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Logistics

A1 due next week on MarkUs, last time submissions will be accepted is 
Friday at 10am ET.

First letter of last name A–J? First blog post due next Friday at 5pm.
https://cmsweb.utsc.utoronto.ca/c46blog-f22/
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Today

Signed networks
Homophily and Friendship Paradox



Positive and Negative Relationships

So far, edges mostly interpreted positively 
—Friendship
—Interaction
—Collaboration

But relationships can be negative too
—Dislike
—Bad interaction
—Enemy



Network Representation

How would you model this?



Signed Networks

Networks with positive and negative 
relationships

Consider an undirected complete graph
Label each edge as either:
Positive: friendship, trust, positive sentiment, …
Negative: enemy, distrust, negative sentiment, …



Questions about Signed Networks
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Figure 9. Normalized country adjacency matrix. Matrix of edges between countries with > 1
million users and > 50% Facebook penetration shown on a log scale. To normalize, we divided each
element of the adjacency matrix by the product of the row country degree and column country degree.

country, and the data shows that 84.2% percent of edges are within countries. So the network divides fairly
cleanly along country lines into network clusters or communities. This mesoscopic-scale organization is
to be expected as Facebook captures social relationships divided by national borders. We can further
quantify this division using the modularity Q [37] which is the fraction of edges within communities
minus the expected fraction of edges within communities in a randomized version of the network that
preserves the degrees for each individual [38], but is otherwise random. In this case, the communities
are the countries. The computed value is Q = 0.7486 which is quite large [39] and indicates a strongly
modular network structure at the scale of countries. Especially considering that unlike numerous studies
using the modularity to detect communities, we in no way attempted to maximize it directly, and instead
merely utilized the given countries as community labels.

We visualize this highly modular structure in Fig. 9. The figure displays a heatmap of the number
of edges between the 54 countries where the active Facebook user population exceeds one million users
and is more than 50% of the internet-enabled population [40]. To be entirely accurate, the shown matrix
contains each edge twice, once in both directions, and therefore has twice the number of edges in diagonal
elements. The number of edges was normalized by dividing the ijth entry by the row and column sums,
equal to the product of the degrees of country i and j. The ordering of the countries was then determined
via complete linkage hierarchical clustering.

What are the typical patterns of interaction in 
signed networks?

How do we reason about local and global structure 
of positive and negative interactions?

What are the patterns in empirical data?



Signed Networks

--
+

Networks with positive and  
negative relationships

Our basic unit of investigation  
will be signed triangles

Focus on undirected networks
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+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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their personal relationships, and hence they will be less abundant in real social settings than

Four signed triads: which are stable?
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Theory of Structural Balance
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UnbalancedBalanced
Consistent with “friend of a friend” or 

“enemy of the enemy” intuition
Inconsistent with the “friend of a friend” or 

“enemy of the enemy” intuition

Start with the intuition [Heider ’46]:
Friend of my friend is my friend
Enemy of enemy is my friend
Enemy of friend is my enemy

Look at connected triples of nodes:



Structural Balance

Which network is balanced?
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balanced not balanced

Figure 5.2: The labeled four-node complete graph on the left is balanced; the one on the
right is not.

balanced triangles.

Defining Structural Balance for Networks. So far we have been talking about struc-

tural balance for groups of three nodes. But it is easy to create a definition that naturally

generalizes this to complete graphs on an arbitrary number of nodes, with edges labeled by

+’s and �’s.

Specifically, we say that a labeled complete graph is balanced if every one of its triangles

is balanced — that is, if it obeys the following:

Structural Balance Property: For every set of three nodes, if we consider the three

edges connecting them, either all three of these edges are labeled +, or else exactly

one of them is labeled +.

For example, consider the two labeled four-node networks in Figure 5.2. The one on

the left is balanced, since we can check that each set of three nodes satisfies the Structural

Balance Property above. On the other hand, the one on the right is not balanced, since among

the three nodes A, B, C, there are exactly two edges labeled +, in violation of Structural

Balance. (The triangle on B, C,D also violates the condition.)

Our definition of balanced networks here represents the limit of a social system that has

eliminated all unbalanced triangles. As such, it is a fairly extreme definition — for example,

one could instead propose a definition which only required that at least some large percentage

of all triangles were balanced, allowing a few triangles to be unbalanced. But the version

with all triangles balanced is a fundamental first step in thinking about this concept; and



Balanced/Unbalanced Networks

BalancedUnbalanced

Define:  A complete graph is balanced if every connected triple of 
nodes has:

All 3 edges labeled +   or   Exactly 1 edge labeled +



The Tribes of Eastern Central 
Highlands of New Guinea



How general is this?
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mutual friends 

inside X

mutual friends 

inside Y

set X set Y

mutual

antagonism

between

sets

Figure 5.3: If a complete graph can be divided into two sets of mutual friends, with complete
mutual antagonism between the two sets, then it is balanced. Furthermore, this is the only
way for a complete graph to be balanced.

as we will see next, it turns out to have very interesting mathematical structure that in fact

helps to inform the conclusions of more complicated models as well.

5.2 Characterizing the Structure of Balanced Networks

At a general level, what does a balanced network (i.e. a balanced labeled complete graph)

look like? Given any specific example, we can check all triangles to make sure that they

each obey the balance conditions; but it would be much better to have a simple conceptual

description of what a balanced network looks like in general.

One way for a network to be balanced is if everyone likes each other; in this case, all

triangles have three + labels. On the other hand, the left-hand side of Figure 5.2 suggests

a slightly more complicated way for a network to be balanced: it consists of two groups of

friends (A, B and C, D), with negative relations between people in di↵erent groups. This is

actually true in general: suppose we have a labeled complete graph in which the nodes can

be divided into two groups, X and Y , such that every pair of nodes in X like each other,

every pair of nodes in Y like each other, and everyone in X is the enemy of everyone in

Y . (See the schematic illustration in Figure 5.3.) You can check that such a network is

balanced: a triangle contained entirely in one group or the other has three + labels, and a

triangle with two people in one group and one in the other has exactly one + label.

So this describes two basic ways to achieve structural balance: either everyone likes

each other; or the world consists of two groups of mutual friends with complete antagonism



Local Balance ! Global Factions

+ +
L

+
R

-

The Balance Theorem: Balance implies global coalitions 
[Cartwright-Harary]

If all triangles are balanced, then either:
A) The network contains only positive edges, or
B) The network can be split into two factions: Nodes can be split 
into 2 sets where negative edges only point between the sets



Balance Theorem

Global coalitions => balance
Straightforward 
Every complete graph that looks like “this” is balanced

Balance => Global coalitions
Less straightforward
Every complete graph that’s balanced looks like “this”?



Global coalitions => balance:

Any triangle is one of two types:
A) All 3 nodes in one of the partitions
B) 2 nodes in one partition, 1 in the other

A):  all 3 edges are +           balanced
B):  2 nodes in one partition are +,
      other 2 edges are -         balanced

Balance Theorem



Proof of Balance Theorem
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A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and

Balance => Global coalitions:
Pick a node A.
Because it’s a complete graph, A is either friends or enemies 
with each person.
Now check 3 cases:



B
+

C

D

E

+

–

– 

Friends of A Enemies of A

Every node in L is enemy of R

+ +

–

A
Any 2 nodes
in L are friends

Any 2 nodes
in R are friends

L

R

Proof of Balance Theorem



Balance Theorem

Global coalitions => balance
Straight-forward 
Every complete graph partitioned into two friendly coalitions that 
dislike either other is balanced

Balance => Global coalitions
Less straight-forward
Every complete graph that’s balanced can be partitioned into two 
friendly coalitions that dislike either other



European alliances, pre-WWI
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(b) Triple Alliance 1882
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(c) German-Russian Lapse 1890
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(d) French-Russian Alliance 1891–
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(e) Entente Cordiale 1904
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(f) British Russian Alliance 1907

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-
tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War I. This figure and
example are from Antal, Krapivsky, and Redner [20].

was China’s enemy, China was India’s foe, and India had traditionally bad relations with

Pakistan. Since the U.S. was at that time improving its relations with China, it supported

the enemies of China’s enemies. Further reverberations of this strange political constellation

became inevitable: North Vietnam made friendly gestures toward India, Pakistan severed

diplomatic relations with those countries of the Eastern Bloc which recognized Bangladesh,

and China vetoed the acceptance of Bangladesh into the U.N.”

Antal, Krapivsky, and Redner use the shifting alliances preceding World War I as another

example of structural balance in international relations — see Figure 5.5. This also reinforces

the fact that structural balance is not necessarily a good thing: since its global outcome is

often two implacably opposed alliances, the search for balance in a system can sometimes

be seen as a slide into a hard-to-resolve opposition between two sides.



Example: International Relations

P

R

I

C

U

+

+ –
–

–

+?

B

––

International relations:
Positive edge: alliance
Negative edge: animosity

Separation of Bangladesh from Pakistan in 1971: 
US supports Pakistan. Why?
USSR was the enemy of China
China was the enemy of India
India was the enemy of Pakistan
US was friendly with China
China vetoed  
Bangladesh from U.N.



Dynamic Model of Structural Balance

In a simple model of edge evolution in signed networks, 
all end states are balanced [Marvel et al., PNAS 2011]
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friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

What if we allow three mutual enemies?



Weak Structural Balance ! Many Global 
Factions

Define:  A complete network is weakly balanced if there is no 
triangle with exactly 2 positive edges and 1 negative edge.

Characterization of Weakly Balanced Networks: 
If a labeled complete graph is weakly balanced, then its nodes 
can be partitioned 

(divided into groups such that two nodes belonging to the 
same group are friends, and every two nodes belonging to 
different groups are enemies)

Global picture: same thing as before, but with 
many factions, not necessarily two



Proof of Characterization
Pick a node A.
Because it’s a complete graph, A is either friends or enemies 
with each person.
Now check 2 cases:



Proof of Characterization
All of A’s friends are friends with each other and are enemies 
with all of A’s enemies
Remove A and his friends from the graph and recurse!
Graph still weakly balanced, find a second group, same argument 
applies, recurse until we’ve found all factions

-

+



Balance in General Networks

Balanced?

What about incomplete graphs?

So far we’ve talked about complete graphs



Signed Graph: Is it Balanced?



Balance in General Networks

Balanced?

Def 1: Local view
Fill in the missing edges to 
achieve balance

If the graph is “Balance-able”, 
then call it balanced?

So far we talked about complete graphs



Balance in General Networks

Balanced?

-
+

-
-

-

Def 1: Local view
Fill in the missing edges to 
achieve balance

If the graph is “Balance-able”, 
then call it balanced

So far we talked about complete graphs



Balance in General Networks

Def 2: Global view
Divide the graph into two 
coalitions

If you can separate the 
graph into coalitions as 
before, call it balanced

So far we talked about complete graphs



Balance in General Networks

Balanced?

-
+

Def 1: Local view
Fill in the missing edges 
to achieve balance

Def 2: Global view
Divide the graph into two 
coalitions

-
-

-

The 2 definitions  
are equivalent!

So far we talked about complete graphs



Balance in General Networks

-
+

Claim: in general (not necessarily 
complete) networks, the local and 
global definitions of balance are 
equivalent

Def 1: Local view
Fill in the missing edges 
to achieve balance

Def 2: Global view
Divide the graph into two 
coalitions

-
-

-



Balance in General Networks

-
+

Actually easy to see:

Local => global: (if you can fill in edges 
such that the resulting complete graph 
is balanced, then it can be divided into 
coalitions)

-
-

-

After filling in, we have a 
complete network as before, 
the Balance Theorem applies



Balance in General Networks

-
+

Actually easy to see:

Global => local: (if the graph can be 
divided into coalitions, then you can fill 
in edges that results in a complete 
balanced graph )

-
-

-

Fill in edges within and between 
coalitions as before: positive edges 
within the coalitions and negative edges 
between them



Balance in General Networks

-
+

Actually easy to see:

Local => global: after filling 
in, result in complete 
network as before

Global => local: fill in edges 
within and between 
coalitions as before

Done!

-
-

-



Balance in General Networks
We have a natural definition for balance in general signed 
networks

“Natural” because we arrived at it two different ways that 
turn out to be equivalent



Balance in General Networks
We have a natural definition for balance in general signed 
networks

“Natural” because we arrived at it two different ways that 
turn out to be equivalent

But, there’s a problem: how to actually check if a network is 
balanced in this way?



Balance in General Networks

Why isn’t this graph balanced?



Balance in General Networks

Walk around a cycle, every time we see a 
negative edge we have to switch coalitions

Why isn’t this graph balanced?



Is a Signed Network Balanced?

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

Theorem: Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges 
[Harary 1953, 1956]



Is a Signed Network Balanced?

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

This theorem is saying that the only way a graph can be 
unbalanced is if there is a cycle with an odd number of 
negative cycles. That’s the only possible problem!

Theorem: Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges 
[Harary 1953, 1956]



Is a Signed Network Balanced?

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

Proof:  We will show that every graph is either 
balanced or contains a cycle with odd number of 
negative edges (i.e. a constructive proof).

Theorem: Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges 
[Harary 1953, 1956]



Is a Signed Network Balanced?

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

Proof by algorithm: We will do this by actually 
constructing an algorithm that either outputs a 
division into coalitions or a cycle with odd number 
of negative edges

Because these are the only two outcomes, this 
proves the claim

Theorem: Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges 
[Harary 1953, 1956]



Is a Signed Network Balanced?

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

Proof sketch: Our algorithm will try to assign nodes 
to coalitions such that the graph is balanced. We will 
reason that the only way it can fail is if there is a 
cycle with an odd number of negative edges. 

Theorem: Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges 
[Harary 1953, 1956]



Is a Signed Network Balanced?

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

Signed graph algorithm:
Step 1: Find connected components on + edges and for 
each component create a super-node

▪ Since nodes connected by a + edge must be in 
same coalition

▪ If any – edge in the super node, done (cycle with 1 
negative edge)

Step 2: Connect components A and B if there is a  
negative edge between the members

▪ Note there are only negative edges pointing out of 
a super-node (otherwise should’ve connected the 
two super-nodes that have a positive edge)



Is a Signed Network Balanced?
Signed graph algorithm
▪ Now we have a graph on super-nodes joined by 

negative edges 

▪ Just need to consistently assign super-nodes to 
coalitions X and Y

▪ BFS starting at any node in the super-node graph (which 
only has – edges)

▪ Produces a set of layers of increasing distances from the 
root

▪ Call all even layers X and odd layers Y

▪ If edges are only between adjacent layers (not within-
layer), then all – edges point between X and Y, balanced!

▪ Otherwise, within-layer edge A-B. Cycle G-A-B-G has 
length 2k+1, therefore it’s odd, therefore unbalanced!



Is a Signed Network Balanced?
Two outcomes:

1) label each super-node as either X or Y, in such a way 
that every edge has endpoints with opposite labels. 
Then we can create a balanced division of the original 
graph, by labeling each node the way its supernode is 
labeled in the reduced graph.

2) find a cycle in the original graph that has an odd 
number of negative edges
Simply “stitch together” these negative edges using 
paths consisting entirely of positive edges that go 
through the insides of the supernodes



Signed Graph: Is it Balanced?



Positive Connected Components



Reduced Graph on Super-Nodes



BFS on Reduced Graph

L

R R

L L
L

RUnbalanced!

✗

Using BFS assign each node a side

Graph is unbalanced if any two connected 
super-nodes are assigned the same side



Where Do Signed Edges Come From?

In many online applications users  
express positive and negative  
attitudes/opinions:

■ Through actions:

▪ Rating a product/person
▪ Pressing a “like” button
■ Through text:

▪ Writing a comment, a review
■ Success of these online applications  

is built on people expressing opinions
▪ Recommender systems
▪ Wisdom of the Crowds
▪ Sharing economy



Global Structure of Signed Nets

Intuitive picture of social network 
in terms of  
densely linked clusters

How does structure  
interact with links?

Embeddedness of  
link (A,B): Number of  
shared neighbors



Global Factions: Embeddedness

Epinions

Wikipedia

[CHI ‘10]

+

+ -

-+

+

+
+

+
- +

+
+

Embeddedness of ties:
Positive ties tend to be more 
embedded



Real Large Signed Networks

     

+

+
+

+

+

+
+

+
–

–
–

–

––

–

Each link A-B is explicitly tagged with a sign:
Epinions: Trust/Distrust
Does A trust B’s product reviews?
(only positive links are visible to users)

Wikipedia: Support/Oppose
Does A support B to become 
Wikipedia administrator?

Slashdot: Friend/Foe
Does A like B’s comments?

Other examples: 
Online multiplayer games



Balance in Our Network Data

Triad
Epinions Wikipedia Consistent with 

Balance?P(T) P0(T) P(T) P0(T)

0.87 0.62 0.70 0.49 ✓
0.07 0.05 0.21 0.10 ✓
0.05 0.32 0.08 0.49 ✓
0.007 0.003 0.011 0.010 ✗

- -
+

+ +
-

- -
-

+ +
+

P(T) … fraction of a triads
P0(T)… triad fraction if the signs would appear at random

Real data

Shuffled data

+

x

x

+

– 

– 

– 

+
+

+

+

+
++

+

+

+

+
+

+

+
+

+

+

+

– 

– 

– 

[CHI ‘10]

x

xx

x

x

Ba
la

nc
ed

U
nb

al
an

ce
d

Does structural balance hold?
Compare frequencies of signed triads  
in real and “shuffled” signs



Homophily
“Birds of a Feather Flock Together”



Homophily

• US middle school + high school
• node color = self-identified race

4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of di↵erent
races drawn as di↵erently colored circles), and the other based on friendships in the middle and high schools
respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social



Homophily: Age

• Facebook friendship network, 2011
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Figure 8. The distribution p(t′|t) of ages t′ for the neighbors of users with age t. The solid
lines show the measured distributions against the age t described in the legend, and the red line shows
the distribution of ages found by following a randomly chosen edge in the network.

but then level out to a value that is nearly independent of the user’s age t (see for example the blue,
yellow and green lines). And from the figure we notice that as t increases the variance in the distribution
increases. Roughly speaking, younger individuals have most of their friends within a small age range
while older individuals have a much wider range. None of this behavior is evident when comparing to
the distribution of ages at the end of a randomly chosen edge, the red line, which is centered around 20.
So while it is obvious that age matters to our social relationships, the Facebook social network shows
non-trivial asymmetric patterns, consistent across user ages t.

Switching to gender, we compute the conditional probability p(g′|g) that a random neighbor of indi-
viduals with gender g has gender g′ where we denote male by M and female by F . For friends of male
users, we find that p(F |M) = 0.5131 and p(M |M) = 0.4869. For friends of female users, we find that
p(F |F ) = 0.5178 and p(M |F ) = 0.4822. In both cases, we see that a random neighbor is more likely to
be female.

In order to understand this result, we compare to the probability of following a randomly selected edge
and arriving at a particular gender. These probabilities are given by p(F ) = 0.5156 and p(M) = 0.4844
respectively. The probability is higher for females because the number of edge ends, called stubs in the
networks literature, connected to females is higher than for males. While there are roughly 30 million
fewer active female users on Facebook, the average female degree (198) is larger than the average male
degree (172), resulting in p(F ) > p(M).

Comparing these quantities, we see that p(F |M) < p(F ) < p(F |F ) and p(M |F ) < p(M) < p(M |M).
However, the magnitude of the difference between these probabilities is extremely small and only differs
in the thousandths place. So if there is a preference for same gender friendships on Facebook, the effect
appears minimal at most.

Lastly, we turn to country of origin, a categorical variable divided into 249 categories according to the
ISO 3166-1 country code standard. These labels are attributed to users based on the user’s most recent IP
address login source and known correspondences between IP addresses and geographic locations. While
imperfect, so-called geo-IP data is generally reliable on a national level.

Intuitively, we expect to have many more friends from our country of origin then from outside that



Homophily: Nationality

• Facebook friendship network, 2011
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Figure 9. Normalized country adjacency matrix. Matrix of edges between countries with > 1
million users and > 50% Facebook penetration shown on a log scale. To normalize, we divided each
element of the adjacency matrix by the product of the row country degree and column country degree.

country, and the data shows that 84.2% percent of edges are within countries. So the network divides fairly
cleanly along country lines into network clusters or communities. This mesoscopic-scale organization is
to be expected as Facebook captures social relationships divided by national borders. We can further
quantify this division using the modularity Q [37] which is the fraction of edges within communities
minus the expected fraction of edges within communities in a randomized version of the network that
preserves the degrees for each individual [38], but is otherwise random. In this case, the communities
are the countries. The computed value is Q = 0.7486 which is quite large [39] and indicates a strongly
modular network structure at the scale of countries. Especially considering that unlike numerous studies
using the modularity to detect communities, we in no way attempted to maximize it directly, and instead
merely utilized the given countries as community labels.

We visualize this highly modular structure in Fig. 9. The figure displays a heatmap of the number
of edges between the 54 countries where the active Facebook user population exceeds one million users
and is more than 50% of the internet-enabled population [40]. To be entirely accurate, the shown matrix
contains each edge twice, once in both directions, and therefore has twice the number of edges in diagonal
elements. The number of edges was normalized by dividing the ijth entry by the row and column sums,
equal to the product of the degrees of country i and j. The ordering of the countries was then determined
via complete linkage hierarchical clustering.



Homophily: Friend count

• Facebook friendship network, 2011



Homophily
• Connections don’t form uniformly at random 

• Null model: what if they were forming at random?

• Measuring homophily: are there fewer connections 
between nodes across traits than you’d expect at random?

• Homophily test: If the fraction of cross-gender edges is 
significantly less than at random, then  
there is evidence of homophily.

4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of di↵erent
races drawn as di↵erently colored circles), and the other based on friendships in the middle and high schools
respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social



Homophily

88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions

p = Probability that a node is white
q = Probability that a node is red

Prob an edge is between two white nodes?
Prob an edge is between two red nodes?
Prob an edge is between 1 red, 1 white?

Homophily test:



Homophily

88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions

p = Probability that a node is white
q = Probability that a node is red

Prob an edge is between two white nodes? 
Prob an edge is between two red nodes?
Prob an edge is between 1 red, 1 white?

Homophily test:

6/9=2/3

3/9=1/3

p2

q2

2pq

2pq = 4/9 = 8/18

Observed: 5/18



The Friendship Paradox



Friendship paradox

Your friends probably have more friends than you do



Friendship paradox

Average degree <= Average friend degree



Friendship paradox

■Facebook friend graph (2012):
▪ 720M people, 70B edges
▪ Average Facebook user number of friends: 190
▪ Average friend’s number of friends: 635
▪ User’s friend count was lower than the average of their 

friends’ friend counts 93% of the time 
▪ ???



Friendship paradox

■Consider an example:
▪ Two buses to school
▪ One big one with 90 students
▪ One small one with 10 students

▪ Average bus size = 50
▪ This is misleading…



Friendship paradox

■Consider an example:
▪ Two buses to school
▪ One big one with 90 students
▪ One small one with 10 students

▪ Average bus size = 50

▪ What about average bus-rider experience?



Friendship paradox
■From students’ point of view:
▪ How packed is your bus?
▪ 90 students say 90
▪ 10 students say 10

Average bus-rider experience = 
[(90*90)+(10*10)]/100 = 82



Friendship paradox

• Friend counts: 1, 3, 2, 2.
• Average friend count:

• Average friend count of a friend:



Friendship paradox

• Friend counts: 1, 3, 2, 2.
• Average friend count:

• Average friend count of a friend:

8/4=2

A: 3, avg = 3
B: 1, 2, 2, avg = 5/3

C: 3, 2, avg = 2.5
D: 3, 2, avg = 2.5

Avg friend of friends = 2.4166 > 2

B mentioned 3 times, A only 1

“Average friend-experience” vs. average friends



“Friendship paradox”
• Avg friend count person  ≤  Avg friend count of friend

• Avg # on a train               ≤ Avg # on “train experience”

Go Train 1

Go Train 2

Go Train 3



“Friendship paradox”
• Avg friend count person  ≤  Avg friend count of friend

• Avg # on a train               ≤ Avg # on “train experience”

• Basic principle: weighted averages

Go Train 1

Go Train 2

Go Train 3



“Friendship paradox”
• Friend average = Weighted average
                                   Average

• Friend average  =   Average      +         Variance
                                                             Average



Friendship paradox on FB
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Figure 6. Degree correlations. (a) The average neighbor degree of an individual with degree k is
the solid line. The horizontal dashed line shows the expected value if there were no degree correlations
in the network

〈

k2
〉

/ 〈k〉, and the diagonal is shown as a dashed line. (b) The conditional probability
p(k′|k) that a randomly chosen neighbor of an individual with degree k has degree k′. The solid lines,
on the linear-log scale, show the measured values for four distinct degrees k shown in the caption. The

orange line shows the expected distribution, k′pk′

〈k〉 , if the degrees were uncorrelated.

shift to the right as k increases demonstrating the degree assortativity. Furthermore, barring any strange
non-smooth behavior between the sampled values of k, the median for p(k′|k) is greater than k up until
between 390 and 400 friends, confirming that the behavior of the mean in Fig. 6a was not misleading.
Another observation from the figure, and data for other values of k not shown, is that the modal degree
of friends is exactly equal to k until around k = 120. So while your friends are likely to have more friends
than you on average, the most likely number of your neighbor’s friends is the same as your degree for low
to moderate degree users.

Site engagement correlation. Besides for degree correlations, we also examined correlations
amongst traits of individuals and network structure [36]. We now repeat our correlation calculations
using the number of days users logged in during the 28-day window of the study, instead of degree, seen
in Fig. 7a. Again, we provide the average value at the end of a randomly selected edge and the diagonal
line for comparison.

Unlike the degree case, here there is an ambiguity in defining a random neighbor and hence the
average number of neighbor logins. Our definition of random neighbor of vertices with trait x is to first
select a vertex with trait x in proportion to their degree and then select an edge connected to that vertex
uniformly at random. In other words, we give each edge connected to vertices with trait x equal weight.
So a vertex who is connected to 5 vertices with trait x is given 5 times as much weight in the average as
a vertex who connects to a single vertex with trait x.

Like the degree, your neighbor’s site engagement is correlated with your site engagement, but the
average number of neighbor logins is better represented by the horizontal random expectation than what
was seen in the degree case. The more interesting observation, though, is that the solid value is far larger
than the diagonal value over most of the range from logging in 0 to 20 times in the past 28 days. So by



Corollary paradoxes
• “Your friends log in more than you” (and more) 10
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Figure 7. Login correlations. (a) Neighbor’s logins versus user’s logins to Facebook over a period of
28 days. The solid line shows the actual mean values and the horizontal line shows the average login
value found by following a randomly chosen edge. The dashed line shows the diagonal. (b) A user’s
degree versus the number of days a user logged into Facebook in the 28 day period. The solid line shows
the mean user degree, the dashed lines the 25/75 percentiles, and the dotted lines the 5/95th percentiles.

the same line of reasoning for the degree case, up until you log in around 70 percent of days in a month,
on average, your friends log into Facebook more than you do.

We can understand this phenomena by examining the correlation between an individual’s degree
and logging into Facebook. A Facebook user provides and receives content through status updates, links,
videos, and photos, etc. to and from their friends in the social network, and hence may be more motivated
to log in if they have more friends. Such a positive correlation does exist between degree and logins, and
we show that in Fig. 7b. A user who logs in more generally has more friends on Facebook and vice versa.
So since your friends have more friends than you do, they also login to Facebook more than you do.

Other mixing patterns. There are many other user traits besides logging into Facebook that can
be compared to the network structure. We focus on three other such quantities with essentially complete
coverage for Facebook’s users; age, gender, and country of origin, and characterize their homophily [36]
and mixing patterns [32].

We start by considering friendship patterns amongst individuals with different ages, and compute the
conditional probability p(t′|t) of selecting a random neighbor of individuals with age t who has age t′.
Again, random neighbor means that each edge connected to a vertex with age t is given equal probability of
being followed. We display this function for a wide range of t values in Fig. 8. The resulting distributions
are not merely a function of the magnitude of the age difference |t − t′| as might naively be expected,
and instead are asymmetric about a maximum value of t′ = t. Unsurprisingly, a random neighbor is
most likely to be the same age as you. Less obviously, the probability of friendship with older individuals
falls off rapidly, nearly exponentially, from the mode. Below the mode, the distributions also fall off,



Friendship paradox

■Not a social fact!
▪ It’s a mathematical fact
▪ Applies to virtually any network
▪ But it has social implications…
▪ Web pages you link to probably have more links
▪ People you high-five probably high-five more people than 

you
▪ Etc etc



Friendship paradox

■Application: Disease outbreak
▪ Many diseases spread via social networks
▪ Model: immunize random friends of random 

people instead of random people
▪ With random people: need to immunize 80-90% 

of population
▪ With random friends of random people: only 

immunize 20-40% of population
▪ We’ll study contagion in later weeks


