t^{q}-p\right)
$$

- So: $d_{i}(i)=\frac{1}{q}\left(A i^{q}-p\right)=0$
$-\Rightarrow A=\frac{p}{i^{q}}$
- And so $\Rightarrow d_{i}(t)=\frac{p}{q}\left(\left(\frac{t}{i}\right)^{q}-1\right)$

Observation: Old nodes (small i values) have higher in-degrees $d_{i}(t)$

What is fraction of nodes with degree at least k ?

Given k and time t, what fraction of all functions $d_{i}(t)$ satisfy $d_{i}(t) \geq k$?

$$
d_{i}(t)=\frac{p}{q}\left[\left(\frac{t}{i}\right)^{q}-1\right] \geq k \quad \begin{aligned}
& \text { Degree as a } \\
& \text { function of time }
\end{aligned}
$$

$$
i \leq t\left[\frac{q}{p} k+1\right]_{t^{*}}^{-1 / q} \quad \text { Rewrite in terms of } i
$$

What is fraction of nodes with degree at least k ?

Fraction that satisfy is: $\quad i \leq \frac{t^{*}}{t}$
Recall that are t nodes at time t

$$
i \leq \frac{1}{t} t\left[\frac{q}{p} k+1\right]^{-1 / q}=\left[\frac{q}{p} k+1\right]^{-1 / q}
$$

What is the fraction of nodes with degree exactly k ?

$$
\begin{aligned}
F(k) & =\left[\frac{q}{p} k+1\right]^{-1 / q} \text { and } \quad f(k)=-d F / d k \\
\Rightarrow f(k) & =\frac{1}{p}\left[\frac{q}{p} k+1\right]^{-1-1 / q}
\end{aligned}
$$

$$
\begin{array}{ccc}
d_{1}(t) & d_{2}(t) & \cdots \\
\mathbf{i}=\mathbf{1} & \mathbf{i}=\mathbf{2} & \mathbf{i}=\mathbf{3}
\end{array}
$$

We’re done!!

$$
\left.\Rightarrow f(k)=\frac{1}{p}\left[\frac{q}{p} k+1\right]-1-1 / q\right)
$$

Fraction of nodes with k in-links is proportional to $k^{-(1+1 / q)}$
As we vary $q(=1-p)$:

- when q is close to 0 , link formation is random choices, exponent goes to infinity (huge values rare)
- when q is close to I, link formation is rich-get-richer, exponent goes to 2 (typical power law, huge values happen)

Preferential attachment: Good news

Preferential attachment gives
power-law degrees!
Intuitively reasonable process
Can tune \boldsymbol{p} to get the observed exponent
On the web, P[node has degree d] ~ d-2.I
$2.1=I+I /(I-p) \quad p \sim 0.1$

Many models lead to Power-Laws

Copying mechanism (directed network)

Select a node and an edge of this node
Attach to the endpoint of this edge

Walking on a network (directed network)

The new node connects to a node, then to every first, second, ... neighbor of this node

Attaching to edges

Select an edge and attach to both endpoints of this edge

Node duplication

Duplicate a node with all its edges
Randomly prune edges of new node

Power Laws

They're "heavy-tailed"

They can arise from rich-get-richer dynamics

They mean the world is more unpredictable, and less meritocratic, than you might think

