Social and Information Networks

CSCC46H, Fall 2022
Lecture 2

Prof. Ashton Anderson
ashton@cs.toronto.edu

Logistics

Tutorials on Tuesdays and Thursdays, starting next week (I'm sorry for yesterday, TUT01 students!

TUT0003 time change from Fridays 9-10am to Thursdays 3-4pm (please let me know if this causes any issues)

My office hours are Weds 4:30-5:30pm

Please answer the polls and introduce yourself in Discord \#general (thanks to those who have already!)

A1 out next week

Today

1) Graph structure of the Web
2) Building up our network vocabulary
3) Measuring networks; basic properties
4) Random graph model: G_{np}

Connectivity of Graphs

- Connected component (undirected):
- Any two vertices can be joined by a path
- No superset with the same property
- A disconnected graph is made up of two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Connectivity of Graphs

- Connected component (undirected):
- Any two vertices can be joined by a path
- No superset with the same property
- A disconnected graph is made up of two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Bridge edge: If we erase it, the graph becomes disconnected.

Connectivity of Directed Graphs

- Strongly connected directed graph

- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
- is connected if we disregard the edge directions

Connectivity of Directed Graphs

- Strongly connected directed graph

- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
- is connected if we disregard the edge directions

It is weakly connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions)

What is the large-scale structure of the Web?

The Structure of the Web

■ Q: What does the Web "look like"?

The Structure of the Web

- Q: What does the Web "look like"?

 Reuters News Headlines
 © (net $\frac{\text { click here for loreaking }}{\text { technology nevs first }}$
 Web Laumch

- Arts

Himanities, Phatogrexigy, Archriecture

- Business and Economy [atra! Directory, huestresents Classifieds.
- Computers and Internet Xtra!

- Education Chirositios, $[-12$, Courss $:$
- Entertainment [Xitra!] TV. Movies, Music, Magazinss -
- Government Poltics (Mrat], Agencies, Law, Miltay,
- Heath

Mesicins, Drugs Dissasks, Fitisss,

- Newrs Rotrat

WWorid [\$tra!] Maiby Cument Everts,

- Recreation
$\frac{\text { Recreation }}{\text { Soors [Xbrall, Games, Trawsl, Antos... }}$
- Reference

Lidantes, Lictociates, Fhone Rurchers,

- Regional

Countries, Restions, U.S. Statos,

- Science

CS, Biolog2, Agrancoly, Enginesrige, -

- Social Science Antropology, Sociolegy, Economics,.
- Society and Culture Pegple, Entironnectit Eseligion, ..

The Structure of the Web

A network!

Web as a Graph

Here is what we will do next:

- We will take a real system (i.e., the Web)

- We will represent the Web as a graph
- We will use language of graph theory to reason about the structure of the graph
- Do a computational experiment on the Web graph
- Learn something about the structure of the Web!

Web as a Graph

Q: What does the Web "look like" at
a global level?

- Web as a graph:
- Nodes = web pages
- Edges = hyperlinks
- Side issue: What is a node?
- Dynamic pages created on the fly
- "dark matter" - inaccessible database generated pages

The Web as a Graph

The Web as a Graph

- In early days of the Web links were navigational
- Today many links are transactional

The Web as a Directed Graph

Other Information Networks

Other Information Networks

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a directed graph [Broder et al. 2000]:

- Given node v, what can \boldsymbol{v} reach?
- What other nodes can reach \boldsymbol{v} ?

$$
\begin{aligned}
& \operatorname{In}(v)=\{w \mid w \text { can reach } v\} \\
& \operatorname{Out}(v)=\{w \mid v \text { can reach } w\}
\end{aligned}
$$

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a directed graph [Broder et al. 2000]:

- Given node v, what can \boldsymbol{v} reach?
- What other nodes can reach \boldsymbol{v} ?

For example: $\ln (A)=\{A, B, C, E, G\}$ $\operatorname{Out}(A)=\{A, B, C, D, F\}$

Directed Graphs

- Two types of directed graphs:

- Strongly connected graph:
- Any node can reach any node via a directed path

$$
\ln (A)=O u t(A)=\{A, B, C, D, E\}
$$

- DAG - Directed Acyclic Graph:
- Has no cycles: if \boldsymbol{u} can reach \boldsymbol{v}, then \boldsymbol{v} can not reach \boldsymbol{u}

Any directed graph can be expressed in terms of these two types!

Strongly Connected Component

- Strongly connected component (SCC)

 is a set of nodes S so that:- Every pair of nodes in \boldsymbol{S} can reach each other
- There is no larger set containing \boldsymbol{S} with this property

What are the strongly connected components of this graph?

Strongly Connected Component

- Strongly connected component (SCC)

 is a set of nodes S so that:- Every pair of nodes in \boldsymbol{S} can reach each other
- There is no larger set containing \boldsymbol{S} with this property

Strongly connected components of the graph: $\{A, B, C, G\},\{D\},\{E\},\{F\}$

Strongly Connected Component

- Fact: Every directed graph is a DAG on its SCCs
- (1) SCCs partitions the nodes of G
- That is, each node is in exactly one SCC
- (2) If we build a graph \mathbf{G}^{\prime} whose nodes are SCCs, and with an edge between nodes of \boldsymbol{G}^{\prime} if there is an edge between corresponding SCCs in \boldsymbol{G}, then \boldsymbol{G}^{\prime} is a DAG

Strongly Connected Component

- Fact: Every directed graph is a DAG on its SCCs
- (1) SCCs partitions the nodes of G
- That is, each node is in exactly one SCC
- (2) If we build a graph \mathbf{G}^{\prime} whose nodes are SCCs, and with an edge between nodes of \boldsymbol{G}^{\prime} if there is an edge between corresponding SCCs in \boldsymbol{G}, then \boldsymbol{G}^{\prime} is

(1) Strongly connected components of graph G: $\{A, B, C, G\},\{D\},\{E\},\{F\}$
(2) G^{\prime} is a DAG:

Proof of (1)

- Claim: SCCs partitions nodes of G.
- This means: Each node is member of exactly 1 SCC
- Proof by contradiction:
- Suppose there exists a node \boldsymbol{v} which is a member of two SCCs \boldsymbol{S} and \boldsymbol{S}^{\prime}
- But then $\boldsymbol{S} \cup \boldsymbol{S}$ ' is one large $S C C$!
- Contradiction!

Proof of (2)

- Claim: G' (graph of SCCs) is a DAG.

- This means: \boldsymbol{G} ' has no cycles
- Proof by contradiction:
- Assume G' is not a DAG
- Then G^{\prime} has a directed cycle
- Now all nodes on the cycle are
 mutually reachable, and all are part of the same SCC
- But then G^{\prime} is not a graph of connections between SCCs (SCCs are defined as maximal sets)
- Contradiction!

Graph Structure of the Web

Goal: Take a large snapshot of the Web and try to understand how its SCCs "fit together" as a DAG

- Computational issue:
- Want to find a SCC containing node \boldsymbol{v} ?
- Observation:
- Out(v) ... nodes that can be reached from v
- SCC containing v is: $\operatorname{Out}(v) \cap \operatorname{In}(v)$

$$
=\operatorname{Out}(v, G) \cap \operatorname{Out}(v, \bar{G}), \quad \text { where } \bar{G} \text { is } G \text { with all edge directions flipped }
$$

$\operatorname{Out}(A) \cap \operatorname{In}(A)=S C C$

Example:

- $\operatorname{Out}(A)=\{?\}$
$-\ln (A)=\{?\}$

$\operatorname{Out}(A) \cap \operatorname{In}(A)=S C C$

Example:

- $\operatorname{Out}(A)=\{A, B, D, E, F, G, H\}$
- $\ln (A)=\{A, B, C, D, E\}$
- Therefore, $\operatorname{SCC}(A)=\{A, B, D, E\}$

Graph Structure of the Web

- How many "big" SCCs?

Graph Structure of the Web

- How many "big" SCCs?

Graph Structure of the Web

-There is a single giant SCC

- That is, there won't be two SCCs
- Heuristic argument:
- It just takes 1 page from one SCC to link to the other SCC
- If the 2 SCCs have millions of pages the likelihood of this not happening is very very small

Structure of the Web

- Broder et al., 2000:
- Altavista crawl from October 1999
- 203 million URLS
- 1.5 billion links
- Computer: Server with 12GB of memory
- Undirected version of the Web graph:
- 91% nodes in the largest weakly connected component
- Are hubs making the web graph connected?
- Even if they deleted links to pages with in-degree >10 WCC was still $\approx 50 \%$ of the graph

Structure of the Web

- Directed version of the Web graph:
- Largest SCC: 28\% of the nodes (56 million)
- Taking a random node v
- Out(v) $\boldsymbol{\sim}$ 50\% (100 million)
$=\ln (v) \approx 50 \%$ (100 million)
- What does this tell us about the conceptual picture of the Web graph?

Bow-tie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]

What did we do?

- Here is what we've already done
- We took a real system (the Web)
- We represented the Web as a graph
- We used the language of graph theory to reason about the structure of the graph
- We did a computational experiment on the Web graph
- Learned something about the structure of the Web!

What did We Learn/Not Learn?

- What did we learn:
- Some conceptual organization of the Web (i.e., the bowtie)
- What did we not learn:
- Treats all pages as equal
- Google's homepage == my homepage
- What are the most important pages
- How many pages have k in-links as a function of k ?

The degree distribution: $\sim k^{-2}$

- Link analysis ranking -- as done by search engines (PageRank)
- Internal structure inside giant SCC
- Clusters, implicit communities?
- How far apart are nodes in the giant SCC:
- Distance = \# of edges in shortest path
- Avg = 16 [Broder et al.]

Recap

- Network analysis is the language of connectedness
- Represent real-world networks from many different domains as graphs, use graph theory and algorithms to reason about them
- Social networks, information networks, knowledge networks, biological networks, etc.
- Network analysis fundamentals
- Nodes, edges, paths, cycles, un/directed, connected components (weak and strong)
- Choices of representation
- Every directed graph is a DAG on its SCCs
- Structure of the Web
- Looks like a bow-tie: big giant component, IN \& OUT components, tendrils, disconnected components

Network Representations

How do we represent graphs as mathematical objects?
What are our choices when we're translating realworld networks into a graph representation?

Edge List

$[(1,2)$,
$(1,4)$,
$(2,4)$,
$(3,4)]$
$[(1,2)$,
$(1,4)$,
$(4,2)$,
$(4,3)]$

Adjacency List

\{1: $[2,4]$,
2: [1,4],
\{1: $[2,4]$,
3: [4],
4: $[1,2,3]\}$

Total length of lists?

Adjacency Matrix

$$
\begin{array}{ll}
\boldsymbol{A}_{i j}=\mathbf{1} & \text { if there is a link from node } i \text { to node } j \\
\boldsymbol{A}_{\boldsymbol{i j}}=\mathbf{0} & \text { otherwise }
\end{array}
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Undirected vs. Directed Networks

Undirected graphs
 - Links: undirected (symmetrical, reciprocal relations)

- Undirected links:
- Collaborations
- Friendship on Facebook

Directed graphs

- Links: directed (asymmetrical relations)

- Directed links:
- Phone calls
- Following on Twitter

More Types of Graphs:

Unweighted
(undirected)

$A_{i j}=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$

$$
A_{i j}=0 \quad A_{i j}=A_{j i}
$$

$$
E=\frac{1}{2} \sum_{i, j=1}^{N} A_{i j} \quad \bar{k}=\frac{2 E}{N}
$$

Weighted
(undirected)
$A_{i j}=\left(\begin{array}{cccc}0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0\end{array}\right)$

$$
\begin{array}{cc}
A_{i i}=0 & A_{i j}=A_{j i} \\
E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) & \bar{k}=\frac{2 E}{N}
\end{array}
$$

More Types of Graphs:

Graphs with self-edges (undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
E=\frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{i j}+\sum_{i=1}^{N} A_{i i}
\end{gathered}
$$

Multigraph
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 3 \\
1 & 1 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right) \\
A_{i i}=0
\end{gathered} \quad A_{i j}=A_{j i}=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N} .
$$

Examples: Communication, Collaboration

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets \boldsymbol{U} and \boldsymbol{V} such that every link connects a node in \boldsymbol{U} to one in V; that is, U and V are independent sets

Examples:

-Authors-to-papers (they authored)
-Actors-to-Movies (they appeared in) -Users-to-Movies (they rated)

"Folded" networks:

-Author collaboration networks
-Movie co-rating networks

Networks are Sparse Graphs

Most real-world networks are sparse $\mathrm{E} \ll \mathrm{E}_{\max }($ or $\mathrm{k} \ll \mathrm{N}-1$)

```
WWW (Stanford-Berkeley): N=319,7I7
    \langlek\rangle =9.65
Social networks (Linkedln): N=6,946,668
<k\rangle =8.87
Communication (MSN IM): N=242,720,596
<k\rangle = II.I
Coauthorships (DBLP): N=3|7,080
<k\rangle =6.62
Internet (AS-Skitter): N=I,7l9,037
<k\rangle = |4.9|
Roads (California)
    N=I,957,027
    <k\rangle =2.82
Proteins (S. Cerevisiae):
    N=I,870
<k\rangle =2.39
```

(Source: Leskovec et al., Internet Mathematics, 2009)
Consequence:Adjacency matrix is filled with zeros! (Density of the matrix $\left.\left(E / N^{2}\right): W W W=I .5 I \times 10^{-5}, \mathrm{MSN} I \mathrm{M}=2.27 \times 10^{-8}\right)$

Network Representations

WWW >

Facebook friendships >
Citation networks >
Collaboration networks >
Mobile phone calls >
Protein Interactions >

Network Representations

WWW > directed multigraph with self-edges
Facebook friendships $>$ undirected, unweighted
Citation networks > unweighted, directed, acyclic
Collaboration networks $>$ undirected multigraph or weighted graph
Mobile phone calls > directed, (weighted?) multigraph
Protein Interactions > undirected, unweighted with self-interactions

Network Properties:
 How to Characterize/Measure a Network?

How do we measure properties in the graph representation of a network?

Focus on connectivity and distance

Connectivity: Node Degrees

Node degree, k_{i} : the number of edges adjacent to node i
e.g. $k_{A}=4$

Avg. degree: $\quad \bar{k}=\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 E}{N}$
In directed networks we define an in-degree and out-degree.
The (total) degree of a node is the sum of in- and out-degrees.
$k_{C}^{\text {in }}=2 k_{C}^{\text {out }}=1 k_{C}=3$

Source: Node with $k^{\text {in }}=0$
Sink: Node with kout $=0$

$$
\overline{k^{i n}}=\overline{k^{o u t}}
$$

Connectivity: How Connected Are Nodes?

How many neighbours do nodes tend to have in your graph?

Connectivity: Degree Distribution

Degree distribution $P(k)$: Probability that a randomly chosen node has degree k
$N_{k}=\#$ nodes with degree k

Normalized histogram:

$$
P(k)=N_{k} / N \quad \rightarrow \text { plot }
$$

Connectivity: Local Clustering

Are the nodes "clustered" in the graph? Do nodes with common neighbours tend to know each other?

Connectivity: Clustering Coefficient

What's the probability that a random pair of your friends are connected?

$$
\begin{aligned}
& C_{i} \in[0,1] \\
& C_{i}=\frac{e_{i}}{\binom{k_{i}}{2}}=\frac{e_{i}}{k_{i}\left(k_{i}-1\right) / 2}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)} \begin{array}{l}
\text { where } \mathrm{e}_{\mathrm{i}} \text { is the number of edges } \\
\text { betwen the neighbours of node } \mathrm{i} \\
\text { and is the degree of node } \mathrm{i}
\end{array}
\end{aligned}
$$

Connectivity: Clustering Coefficient

What's the probability that a random pair of your friends are connected?

$$
\begin{aligned}
& C_{i} \in[0,1]
\end{aligned}
$$

Average clustering coefficient: $\quad C=\frac{1}{N} \sum_{i}^{N} C_{i}$

Connectivity: Clustering Coefficient

$$
\begin{array}{lll}
k_{B}=?, & e_{B}=?, & C_{B}=?=? \\
k_{D}=?, & e_{D}=?, & C_{D}=?=?
\end{array}
$$

Connectivity: Clustering Coefficient

$$
\begin{array}{lll}
k_{B}=2, & e_{B}=1, & C_{B}=2 / 2=1 \\
k_{D}=4, & e_{D}=2, & C_{D}=(2 * 2) /(4 * 3)=4 / 12=1 / 3
\end{array}
$$

Distance: Paths in a Graph

- A path is a sequence of nodes in which each node is linked to the next one

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

- Path can intersect itself and pass through the same edge multiple times
- E.g.: ACBDCDEG
- In a directed graph a path can only follow the direction of the "arrow"

Distance: Number of Paths

Number of paths between nodes u and v :

Length $h=I$: If there is a link between u and $v, A_{u v}=l$ else $A_{u v}=0$

Length $h=2$: If there is a path of length two between u and v then $A_{u k} A_{k v}=l$ else $A_{u k} A_{k v}=0$

$$
H_{u v}^{(2)}=\sum^{N} A_{u k} A_{k v}=\left[A^{2}\right]_{u v}
$$

Length h : If there is a päth of length h between u and v then $A_{u k} \ldots . . A_{k v}=l$ else $A_{u k} \ldots . . A_{k v}=0$
So, the no. of paths of length h between u and v is

$$
H_{u v}^{(h)}=\left[A^{h}\right]_{u v}
$$

Distance: Number of Paths

$$
H^{(1)}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Distance: definition

$h_{B, D}=2$

$h_{B, C}=1, h_{C, B}=2$

Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes
*If the two nodes are disconnected, the distance is usually defined as infinite

In directed graphs paths need to follow
the direction of the arrows
Consequence: Distance is not symmetric: $h_{A, C} \neq h_{C, A}$

Distance: Graph-level measures

- Diameter: the maximum (shortest path) distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$
\bar{h}=\frac{1}{2 E_{\max }} \sum_{i, j \neq i} h_{i j}
$$

- Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Key Network Properties

Degree distribution: $\quad P(k)$
Clustering coefficients: C
Path lengths: L
Diameter:
D

