Social and Information Networks

Prof. Ashton Anderson ashton@cs.toronto.edu

CSCC46H, Fall 2022 Lecture 2

LOCISTICS

Tutorials on Tuesdays and Thursdays, starting next week (I'm sorry for yesterday, TUT01 students!

this causes any issues)

My office hours are Weds 4:30–5:30pm

who have already!)

A1 out next week

TUT0003 time change from Fridays 9–10am to Thursdays 3–4pm (please let me know if

Please answer the polls and introduce yourself in Discord #general (thanks to those

1) Graph structure of the Web 2) Building up our network vocabulary 3) Measuring networks; basic properties 4) Random graph model: G_{np}

Connectivity of Graphs

Connected component (undirected):

- Any two vertices can be joined by a path
- No superset with the same property
- A disconnected graph is made up of two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Connectivity of Graphs

Connected component (undirected):

- Any two vertices can be joined by a path
- No superset with the same property
- A disconnected graph is made up of two or more connected components

Bridge edge: If we erase it, the graph becomes disconnected.

Largest Component: **Giant Component**

Isolated node (node H)

Connectivity of Directed Graphs

Strongly connected directed graph

vice versa (e.g., A-B path and B-A path) Weakly connected directed graph

- has a path from each node to every other node and
- is connected if we disregard the edge directions

G

Is this graph weakly connected? Strongly connected?

Connectivity of Directed Graphs

Strongly connected directed graph

has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
 Weakly connected directed graph

is connected if we disregard the edge directions

It is weakly connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions)

What is the large-scale structure of the Web?

The Structure of the Web

Q: What does the Web "look like"?

The Structure of the Web

Q: What does the Web "look like"?

The Structure of the Web

A network!

Web as a Graph

Here is what we will do next:

- We will take a real system (i.e., the Web)
- We will represent the Web as a graph
- We will use language of graph theory to reason about the structure of the graph
- Do a computational experiment on the Web graph
- Learn something about the structure of the Web!

Web as a Graph

Q: What does the Web "look like" at a global level?

Web as a graph:

- Nodes = web pages
- Edges = hyperlinks
- Side issue: What is a node?
 - Dynamic pages created on the fly
 - "dark matter" inaccessible database generated pages

node? on the fly sible

The Web as a Graph

The Web as a Graph

In early days of the Web links were navigational Today many links are transactional

The Web as a Directed Graph

Other Information Networks

Citations

References in an encyclopedia

Other Information Networks

References between pages in a part of Wikipedia

What Does the Web Look Like?

How is the Web linked? What is the "map" of the Web?

What Does the Web Look Like?

How is the Web linked? What is the "map" of the Web?

- Given node *v*, what can *v* reach?
- What other nodes can reach v?

- Web as a directed graph [Broder et al. 2000]:

For example: $ln(A) = \{?\}$ $Out(A) = \{?\}$

What Does the Web Look Like?

How is the Web linked? What is the "map" of the Web?

- Given node *v*, what can *v* reach?
- What other nodes can reach v?

- Web as a directed graph [Broder et al. 2000]:

For example: $In(A) = \{A, B, C, E, G\}$ $Out(A) = \{A, B, C, D, F\}$

Directed Graphs

Two types of directed graphs:

Strongly connected graph:

- Any node can reach any node via a directed path
 - $In(A)=Out(A)=\{A,B,C,D,E\}$

DAG – Directed Acyclic Graph:

Has no cycles: if u can reach v, then v can not reach u

Any directed graph can be expressed in terms of these two types!

Strongly Connected Component

is a set of nodes **S** so that:

There is no larger set containing S with this property

- Strongly connected component (SCC)
- Every pair of nodes in S can reach each other

What are the strongly connected components of this graph?

Strongly Connected Component

is a set of nodes **S** so that:

- Strongly connected component (SCC)
 - Every pair of nodes in S can reach each other
 - There is no larger set containing S with this property

Strongly connected components of the graph: {A,B,C,G}, {D}, {E}, {F}

Strongly Connected Component Fact: Every directed graph is a DAG on its SCCs

- (1) SCCs partitions the nodes of G
 - That is, each node is in exactly one SCC
- (2) If we build a graph G' whose nodes are SCCs, and with an edge between nodes of G' if there is an edge between corresponding SCCs in G, then G' is a DAG

Strongly Connected Component Fact: Every directed graph is a DAG on its SCCs

- (1) SCCs partitions the nodes of G
 - That is, each node is in exactly one SCC
- (2) If we build a graph G' whose nodes are SCCs, and with an edge between nodes of G' if there is an edge between corresponding SCCs in G, then G' is a DAG

Proof of (1)

Claim: SCCs partitions nodes of G.

- This means: Each node is member of exactly 1 SCC
 Proof by contradiction:
 - Suppose there exists a node v which is a member of two SCCs S and S'

But then S ∪ S' is one large SCC!

S

Contradiction!

Proof of (2)

Claim: G' (graph of SCCs) is a DAG.

- This means: G' has no cycles Proof by contradiction:
 - Assume G' is not a DAG
 - Then G' has a directed cycle
 - Now all nodes on the cycle are mutually reachable, and all are part of the same SCC
 - But then G' is not a graph of connections between SCCs (SCCs are defined as maximal sets)

Contradiction!

Now $\{A, B, C, G, E, F\}$ is a SCC!

- Goal: Take a large snapshot of the Web and try to understand how its SCCs "fit together" as a DAG
- Computational issue:
 - Want to find a SCC containing node v?
 - Observation:
 - Out(v) ... nodes that can be reached from v • SCC containing v is: $Out(v) \cap In(v)$

- Out(v)
- = $Out(v,G) \cap Out(v,G)$, where \overline{G} is G with all edge directions flipped

Example:

Out(A) = {?} • $ln(A) = \{?\}$

$Out(A) \cap In(A) = SCC$

Example:

• $Out(A) = \{A, B, D, E, F, G, H\}$ • $ln(A) = \{A, B, C, D, E\}$ • Therefore, $SCC(A) = \{A, B, D, E\}$

$Out(A) \cap In(A) = SCCC$

How many "big" SCCs?

How many "big" SCCs?

There is a single giant SCC

- That is, there won't be two SCCs Heuristic argument:
 - It just takes 1 page from one SCC to link to the other SCC
 - If the 2 SCCs have millions of pages the likelihood of this not happening is very very small

Structure of the Web

Broder et al., 2000:

- Altavista crawl from October 1999
 - 203 million URLS
 - 1.5 billion links
- Computer: Server with 12GB of memory Undirected version of the Web graph:
 - 91% nodes in the largest weakly connected component
 - Are hubs making the web graph connected?
 - Even if they deleted links to pages with in-degree >10 WCC was still $\approx 50\%$ of the graph

Structure of the Web

Directed version of the Web graph:

- Largest SCC: 28% of the nodes (56 million)
- Taking a random node v
 - $Out(v) \approx 50\%$ (100 million)
 - $ln(v) \approx 50\%$ (100 million)

What does this tell us about the conceptual picture of the Web graph?

Bow-tie Structure of the Web

What did we do?

Here is what we've already done

- We took a real system (the Web)
- We represented the Web as a graph
- We used the language of graph theory to reason about the structure of the graph
- We did a computational experiment on the Web graph
- Web!

Learned something about the structure of the

What did We Learn/Not Learn?

What did we learn:

Some conceptual organization of the Web (i.e., the bowtie)

What did we not learn:

- Treats all pages as equal
 - Google's homepage == my homepage

What are the most important pages

- How many pages have k in-links as a function of k?
 - The degree distribution: $\sim k^{-2}$
- Link analysis ranking -- as done by search engines (PageRank)
- Internal structure inside giant SCC
 - Clusters, implicit communities?
- How far apart are nodes in the giant SCC:
 - Distance = # of edges in shortest path
 - Avg = 16 [Broder et al.]

Recap

Network analysis is the language of connectedness

- Represent real-world networks from many different domains as graphs, use graph theory and algorithms to reason about them
- Social networks, information networks, knowledge networks, biological networks, etc.

Network analysis fundamentals

- Nodes, edges, paths, cycles, un/directed, connected components (weak and strong)
- Choices of representation
- Every directed graph is a DAG on its SCCs

Structure of the Web

 Looks like a bow-tie: big giant component, IN & OUT components, tendrils, disconnected components

Network Representations

How do we represent graphs as mathematical objects?

What are our choices when we're translating realworld networks into a graph representation?

[(1,2), (1,4), (2,4), (3,4)]

Edge List

[(1,2), (1,4), (4,2), (4,3)]

{1: [2,4], 2: [1,4], 3: [4], 4: [1,2,3]}

Total length of lists?

{1: [2,4], 4: [2,3]}

Adjacency Matrix

 $A_{ij} = 1$ if there is a link from node *i* to node *j* $A_{ij} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Undirected graphs Links: undirected (symmetrical, reciprocal relations)

Undirected vs. Directed Networks

Directed graphs Links: directed (asymmetrical relations)

- Directed links:
 - Phone calls
- Following on Twitter

More Types of Graphs:

Examples: Friendship, Hyperlink

Examples: Collaboration, Internet, Roads

More Types of Graphs:

Examples: Proteins, Hyperlinks

Examples: Communication, Collaboration

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

- -Authors-to-papers (they authored)
- -Actors-to-Movies (they appeared in)
- –Users-to-Movies (they rated)

"Folded" networks:

- Author collaboration networks
- -Movie co-rating networks

Networks are Sparse Graphs

Most real-world networks are sparse $E << E_{max}$ (or k << N-1)

WWW (Stanford-Berkeley):	N=319,717	⟨k⟩ =9.65
Social networks (LinkedIn):	N=6,946,668	⟨k⟩ =8.87
Communication (MSN IM):	N=242,720,596	$\langle k \rangle = . $
Coauthorships (DBLP):	N=317,080	$\langle k \rangle = 6.62$
Internet (AS-Skitter): N=1,719,0	37	$\langle k \rangle = 4.9 $
Roads (California):	N=1,957,027	⟨k⟩ =2.82
Proteins (S. Cerevisiae):	N=1,870	⟨k⟩ =2.39

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros! (Density of the matrix (E/N^2) :WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

Network Representations

- WWW >
- Facebook friendships >
 - Citation networks >
- Collaboration networks >
 - Mobile phone calls >
 - Protein Interactions >

Network Representations

- WWW > directed multigraph with self-edges
- Facebook friendships ➤ undirected, unweighted
 - Citation networks ➤ unweighted, directed, acyclic
- **Collaboration networks** > undirected multigraph or weighted graph
 - Mobile phone calls > directed, (weighted?) multigraph
 - **Protein Interactions** *➤* undirected, unweighted with self-interactions

Network Properties: How to Characterize/Measure a Network?

Focus on connectivity and distance

How do we measure properties in the graph representation of a network?

Connectivity: Node Degrees

Node degree, k_i: the number of edges adjacent to node *i*

e.g. k_A = 4

vg. degree:
$$\bar{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$$

In directed networks we define an in-degree and out-degree.

The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 \quad k_C^{out} = 1 \quad k_C = 3$$

$$k^{in} = k^{out}$$

Connectivity: How Connected Are Nodes?

How many neighbours do nodes tend to have in your graph?

Connectivity: Degree Distribution

Degree distribution P(k): Probability that a randomly chosen node has degree k

 $N_k = \#$ nodes with degree k

Normalized histogram: $P(k) = N_k / N \rightarrow \text{plot}$

Are the nodes "clustered" in the graph? Do nodes with common neighbours tend to know each other?

Connectivity: Local Clustering

What's the probability that a random pair of your friends are connected?

 $C_i \in [0, 1]$ $C_{i} = \frac{e_{i}}{\binom{k_{i}}{2}} = \frac{e_{i}}{k_{i}(k_{i}-1)/2} = \frac{2e_{i}}{k_{i}(k_{i}-1)}$ between the neighbours of node i and k_i is the degree of node i

where e_i is the number of edges

friends are connected?

 $C_i \in [0,1]$ $C_i = \frac{e_i}{\binom{k_i}{2}} = \frac{e_i}{k_i(k_i - 1)/2} = \frac{2e_i}{k_i(k_i - 1)} \quad \text{where } \mathbf{e_i} \text{ is the number of edges}$ between the neighbors of node I and $\mathbf{k_i}$ is the degree of node I

Average clustering coefficient: $C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$

What's the probability that a random pair of your

 $k_B = ?, e_B = ?, C_B = ? = ?$ $k_D = ?, e_D = ?, C_D = ? = ?$

 $k_B=2, e_B=1, C_B=2/2=1$ $k_D=4, e_D=2, C_D=(2*2)/(4*3)=4/12=1/3$

Distance: Paths in a Graph

node is linked to the next one

$$P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$$

Path can intersect itself and pass through the same edge multiple times

E.g.: ACBDCDEG

In a directed graph a path can only follow the direction of the "arrow"

• A *path* is a sequence of nodes in which each

Distance: Number of Paths

Number of paths between nodes *u* and *v*: $A_{\mu\nu}=0$ and v then $A_{\mu k} A_{kv} = I$ else $A_{\mu k} A_{kv} = 0$ then $A_{uk} A_{kv} = 1$ else $A_{uk} A_{kv} = 0$ So, the no. of paths of length h between u and v is

$$H_{uv}^{(h)}$$

(holds for both directed and undirected graphs)

Length h=1: If there is a link between u and v, $A_{uv}=1$ else

Length h=2: If there is a path of length two between u

 $H_{uv}^{(2)} = \sum_{uv}^{N} A_{uk} A_{kv} = [A^{2}]_{uv}$ Length *h*: If there is a path of length *h* between *u* and *v*

$$= \left[A^{h}\right]_{uv}$$

Distance: Number of Paths

$H^{(1)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $H^{(2)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

Distance: definition

 $h_{B,C} = 1, h_{C,B} = 2$

Distance (shortest path, geodesic)

- between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes
 - *If the two nodes are disconnected, the distance is usually defined as infinite

In directed graphs paths need to follow the direction of the arrows

- **Consequence:** Distance is
- **not symmetric**: $h_{A,C} \neq h_{C,A}$

Distance: Graph-level measures

Diameter: the maximum (shortest path) distance between any pair of nodes in a graph

(component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\max}} \sum_{i,j\neq i} h_{ij}$$

Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Average path length for a connected graph

where h_{ii} is the distance from node *i* to node *j*, And Emax is the maximum number of edges $(=n^{*}(n-1)/2)$

Key Network Properties

Degree distribution: Clustering coefficients: Path lengths: Diameter:

P(k)

C

L

D