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Today

Voting
Summary

Emphasis on final help
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Today

Final info:
Tuesday, Dec 13 7–10pm in IC130
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Today

Missed a blog post? Submit by this Friday and email 
Richard and Conroy with a link to the post, your 
utorid, and which blog post you missed (1 or 2)

Late penalty will apply
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Voting
Why have voting?

Synthesize the preferences of a group
Aggregate information, preferences, beliefs, decisions

Voting on:

Candidates

Laws

Verdicts for trials

Awards



Simple example
Say you want to pick the fairest outcome for the group

Everyone has their preferred number (e.g. price)
What should you do?

Easy…take the average

Why fair? 
Minimizes the squared loss



Why voting is hard
But in many situations there is no natural “average”!

Voting on:

Candidates

Laws

Verdicts for trials

Awards Averaging fails here…



Why voting is hard
Often need to pick a single winner that becomes binding for the group

President

Award-winner

Policy decision

Voting as group decision making

Parallels to clustering: finding the centre vs finding the “medioid”—the best 
representative element

Mean Medioid



Individual preferences
We want to aggregate many individuals’ preferences
What are individual preferences?

Setup: a group of k people are evaluating a finite set of possible alternatives



Individual preferences
The people want to produce a single group ranking that orders the 
alternatives from best to worst

The ranking should reflect the collective opinion of the group 

The challenge: how do we define what it means to reflect multiple, potentially 
contradictory opinions?



Individual preferences
Every person has a preference relation over the alternatives, denoted >i for 
player i

Must satisfy two properties:

Complete: all pairs of distinct alternatives X and Y, either X >i Y or Y >i X 

Transitive: if X >i Y and Y >i Z then X >i Z

> >OR

> AND > => >



Individual preferences
A way to think about preference relations: as a graph
Nodes: alternatives

Directed edges: Y     X if X >i Y

(complete and transitive example)



Individual preferences
Another way of expressing preferences: ranked list

> > > > >

For example:

Ranked list → preference relation

Obviously complete and transitive

Preference relation → ranked list

Less obvious but still true



Individual preferences
Claim: Ranked list → Preference relation

Proof: 

A ranked list is complete, since for any pair of alternatives X and Y, either X>Y 
or Y>X

A ranked list is transitive, since if X is higher than Y and Y is higher than Z, then 
X is also higher than Z.



Individual preferences
Claim: Preference relation → ranked list

Proof: 

Identify the alternative X that wins the most pairwise comparisons

Claim: X actually beats every other alternative

Why? Suppose Y >i X. Then Y would beat everything X beats (by transitivity), 
and also X. Therefore beats more than X. Contradiction!
Put X at the top of the list, remove it from the set of 
alternatives, and recurse
Relation is still complete and transitive over remaining alternatives

Construct a list by repeatedly finding the alternative that beats 
everyone else



Individual preferences
Summary: 

Preference relation → Ranked list

Ranked list → Preference relation

Therefore preference relations and ranked lists are equivalent!



Voting Systems
Voting system: a method that takes a set of complete and transitive individual 
preference relations (or ranked lists) and outputs a group ranking

When there’s only two alternatives, what should we do?

Majority Rule: whoever is preferred by a majority of the voters wins, other 
one is second

(let k be odd to avoid ties)

1:

2:

3:

4:

5:



Majority Rule
Easy enough, what about majority rule with more than two alternatives?

What’s a natural way to extend it?
Majority rule on every pair of alternatives: X > Y if a majority of voters have 
X >i Y

Is this complete? 
Everyone has a preference for every pair, and there’s always a majority 
(assume k is odd). So this is complete

Is this transitive?



Is majority rule on at least 3 alternatives transitive?

Majority Rule

>11:

2:

3:

>1

>2 >2

>3 >3

What does majority rule do here?



Majority Rule

>11:

2:

3:

>1

>2 >2

>3 >3

Y pasta > B pasta, B pasta > rice, rice > Y pasta!

Is majority rule on at least 3 alternatives transitive?



Majority rule with at least three alternatives can produce a non-transitive group 
ranking

Majority Rule

Cycle on preferences => non transitive => bad!



Majority rule with at least three alternatives can produce a non-transitive 
group ranking

Called the “Condorcet Paradox”

Condorcet Paradox

Really bad news!

Everyone had perfectly plausible 
preferences
But they behave incoherently as a group, can’t 
even decide on a favourite



Condorcet Paradox
Condorcet Paradox can even happen within a single individual 
person
Consider a student deciding which college to attend

Wants a highly-ranked college, a small average class size, and maximum 
scholarship money

Plans to decide between pairs by favouring the one does better on the most 
criteria

Gotcha

X

Z

Y



Majority Rule: Other Ideas
What about using majority rule another way?
Iterative approach: find a winner, remove from the list, and recurse

One idea: arrange alternatives in some order, then compare by majority vote, 
compare the winner to the third alternative, and so on. 

 Winner of the final comparison is the group favourite

More generally, we can schedule any kind of elimination 
tournament to determine the favourite
→ Then recurse!



Majority Rule: Other Ideas
Graphically:



Majority Rule: Other Ideas
Other kind of elimination tournament:



Majority Rule: Other Ideas
What’s wrong with this?
Strategic agenda setting: order matters!
Consider example from before:

In what order do we evaluate the alternatives?



Majority Rule: Other Ideas
In what order do we evaluate the alternatives?

X

X

X

Y

Y

Y

Z

Z

Z

Entire ranking is entirely determined by the 
order in which we evaluate!



Other systems?
Majority rule led to some bad outcomes
What about other strategies?

Positional voting: produce a group ranking directly from the individual 
rankings

Forget pairwise comparisons

Each alternative receives a certain weight based on its positions in all the 
individual rankings



Borda count
Heisman trophy in college football (and NBA MVP, etc.) all use the following 
method: get weight 0 for being picked last, 1 for being second last, …, k-1 for 
being picked first

Repeat for each voter, tally up the scores, and rank
Example: two voters, four alternatives
Voter 1:  A >1 B >1 C >1 D
Voter 2:  B >2 C >2 A >2 D
A: 3 + 1 = 4
B: 2 + 3 = 5
C: 1 + 2 = 3
D: 0 + 0 = 0
Group ranking: B > A > C > D

Called the “Borda Count”



Borda count
You can create your own variants (and many have) by changing the number of 
points per position

Example: if only top 3 matter, you could assign 3 for first place, 2 for second 
place, 1 for third place, and 0 otherwise

Any such system is a “positional voting system”
Ignoring ties, Borda Count always produces a complete, 
transitive ranking!

👍👍



Borda count
But the Borda Count has its own problems
Magazine tries to rank greatest movie of all time, asks five film critics to rank 
Citizen Kane and The Godfather

Three prefer CK, two prefer TG => CK>TG => all good!
At the last second, they want to inject some modernity into the discussion, so 
they include Frozen

First three only like old movies, so they vote:

CK >i TG >i F

Critics 4 and 5 only like past 40 years, so:

TG >i F >i CK

What is the Borda Count now?



Borda count
First three only like old movies, so they vote:

CK >i TG >i F

Critics 4 and 5 only like past 40 years, so:

TG >i F >i CK

Borda: 

CK: 6, TG: 7, F: 2    =>   TG > CK > F

But before Frozen was introduced it was CK > TG!

TG and CK flip because of Frozen??

Both TG and CK beat Frozen head-to-head
Yet still Frozen influenced CK > TG

👎👎



Borda count

👎👎

Borda Count is susceptible to “irrelevant alternatives”

What voters think of Frozen should be irrelevant to 
how they feel about relative ranking of TG and CK

 But it isn’t 

This gives rise to another problem: voters can 
strategically misreport their preferences
For example, say voters 4 and 5 actually had the true ranking 
TG > CK > F

1,2,3: CK >i TG >i F

4,5: TG >i CK >i F

Borda: CK >i TG >i F 

By lying and reporting TG >i F >i CK, they get                      
TG to win



Irrelevant Alternatives in Politics
These problems with “irrelevant alternatives” and strategic misreporting have 
happened in elections around the world

Most vote with plurality voting: the candidate ranked at the top by most 
voters wins

Q: is this a positional voting system?
A: Yes: 1 for winner, 0 otherwise
“Third-party effects”/“spoiler effects”: if very few people favour some candidate, 
this can swing outcome of two leading contenders

In response, some people strategically misreport their preferences



What’s The Deal?
Voting is one society’s most important institutions
On its face, seems like a relatively simple problem

But we can’t find a system that doesn’t have horrible 
pathologies!
Is there any system that is free of pathologies?



What’s The Deal?
Is there any system that is free of pathologies?
Let’s define “Free of pathologies”

• Criterion 1 “Unanimity”: if there is a pair X and Y for which X >i Y for 
every i, then X > Y

• Criterion 2 “Independence of Irrelevant Alternatives” (IIA): 
the ordering of X and Y should only depend on the relative positions X and 
Y in individual rankings 

If we have a bunch of rankings that produces a group ranking with X > Y

Then we move some Z around in the individual rankings

It should still be the case that X > Y
• Criterion 3 “Non-Dictatorship”: the group ranking should not just 

always be what one particular voter thinks



Independence of Irrelevant Alternatives



Good Voting Systems
What satisfies Unanimity and IIA and non-dictatorship?
With two alternatives, majority rule clearly satisfies all

Arrow’s Theorem [Arrow 1953]: With at least three alternatives, no 
voting system satisfies Unanimity, IIA, and Non-dictatorship

In general, there is no good voting 
system!
In practice, this means that there will always be 
inherent tradeoffs we have to choose from



What Do We Do Now?
How do we vote, how do we decide on things in the presence 
of Condorcet’s Paradox and Arrow’s Theorem?
If you’re faced with an impossibility result, you don’t just give up

One common technique is to look for important special cases
Arrow’s Theorem is a general result, so it doesn’t necessarily apply if 
we make some additional assumptions



What Do We Do Now?
Go back to original Condorcet problem

Replace food with choices about how much money to spend on education 



What Do We Do Now?
Go back to original Condorcet problem with money now:

1: X >1 Y >1 Z 

2: Y >2 Z >2 X 

3: Z >3 X >3 Y 

X: small

Y: medium

Z: a lot
} Amount to 

spend on 
education

Voter 1’s preferences “make sense”

Voter 2’s preferences do too: prefer between Y and Z, so say Y then Z then X

Voter 3’s preferences are harder to justify
Not impossible, but they’re more unusual



Ideal Points
Assume the preferences lie on a one-dimensional spectrum, 
and each voter has an “ideal point” on the spectrum
They evaluate alternatives by proximity to this ideal point

Actually we can assume something weaker: each voter’s preferences “fall 
away” consistently on both sides of their favourite alternative



Single-Peaked Preferences
Definition: a voter has “single-peaked preferences” if there is no alternative 
Xs for which both neighbouring alternatives Xs-1 and Xs+1 are ranked above Xs

Equivalent to: every voter i has a top-ranked option Xt, and her preferences 
fall off on both sides of t:

and



Single-Peaked Preferences

Majority rule with single-peaked preferences

Recall majority rule: compare every pair of alternatives X and Y, and decide X 
> Y or Y > X by the majority of voters

Claim: If all individual rankings are single-peaked, then majority rule applied 
to all pairs of alternatives produces a group preference relation that is 
complete and transitive.

In other words, majority rule works!



Median Voter
Start off by trying to find a group favourite, then proceed by recursion on the 
rest of the alternatives

Consider every voter’s top-ranked alternative — their peak — and sort this 
set of favourites from left to right along the spectrum 

A popular alternative can show up many times

Now consider the median of these favourites

Favourites: X1, X2, X3        Median: X2



The median individual favourite is a natural candidate for potential group 
favourite

Strikes a compromise between more extreme favourites on either side

Median Voter Theorem: With single-peaked preferences, the median 
individual favourite defeats every other alternative in a pairwise majority vote.

Median Voter



Example
X2 is global median favourite

Then favourites are X1, X3, X3 => X3 median favourite

Eventually we get X2 > X3 > X1 > X4 > X5



Voting as Information Aggregation

So far, trying to come up with methods for people who have 
different preferences
Sometimes there is a “true” underlying ranking and people 
with different information are trying to uncover it

Examples:

Jury deliberation

Board of advisors to a company



Simple Case: Simultaneous, Sincere Voting

Simple setting, two alternatives X and Y

One is genuinely the best choice, each voter casts vote on what she thinks 
the right choice is

Assume everyone votes sincerely
Model: similar to information cascades
Prior probability that X is best is 1/2

Each voter gets a private independent signal on which is best, prob of getting 
right signal is q (> 1/2)

With probability q, voter should vote for what her signal says

Condorcet Jury Theorem: as the number of voters increases, 
probability of the majority choosing correct decision goes to 1

Oldest “wisdom of crowds” argument



Simple Case: Simultaneous, Sincere Voting

Formal Bayes argument

Recall Bayes Rule: P[A|B] = P[B|A]P[B]/P[A]

We want to compute P[X is best | X-signal]

Given: P[X is best] = 1/2 and P[X-signal | X is best] = q

Voter’s strategy: evaluate P[X is best | X-signal] then vote X if this probability 
> 1/2

P[X is best | X-signal] = P[X-signal | X is best]P[X is best]/P[X-signal]

X-signal can be observed if X is best or if Y is best:

P[X-signal] = P[X is best] * P[x-signal observed | X is best] + P[Y is best] * 
P[X-signal observed | Y is best] = 1/2q + 1/2(1-q) = 1/2

So overall: P[X is best | X-signal] = (1/2)q / (1/2) = q

Voter favours the alternative that is reinforced by her signal



Insincere Voting
We just assumed sincere voting

But there are very natural situations where a voter should actually lie, even 
though her goal is to maximize the probability that the group chooses the 
right alternative!

Example, information cascades-style:

Experimenter has two urns, 10 marbles each

One urn has 10 white marbles (“pure”) and the other has 9 green and one 
white (“mixed”)

Three people privately draw one marble and guess what urn it is, and all win 
money if the majority of them are right



Insincere Voting
Suppose you draw a white marble

→ Way more likely that urn is pure than mixed
If you draw a green marble

→ Know for sure it’s mixed
But what should you guess?

First, when will your guess actually matter?
If the two others agree, then your guess doesn’t change anything!

Only case where it matters is if they’re split

If they’re split, someone said mixed, so they know it’s mixed!

Then you should guess mixed to break the tie the right way!

Assuming others vote sincerely, you have an incentive to vote insincerely => 
everyone voting sincerely is not a Nash equilibrium



Insincere Voting
This is very naturally thought of as a game

Voters are players, guesses are strategies, and they result in certain payoffs

This is highly stylized setting so we can see what’s going on

But it happens in the real world too



Jury Deliberations
Consider a jury deliberating on a verdict: guilty or innocent
There is a “best” answer — whether the defendant is actually 
guilty or innocent
Compare with Condorcet Jury Theorem setup:

1. Juries require a unanimous vote. Guilty only if everyone says guilty

2. In Condorcet, evaluate alternatives just by picking most likely one (if > 1/2 sure, 
pick it). Here, only pick guilty if sure beyond a reasonable doubt:

for some large z



Jury Deliberations

Each juror gets an independent private signal: guilty signal (G-signal) or 
innocent signal (I-signal)

They usually get the right signal: P[G-signal | defendant guilty] = 
P[I-signal | defendant innocent] = q, q > 1/2

Assume prior probability of guilt of 1/2, but doesn’t matter

What should a juror do?



Jury Deliberations
■ What should a juror do?
■ Say you receive an I-signal

▪ At first it seems obvious that you should vote to acquit

▪ But: conviction criterion is                                                        so if all 
the other jurors received G-signals you might still be above 
that threshold

▪ Second, ask yourself key question from before: when does my vote 
actually matter? 

▪ Like before, your vote only changes the outcome if everyone 
except you is voting guilty!
▪ If you vote guilty, defendant is found guilty
▪ If you vote to acquit, defendant is found innocent



Jury Deliberations
■ If everyone but you is voting guilty, what is the 

probability of defendant being guilty?



Jury Deliberations
■ If everyone but you is voting guilty, what is the probability of defendant 

being guilty?

■ Since q>1/2, (1-q)k-2  is super small, so the probability goes to 1
■ In only case where your vote to acquit matters, you should 

vote guilty despite your I-signal!



Jury Deliberations
■ Intuitively: because of the unanimity rule, you only affect the outcome when 

everyone else holds the opposite opinion

■ Assuming everyone else is as informed as you, and assuming 
independence (remember information cascades!), then the conclusion is 
that they’re probably collectively right

■ The result is: assuming everyone else votes sincerely, you have an incentive to 
vote insincerely
▪ All-sincere voting is not an equilibrium
■ What is the equilibrium?
▪ There are several

▪ Most interesting is a mixed equilibrium (randomly disregard I-signal some 
fraction of the time to correct for possibility that it’s wrong)

▪ In this equilibrium, probability of convicting an innocent 
defendant does not go to zero as #jurors goes to infinity!



Jury Decisions
■ Why do we get such a bad outcome?

■ Unanimity is a very harsh constraint. 
▪ If we relax to only requiring a certain fraction f saying guilty, then the 

probability that we convict an innocent defendant goes to 0



Summary
■ Voting: synthesizing the preferences of many people into a single group 

preference

■ Many fundamental issues:

▪ Condorcet paradox: most natural method (majority rule) can turn a set 
of reasonable preference relations into an unreasonable one

▪ Arrow’s Theorem: no general voting system simultaneously 
satisfies unanimity, IIA, and non-dictatorship.

■ Special case: single-peaked preferences

▪ Median Voter Theorem says we can get good outcomes

■ Jury deliberations: insincere voting can be incentivized
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A Network!



Components of a Network

Objects: nodes, vertices N
Interactions: links, edges E
System: network, graph G(N,E)



Networks are a universal language for describing complex data

Networks from science, nature, and technology are more similar than 
you might expect

Shared vocabulary between fields

CS, finance, tech, social sciences, physics, economics, statistics, biology

Data availability (and computational challenges)

Web/mobile, bio, health, medical

Impact!

Social networking, social media, drug design

Why study networks?



The Internet in 1970

A first example

Translation



A

B

D

C

L

MF

G

H

I

A
G

F

B
C

D

E

Undirected 
■Links: undirected 

(symmetrical, 
reciprocal) 

■Examples: 
▪Collaborations 
▪Friendship on 
Facebook

Directed 
■Links: directed  

(arcs) 

■Examples: 
▪Phone calls 
▪Following on Twitter

Undirected and Directed Networks



Bridge edge: If we erase it, the graph becomes disconnected. 

Largest Component:  
Giant Component 

Isolated node (node H)

D
C

A

B

H

F

G

D
C

A

B

H

F

G

Connectivity of Graphs
Connected component (undirected): 
Any two vertices can be joined by a path
No superset with the same property

A disconnected graph is made up of two or more 
connected components



E

C

A

B

G

F

D

Connectivity of Directed Graphs

Strongly connected directed graph
has a path from each node to every other node and vice 
versa (e.g., A-B path and B-A path)

Weakly connected directed graph
is connected if we disregard the edge directions

It is connected but not strongly 
connected (e.g., there is no way to 
get from F to G by following the edge 
directions)



Strongly Connected Component

Strongly connected component (SCC)  
is a set of nodes S so that:
Every pair of nodes in S can reach each other
There is no larger set containing S with this property

E

C

A

B

G

F

D

Strongly connected 
components of the graph: 
{A,B,C,G}, {D}, {E}, {F}



Strongly Connected Component
■Fact: Every directed graph is a DAG on 

its SCCs
▪ (1) SCCs partitions the nodes of G 
▪ That is, each node is in exactly one SCC

▪ (2) If we build a graph G’ whose nodes are SCCs, and 
with an edge between nodes of G’ if there is an edge 
between corresponding SCCs in G, then G’ is a DAG

E

C

A

B

G

F

D

(1) Strongly connected components of 
graph G: {A,B,C,G}, {D}, {E}, {F} 

(2) G’ is a DAG:

G G’
{A,B,C,G}

{E}

{D}

{F}



Bow-tie Structure of the Web
203 million pages, 1.5 billion links [Broder et al. 
2000]
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Adjacency Matrix

Aij = 1   if there is a link from node i to node j

Aij = 0   otherwise

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0111
1000
1001
1010

A

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0110
0000
0001
1000

A

Note that for a directed graph (right) the matrix is not symmetric.   

4

1
2 3

4

1
2 3

1

0



Bipartite Graph
Bipartite graph is a graph whose nodes 
can be divided into two disjoint sets U and V 
such that every link connects a node in U to one 
in V; that is, U and V are independent sets 

Examples: 
–Authors-to-papers (they authored)
–Actors-to-Movies (they appeared in)
–Users-to-Movies (they rated)

“Folded” networks: 
–Author collaboration networks
–Movie co-rating networks

U V

A

B

C

D

E

A B

C

D

E

Folded version of the 
graph above



Connectivity: Node Degrees

U
nd

ir
ec

te
d

A

Node degree, ki: the number  
of edges adjacent to node i

D
ir

ec
te

d

A
G

F

B
C

D

E

In directed networks we define an in-degree 
and out-degree.    
The (total) degree of a node is the sum of 
in- and out-degrees.

2=in
Ck 1=out

Ck 3=Ck

outin kk =

Avg. degree:

Source: Node with kin = 0 
Sink: Node with kout = 0

k̄ = hki = 1

N

NX

i=1

ki =
2E

N
<latexit sha1_base64="EtJD4jAdALuGih2ZlA+he9LV75U="></latexit>

e.g. kA = 4



Connectivity: Degree Distribution
Degree distribution P(k): Probability that a randomly 
chosen node has degree k 

Nk = # nodes with degree k

k

P(k)

1 2 3 4

0.1
0.2
0.3
0.4
0.5
0.6

Normalized histogram: 
P(k) = Nk / N     ➔   plot

➔



Connectivity: Clustering Coefficient

What’s the probability that a random pair of your 
friends are connected?

Ci=0 Ci=1/3 Ci=1

where ei is the number of edges  
between the neighbors of node I
and ki is the degree of node I

∑=
N

i
iCN

C 1

80

Ci =
ei�ki

2

� =
ei

ki(ki � 1)/2
=

2ei
ki(ki � 1)

Average clustering coefficient: 

Ci 2 [0, 1]
<latexit sha1_base64="PTHj0bJmTVZYxOmBJye7Z2wRZ6c=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0We/FYwX7AdinZNNuGJtk1yRbK0t/hxYMiXv0x3vw3pu0etPXBwOO9GWbmhQln2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2Ho/rMb4+p0iyWj2aS0EDggWQRI9hYKaj3GOoyiXz30gt6pbJbcedAq8TLSRlyNHqlr24/Jqmg0hCOtfY9NzFBhpVhhNNpsZtqmmAywgPqWyqxoDrI5kdP0blV+iiKlS1p0Fz9PZFhofVEhLZTYDPUy95M/M/zUxPdBhmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PRhuAtv7xKWtWKd1WpPlyXa3d5HAU4hTO4AA9uoAb30IAmEHiCZ3iFN2fsvDjvzseidc3JZ07gD5zPH7i7kMM=</latexit>



Distance: definition

Distance (shortest path, geodesic) 
between a pair of nodes is defined as 
the number of edges along the shortest 
path connecting the nodes 

*If the two nodes are disconnected, the distance is 
usually defined as infinite

In directed graphs paths need to follow 
the direction of the arrows
Consequence: Distance is  
not symmetric: hA,C ≠ hC, A

B

A

D

C

B

A

D

C

hB,D = 2

hB,C = 1, hC,B = 2



Distance: Graph-level measures
■Diameter: the maximum (shortest path) 

distance between any pair of nodes in a 
graph 

■Average path length for a connected graph 
(component) or a strongly connected 
(component of a) directed graph  

▪Many times we compute the average only over the 
connected pairs of nodes (that is, we ignore “infinite”  
length paths)

∑
≠

=
iji
ijhE

h
,max2

1
where hij is the distance from node i to node j, 
And Emax is the maximum number of edges (=n*(n-1)/2)



Simplest Model of Graphs
Erdös-Renyi Random Graphs [Erdös-Renyi, ‘60] 
Gn,p: undirected graph on n nodes and each  
edge (u,v) appears i.i.d. with probability p 
Simplest random model you can think of



Random Graph Model
n and p do not uniquely determine the graph!

The graph is a result of a random process 

We can have many different realizations given the 
same n and p

n = 10 
p = 1/6



Degree Distribution

Fact: Degree distribution of Gnp is Binomial. 
Let P(k) denote a fraction of nodes with degree 
k:

knk pp
k
n

kP −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 1)1(

1
)(

Select k nodes 
out of n-1

Probability of 
having k edges

Probability of 
missing the rest of the 
n-1-k edges 
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Networks & Communities
We often think of networks “looking” like this:

What can lead to such a conceptual picture?



Granovetter’s Answer

Two perspectives on friendships:

Interpersonal: Friendship between two people vary in 
strength, you can be close or not so close to someone

Structural: Friendships span different parts of the network

The two highlighted edges are 
structurally different: one spans two 
different “communities” and the 
other is inside a community



Triadic closure
48 CHAPTER 3. STRONG AND WEAK TIES

B

A

C

G

F

E D

(a) Before B-C edge forms.

B

A

C

G

F

E D

(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the e↵ects of triadic
closure, since they have a common neighbor A.

seeking, and o↵ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o↵ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Informally: If two people in a social network have a friend in 
common, then there is an increased likelihood that they will 
become friends themselves at some point in the future.



Triadic Closure

CA

B

Triadic closure == High clustering coefficient

Reasons for triadic closure:
If B and C have a friend A in common:

– B is more likely to meet C
(both spend time with A)

– B and C trust each other more
(they have a friend in common)

– A has an incentive to bring B and C together
(easier for A to maintain two disjoint relationships)



Granovetter’s Explanation

■First point: Structure
▪ Structurally embedded edges are also socially strong
▪ Long-range edges spanning different parts of the 

network are socially weak
■Second point: Information
▪ Long-range edges allow you to gather information from 

different parts of the network and get a job
▪ Structurally embedded edges are  

heavily redundant in terms of  
information access a b

S

Weak
S

S

W
Strong

S

Granovetter makes a connection between the 
social and structural roles of an edge



Network Vocabulary: Span and Bridges

Define: Bridge edge
If removed, it disconnects the graph

a b

Bridge

a b

Local bridge

Define: Local bridge
Edge of Span > 2  
(any edge that doesn’t close a triangle)

Idea: Local bridges with long span are like real bridges

Define: Span 
 The Span of an edge is the distance of the  
edge endpoints if the edge is deleted.

Span of a bridge edge = ∞



Granovetter’s Explanation

Model: Two types of edges:
Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:
Two strong ties imply a third edge
If node A has strong ties to both nodes B and C, then there 
must be an edge (strong or weak) between B and C

Fact: If strong triadic closure is  
satisfied then local bridges  
are weak ties!

S S

Edge: 
W or S

a b
S

W
S

S

W
S

S



Conceptual Picture of Networks

Granovetter’s theory leads to the following 
conceptual picture of networks

Strong ties

Weak ties



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

NCAA Football Network

NCAA conferences

Nodes:  Teams
Edges: Games played



Graph Partitioning
Two general approaches:
1. Start with every node in the same cluster and break apart at 
“weak links” (“divisive clustering”) 

2. Start with every node in its own “community” and join 
communities that are close together (“agglomerative 
clustering”)



Graph Partitioning
Definition: the betweenness of an edge is how many 
(fractional) shortest paths travel through it

–For every pair of nodes A,B say there is one unit of “flow” along 
the edges from A to B
–Flow between A to B divides evenly among all shortest paths 
from A to B
–If k shortest paths, 1/k flow on each path



Girvan-Newman algorithm
Divisive hierarchical clustering based on the notion of edge 
betweenness (Number of shortest paths passing through an edge)

Girvan-Newman Algorithm (on undirected unweighted 
networks):
Repeat until no edges are left:

–(Re)calculate betweenness of every edge
–Remove edges with highest betweenness (if ties, remove all edges 
tied for highest)
–Connected components are communities

Gives a hierarchical decomposition of the network



How to Compute Betweenness?

0 

1 

2 

3 

4

Recall BFS goes layer-by-layer

Want to compute 
betweenness of paths 

starting at node A
BFS starting from A:



How to Compute Betweenness?

Work  
downwards

Count the number of shortest paths from A to 
all other nodes in the graph:



How to Compute Betweenness?
How much flow goes from A to other nodes?

1 flow for (A,K). 
Split evenly

1+0.5 paths to J 
Split 1:2

1+1 paths to H 
Split evenly

 

Work 
upwards

Compute betweenness by working up the tree: If 
there are multiple paths count them fractionally
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Signed Networks

Networks with positive and negative 
relationships

Consider an undirected complete graph
Label each edge as either:
Positive: friendship, trust, positive sentiment, …
Negative: enemy, distrust, negative sentiment, …



Theory of Structural Balance

Start with the intuition [Heider ’46]:
Friend of my friend is my friend
Enemy of enemy is my friend
Enemy of friend is my enemy

Look at connected triples of nodes:

++
+

--
+

++
-

--
-

UnbalancedBalanced
Consistent with “friend of a friend” or 

“enemy of the enemy” intuition
Inconsistent with the “friend of a friend” or 

“enemy of the enemy” intuition



Balanced/Unbalanced Networks

BalancedUnbalanced

Define:  A complete graph is balanced if every connected triple of 
nodes has:

All 3 edges labeled +   or   Exactly 1 edge labeled +



Local Balance ! Global Factions
The Balance Theorem: Balance implies global coalitions 
[Cartwright-Harary]

If all triangles are balanced, then either:
A) The network contains only positive edges, or
B) The network can be split into two factions: Nodes can be split 
into 2 sets where negative edges only point between the sets

+ +
L

+
R

-



Structural Balance5.1. STRUCTURAL BALANCE 121

A

B C

+ +

+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

What if we allow three mutual enemies?



Weak Structural Balance ! Many 
Global Factions

Define:  A complete network is weakly balanced if there is no triangle 
with exactly 2 positive edges and 1 negative edge.

Characterization of Weakly Balanced Networks: 
If a labeled complete graph is weakly balanced, then its nodes can be 
partitioned 

(divided into groups such that two nodes belonging to the same 
group are friends, and every two nodes belonging to different 
groups are enemies)

Global picture: same thing as before, but with many 
factions, not necessarily two



Balance in General Networks

Balanced?

-
+

Def 1: Local view
Fill in the missing edges 
to achieve balance

Def 2: Global view
Divide the graph into two 
coalitions

-
-

-

So far we talked about complete graphs

The 2 definitions  
are equivalent!



Is a Signed Network Balanced?
Theorem: Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges 
[Harary 1953, 1956]

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle

Proof by algorithm: We proved this by actually 
constructing an algorithm that either outputs a 
division into coalitions or a cycle with odd number 
of negative edges

Because these are the only two outcomes, this 
proves the claim



Is a Signed Network Balanced?
Signed graph algorithm:

Step 1: Find connected components on + edges and for 
each component create a super-node

▪ Since nodes connected by a + edge must be in 
same coalition

▪ If any – edge in the super node, done (cycle with 1 
negative edge)

Step 2: Connect components A and B if there is a  
negative edge between the members

▪ Note there are only negative edges pointing out of 
a super-node (otherwise should’ve connected the 
two super-nodes that have a positive edge)

Even length  
cycle

–

–
––

–

–

–
–

–

Odd length  
cycle
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How long is the typical shortest path?
Milgram devised a clever experiment

–Picked ~300 people in Omaha, Nebraska and Wichita, 
Kansas
–Asked each person to try get a letter to a particular 
person in Boston (a stockbroker), but they could only send 
it to someone they know on a first-name basis
–The friends then send to their friends, etc.

64 chains completed, 6.2 steps on average

113



6 Degrees: Should We Be Surprised?
Assume each human is connected to 100 other people 
Then: 

Step 1: reach 100 people
Step 2: reach 100*100 = 10,000 people
Step 3: reach 100*100*100 = 1,000,000 people
Step 4: reach 100*100*100*100 = 100M people
In 5 steps we can reach 10 billion people

What’s wrong here?
Triadic closure: 92% of new FB friendships are to a friend-of-a-
friend [Backstom-Leskovec ‘11]
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The Small-World Model

High clustering
High diameter

High clustering
Low diameter

Low clustering
Low diameter

Rewiring allows us to “interpolate” between  
a regular lattice and a random graph
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How to Navigate a Network?
“The geographic movement of the [message] from Nebraska to  
Massachusetts is striking. There is a progressive closing in on the target 
area as each new person is added to the chain”
S.Milgram ‘The small world problem’, Psychology Today, 1967
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Decentralized Search
The setting:
– Nodes live in a regular lattice, just as in Watts-Strogatz
– Each node has an “address”/location in the grid
– Node s is trying to route a message to t
– s only knows locations of its friends and location of the target t
– s does not know random links of anyone else but itself

Geographic Navigation: nodes will act greedily with respect to 
geography: always pass the message to their neighbour who is 
geographically closest to t (what else can they do?)

Search time T: Number of steps it takes to reach t

117



What is success?

)( αnO))((log βnO

Searchable
Search time T:

Not searchable
Search time T:

We know these graphs have diameter O(log n), so paths are logarithmic 
in shortest-path length
 
We will say a graph is searchable if the decentralised search time T is 
polynomial in the path lengths 

But it’s not searchable if  T is exponential in the path lengths

118



Kleinberg’s Model

119

Kleinberg’s Model [Kleinberg, Nature ‘01]

Nodes still live in a grid, and know their neighbours

Each node has one random “long-range” link

Key difference: the link isn’t uniformly at 
random anymore, it follows geography

Prob. of long link to node v:  

P (u ! v) ⇠ d(u, v)�↵
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d(u, v)
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… grid distance between u and v (address distance, not 
shortest path)

… tunable parameter ≥ 0



Kleinberg’s Model in 1-Dimension

120

Myopic search in general doesn’t find the shortest path!



Kleinberg’s Model in 1-Dimension
We analyze 1-dimensional case:

Claim:  For            we can get from s to t in O(log(n)2) 
steps in expectation

Proof strategy:
Argue it takes O(log n) to halve the distance
O(log n) halving steps to get to target

↵ = 1
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P (u ! v) ⇠ d(u, v)�↵ = 1/d(u, v)
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How is popularity distributed?

A deeper look at one of our central questions: how connected are 
people? How many people do people tend to know?

Most know some, and some know a ton

How is popularity distributed in the population?



A guess

Heights of males in the Italian army
Most values are clustered around a typical value

From "Height and the Normal Distribution: Evidence from Italian Military Data” 



Node Degrees in Networks

Flickr social 
network 

n= 584,207, 
m=3,555,115

[Leskovec et al. KDD ‘08]

 

Take a network, plot a histogram of P(k) vs. k



Node Degrees in Networks
Plot the same data on log-log scale:

Flickr social 
network 

n= 584,207, 
m=3,555,115

[Leskovec et al. KDD ‘08]

 

 



The Power Law Distribution

p(x) / x�↵
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For example, Newton’s law of universal gravitation follows an “inverse-square law”,
e.g. a power law:

Where the distance r is the quantity 
that is changing

F (r) = G
m1m2

r2
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The main heavy-tailed distribution we will consider is the power law:

To make it an actual distribution, include a normalizing constant c

p(x) = cx�↵
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Height as a Power Law

Why is the mean of the 
power law so far out?



Power laws are everywhere



Network Resilience 

Real networks are resilient to random failures
Gnp has better resilience to targeted attacks

Need to remove all pages of degree >5 to disconnect the Web
But this is a very small fraction of all web pages

Fraction of removed nodes

M
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Fraction of removed nodes

Random
failures

Targeted 
attack

Gnp networkInternet network

Random
failures

Targeted 
attack



MusicLab: 

“quality”

success

Success is inherently unpredictable from quality



MusicLab: 

Who ends up here is pretty random!



Rich Get Richer
Example in networks: new nodes are more likely to link to nodes that 
already have high degree

Herbert Simon’s result:
Power-laws arise from “Rich get richer” (cumulative 
advantage)

Examples [Price ‘65]
Citations: New citations to a paper are proportional to the number it 
already has
Herding: If a lot of people cite a paper, then it must be good, and 
therefore I should cite it too



The Model Gives Power-Laws

Claim: The described model generates networks where the fraction of 
nodes with in-degree k scales as:

where q=1-p

So we get power-law 
degree distribution 
with exponent:

P (di = k) / k�(1+ 1
q )

<latexit sha1_base64="m51g+owdjWmgXOT7XSJ5NkKY6Fo=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0VsEUtSBd0IRTcuK9gHNDFMppN2yOThzEQoIZ/gxl9x40IRty7d+TdO2yy09cDA4Zx7uXOOGzMqpGF8a4WFxaXlleJqaW19Y3NL395piyjhmLRwxCLedZEgjIakJalkpBtzggKXkY7rX439zgPhgkbhrRzFxA7QIKQexUgqydEPm5W+Q+EF9KvQinkUywj6d+lxxTyyPI5wambpfVbNHL1s1IwJ4Dwxc1IGOZqO/mX1I5wEJJSYISF6phFLO0VcUsxIVrISQWKEfTQgPUVDFBBhp5NAGTxQSh96EVcvlHCi/t5IUSDEKHDVZIDkUMx6Y/E/r5dI79xOaRgnkoR4eshLGFSpx+3APuUESzZSBGFO1V8hHiLVg1QdllQJ5mzkedKu18yTWv3mtNy4zOsogj2wDyrABGegAa5BE7QABo/gGbyCN+1Je9HetY/paEHLd3bBH2ifP/F5m08=</latexit>

↵ = 1 +
1

q
= 1 +

1

1� p
<latexit sha1_base64="kJFx+nGx3isF+7o1ufMEw94NeAI=">AAACEXicbVDLSgMxFM34rPU16tJNsAgFsUyqoBuh6MZlBfuAzlAyaaYNzczEJCOUYX7Bjb/ixoUibt25829M21nY1gMXTs65l9x7fMGZ0o7zYy0tr6yurRc2iptb2zu79t5+U8WJJLRBYh7Lto8V5SyiDc00p20hKQ59Tlv+8Gbstx6pVCyO7vVIUC/E/YgFjGBtpK5ddjEXAwyvIDpxA4lJirL0IZt9o1ORde2SU3EmgIsE5aQEctS79rfbi0kS0kgTjpXqIEdoL8VSM8JpVnQTRQUmQ9ynHUMjHFLlpZOLMnhslB4MYmkq0nCi/p1IcajUKPRNZ4j1QM17Y/E/r5Po4NJLWSQSTSMy/ShIONQxHMcDe0xSovnIEEwkM7tCMsAmB21CLJoQ0PzJi6RZraCzSvXuvFS7zuMogENwBMoAgQtQA7egDhqAgCfwAt7Au/VsvVof1ue0dcnKZw7ADKyvX9M0m8Q=</latexit>



Lecture 7



How to Organize the Web?

How do you organize the Web?

First try: Human curation 
Web directories

Yahoo, DMOZ, LookSmart

Second try: Web Search
Information Retrieval attempts to  
find relevant docs in a small  
and trusted set

Newspaper articles, Patents, etc.
But: The Web is huge, full of untrusted documents, random things, 
web spam, etc.
So we need a good way to rank webpages!
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Idea: links as votes!
If I link to you, that’s usually a good thing

1. Model the Web as a directed graph

2. Use the link structure to compute importance 
values of webpages

3. Use these importance values for ranking
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Hubs and Authorities
[Kleinberg ‘98]

Each page has a hub score hi and an authority score ai 
HITS algorithm:

1. Initialize all scores to 1
2. Perform a sequence of hub-authority updates:

— First apply Authority Update Rule
— Then apply Hub Update Rule

3. Normalize (divide authority scores by sum over ai’s and same for 
hubs)
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(We normalize since the numbers get very big, 
and we only care about the relative sizes)



Hubs and Authorities: Example
[Kleinberg ‘98]
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1

2

3

4

5

6

Apply 2 rounds of hub and 
authority update steps on the 
graph below:

Node h<0> a<1> h<1> a<2> h<2> … a<*> h<*>

1 1 0 2/9 0 6/29 … 0 0.198

2 1 0 4/9 0 13/29 … 0 0.445

3 1 0 3/9 0 10/29 … 0 0.357

4 1 2/5 0 6/16 0 … 0.357 0

5 1 2/5 0 7/16 0 … 0.445 0

6 1 1/5 0 3/16 0 … 0.198 0

Note: in this example, values are very close to convergence after only 2 steps



PageRank: The “Flow” Model
A “vote” from an important page is worth more:
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rj = ri/3 + rk/4

j

ki

rj/3

rj/3rj/3

ri/3 rk/4
Each link’s vote is proportional to the 
importance of its source page

If page i with importance ri has di out-links, each 
link gets ri / di votes

Page j’s own importance rj is the sum of the 
votes on its in-links



Mental Model: PageRank as a Fluid

Think of PageRank as a “fluid” that circulates around the network, 
passing from node to node and pooling at the most important ones

PageRank Algorithm:
1. Initialize all nodes with 1/n PageRank
2. Perform k PageRank updates:

Basic PageRank Update Rule: Each page divides its current 
PageRank equally across its outgoing links. New PageRank is the 
sum of PR you receive.
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Page j’s PageRank Update equation: rj =
X

i!j

ri
di
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Where di = out-degree of node i



PageRank: A Problem
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All the PageRank ends up here!

In real graph structures, PageRank can pool in the wrong places

Consider a slightly different graph:

What happens?



PageRank: A Solution
Scaled PageRank: only divide a fraction s of the PageRank among 
outgoing links
The rest gets spread evenly over all nodes 

In effect we create a complete graph

Scaled PageRank Update Rule: First apply Basic PageRank Update Rule, scale 
down the values by s, then divide the residual 1-s units of PageRank equally: 
(1-s)/n to each.
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PageRank: Random Surfer

Claim: The probability of being at page X after k steps of this 
random walk is equal to the PageRank of X after k applications of 
the Basic PageRank Update rule.
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The Random Walk:  Walker chooses a starting node at random, then 
at each step picks one of the out-links of its current node uniformly at 
random.



Personalized PageRank

Goal: Evaluate pages not just by 
popularity or global importance, but by 
how close they are to a given topic
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Solution: change teleportation vector!

Conference Author

Teleporting can go to: 
•  Any page with equal prob. (normal 

PageRank)
•  A topic-specific set of “relevant” pages
•  A single page/node (random walk with 

restarts)



Update Rules as Matrix-Vector Multiplication

Recall Hub Update Rule:
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This corresponds exactly to the simple matrix-vector 
multiplication

.

h Ma

=

hi  Mi1a1 +Mi2a2 + . . .+Minan



Update Rules as Matrix-Vector Multiplication

Authority update rule is similar
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This corresponds exactly to the simple matrix-vector 
multiplication

. =

a MTh

Transpose the  
matrix!

ai  M1ih1 +M2ih2 + . . .+Mnihn



Convergence
Recall your eigenvectors and eigenvalues:
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Av = �v
v is an eigenvector of A, with corresponding eigenvalue lambda

At convergence, performing additional hub-authority steps won’t change 
anything

Thus Hubs and Authorities converges to the leading eigenvector of MMT 

and MTM!

(Full details in the reading) eigenvalueeigenvector

(MMT )hh⇤i = c · hh⇤i
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N

PageRank Spectral Analysis

Recall the Basic PageRank Update Rule:
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Define a new matrix N:

1/3
Nij =

1

di
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for edges i->j, 0 otherwise

rhk+1i
j =

X

i!j

rhkii

di
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where page i has 
di out-links

rhk+1i = N1ir
hki
1 +N2ir

hki
2 + · · ·Nnir

hki
n
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rhk+1i = NT rhki
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What is “rational” play?
Repeat!

44.4 is the new 66.6, and so on

0 10066.644.429.619.7…

The only “rational” move is guessing 0!

(of course, in real life not everyone is rational)
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Exam-Presentation Game
What should you do?
If you knew your partner would study for the exam, what should you do?
You’d choose exam (88 > 86)

If you knew your partner would work on the presentation, what should you 
do?
You’d choose exam (92 > 90)

No matter what, you should choose exam!
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You

Your Partner
Presentation Exam

Presentation 90, 90 86, 92
Exam 92, 86 88, 88

Figure 6.1: Exam or Presentation?

about the strategic consequences of your own actions, where you need to consider the e↵ect

of decisions by others, is precisely the kind of reasoning that game theory is designed to

facilitate. So before moving on to the actual outcome of this exam-or-presentation scenario,

it is useful to introduce some of the basic definitions of game theory, and then continue the

discussion in this language.

Basic Ingredients of a Game. The situation we’ve just described is an example of a

game. For our purposes, a game is any situation with the following three aspects.

(i) There is a set of participants, whom we call the players. In our example, you and your

partner are the two players.

(ii) Each player has a set of options for how to behave; we will refer to these as the player’s

possible strategies. In the example, you and your partner each have two possible

strategies: to prepare for the presentation, or to study for the exam.

(iii) For each choice of strategies, each player receives a payo↵ that can depend on the

strategies selected by everyone. The payo↵s will generally be numbers, with each

player preferring larger payo↵s to smaller payo↵s. In our current example, the payo↵

to each player is the average grade he or she gets on the exam and the presentation.

We will generally write the payo↵s in a payo↵ matrix as in Figure 6.1.

Our interest is in reasoning about how players will behave in a given game. For now we

focus on games with only two players, but the ideas apply equally well to games with any

number of players. Also, we will focus on simple, one-shot games: games in which the

players simultaneously and independently choose their actions, and they do so only once. In

Section 6.10 at the end of this chapter, we discuss how to reinterpret the theory to deal with

dynamic games, in which actions can be played sequentially over time.

6.2 Reasoning about Behavior in a Game

Once we write down the description of a game, consisting of the players, the strategies, and

the payo↵s, we can ask how the players are likely to behave — that is, how they will go

about selecting strategies.



Basic Definitions
A game G is a tuple (P,S,O):
P = set of Players
S = a set of strategies for every player
O = for every outcome (where every player is picking one strategy), 
a payoff for each player

Payoff matrix summarizes all of these (each dimension is a player, 
every row/column/etc is a strategy for one player, every cell 
expresses payoffs for each player)
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Underlying Assumptions
Payoffs summarize everything a player cares about

Every player knows everything about the structure of the game: who 
the players are, the strategies available to everyone, payoffs for each 
player and strategy

Every player is rational: wants to maximize payoff and succeeds in 
doing so
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about the strategic consequences of your own actions, where you need to consider the e↵ect

of decisions by others, is precisely the kind of reasoning that game theory is designed to

facilitate. So before moving on to the actual outcome of this exam-or-presentation scenario,

it is useful to introduce some of the basic definitions of game theory, and then continue the

discussion in this language.

Basic Ingredients of a Game. The situation we’ve just described is an example of a

game. For our purposes, a game is any situation with the following three aspects.

(i) There is a set of participants, whom we call the players. In our example, you and your

partner are the two players.

(ii) Each player has a set of options for how to behave; we will refer to these as the player’s

possible strategies. In the example, you and your partner each have two possible

strategies: to prepare for the presentation, or to study for the exam.

(iii) For each choice of strategies, each player receives a payo↵ that can depend on the

strategies selected by everyone. The payo↵s will generally be numbers, with each

player preferring larger payo↵s to smaller payo↵s. In our current example, the payo↵

to each player is the average grade he or she gets on the exam and the presentation.

We will generally write the payo↵s in a payo↵ matrix as in Figure 6.1.

Our interest is in reasoning about how players will behave in a given game. For now we

focus on games with only two players, but the ideas apply equally well to games with any

number of players. Also, we will focus on simple, one-shot games: games in which the

players simultaneously and independently choose their actions, and they do so only once. In

Section 6.10 at the end of this chapter, we discuss how to reinterpret the theory to deal with

dynamic games, in which actions can be played sequentially over time.

6.2 Reasoning about Behavior in a Game

Once we write down the description of a game, consisting of the players, the strategies, and

the payo↵s, we can ask how the players are likely to behave — that is, how they will go

about selecting strategies.



Fundamental Concepts: Strict Dominant Strategy

A strategy that is strictly better than all other options, regardless of 
what other players do

Exam is a strictly dominant strategy for both players
Sadly, (90,90) is not achievable with rational play
Even if you could commit to preparing for the presentation, your 
partner would still be better off studying for the final
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about the strategic consequences of your own actions, where you need to consider the e↵ect

of decisions by others, is precisely the kind of reasoning that game theory is designed to

facilitate. So before moving on to the actual outcome of this exam-or-presentation scenario,

it is useful to introduce some of the basic definitions of game theory, and then continue the

discussion in this language.

Basic Ingredients of a Game. The situation we’ve just described is an example of a

game. For our purposes, a game is any situation with the following three aspects.

(i) There is a set of participants, whom we call the players. In our example, you and your

partner are the two players.

(ii) Each player has a set of options for how to behave; we will refer to these as the player’s

possible strategies. In the example, you and your partner each have two possible

strategies: to prepare for the presentation, or to study for the exam.

(iii) For each choice of strategies, each player receives a payo↵ that can depend on the

strategies selected by everyone. The payo↵s will generally be numbers, with each

player preferring larger payo↵s to smaller payo↵s. In our current example, the payo↵

to each player is the average grade he or she gets on the exam and the presentation.

We will generally write the payo↵s in a payo↵ matrix as in Figure 6.1.

Our interest is in reasoning about how players will behave in a given game. For now we

focus on games with only two players, but the ideas apply equally well to games with any

number of players. Also, we will focus on simple, one-shot games: games in which the

players simultaneously and independently choose their actions, and they do so only once. In

Section 6.10 at the end of this chapter, we discuss how to reinterpret the theory to deal with

dynamic games, in which actions can be played sequentially over time.

6.2 Reasoning about Behavior in a Game

Once we write down the description of a game, consisting of the players, the strategies, and

the payo↵s, we can ask how the players are likely to behave — that is, how they will go

about selecting strategies.



Fundamental Concepts: Best Response

Let’s define some more of the fundamental concepts we just used
Strategy S by P1 is a best response to strategy T by P2 if the payoff 
from S as at least as good as anyone other strategy against T

156

6.2. REASONING ABOUT BEHAVIOR IN A GAME 161

A Related Story: The Prisoner’s Dilemma. The outcome of the Exam-or-Presentation

Game is closely related to one of the most famous examples in the development of game the-

ory, the Prisoner’s Dilemma. Here is how this example works.

Suppose that two suspects have been apprehended by the police and are being interro-

gated in separate rooms. The police strongly suspect that these two individuals are respon-

sible for a robbery, but there is not enough evidence to convict either of them of the robbery.

However, they both resisted arrest and can be charged with that lesser crime, which would

carry a one-year sentence. Each of the suspects is told the following story. “If you confess,

and your partner doesn’t confess, then you will be released and your partner will be charged

with the crime. Your confession will be su�cient to convict him of the robbery and he will

be sent to prison for 10 years. If you both confess, then we don’t need either of you to testify

against the other, and you will both be convicted of the robbery. (Although in this case

your sentence will be less — 4 years only — because of your guilty plea.) Finally, if neither

of you confesses, then we can’t convict either of you of the robbery, so we will charge each

of you with resisting arrest. Your partner is being o↵ered the same deal. Do you want to

confess?”

To formalize this story as a game we need to identify the players, the possible strategies,

and the payo↵s. The two suspects are the players, and each has to choose between two possi-

ble strategies — Confess (C) or Not-Confess (NC). Finally, the payo↵s can be summarized

from the story above as in Figure 6.2. (Note that the payo↵s are all 0 or less, since there are

no good outcomes for the suspects, only di↵erent gradations of bad outcomes.)

Suspect 1

Suspect 2
NC C

NC �1,�1 �10, 0
C 0,�10 �4,�4

Figure 6.2: Prisoner’s Dilemma

As in the Exam-or-Presentation Game, we can consider how one of the suspects — say

Suspect 1 — should reason about his options.

• If Suspect 2 were going to confess, then Suspect 1 would receive a payo↵ of �4 by

confessing and a payo↵ of �10 by not confessing. So in this case, Suspect 1 should

confess.

• If Suspect 2 were not going to confess, then Suspect 1 would receive a payo↵ of 0 by

confessing and a payo↵ of �1 by not confessing. So in this case too, Suspect 1 should

confess.

So confessing is a strictly dominant strategy — it is the best choice regardless of what the

other player chooses. As a result, we should expect both suspects to confess, each getting a

P1(S,T) ≥ P1(S’,T)      for all other S’ by P1

It’s a strict best response if:

P1(S,T) > P1(S’,T)      for all other S’ by P1

S1’s best response to NC is: C 
S1’s best response to C is: C 



Fundamental Concepts: Dominant Strategy

A dominant strategy for P1 is a strategy that is a best response 
every strategy by P2

A strict dominant strategy for P1 is a strategy that is a strict 
best response every strategy by P2
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your sentence will be less — 4 years only — because of your guilty plea.) Finally, if neither

of you confesses, then we can’t convict either of you of the robbery, so we will charge each

of you with resisting arrest. Your partner is being o↵ered the same deal. Do you want to

confess?”

To formalize this story as a game we need to identify the players, the possible strategies,

and the payo↵s. The two suspects are the players, and each has to choose between two possi-

ble strategies — Confess (C) or Not-Confess (NC). Finally, the payo↵s can be summarized

from the story above as in Figure 6.2. (Note that the payo↵s are all 0 or less, since there are

no good outcomes for the suspects, only di↵erent gradations of bad outcomes.)

Suspect 1

Suspect 2
NC C

NC �1,�1 �10, 0
C 0,�10 �4,�4

Figure 6.2: Prisoner’s Dilemma

As in the Exam-or-Presentation Game, we can consider how one of the suspects — say

Suspect 1 — should reason about his options.

• If Suspect 2 were going to confess, then Suspect 1 would receive a payo↵ of �4 by

confessing and a payo↵ of �10 by not confessing. So in this case, Suspect 1 should

confess.

• If Suspect 2 were not going to confess, then Suspect 1 would receive a payo↵ of 0 by

confessing and a payo↵ of �1 by not confessing. So in this case too, Suspect 1 should

confess.

So confessing is a strictly dominant strategy — it is the best choice regardless of what the

other player chooses. As a result, we should expect both suspects to confess, each getting a

(Note: In Prisoner’s Dilemma, P1 has a strict 
dominant strategy, so we expect P1 to play it. 
There can be several dominant strategies, 
and it’d be unclear which one to expect)



Nash Equilibrium

158

In 1950, John Nash proposed a simple and powerful 
principle for reasoning about behaviour in general games 
(and won the Nobel Prize for it in 1994)

Even when there are no dominant strategies, we should 
expect players to use strategies that are best 
responses to each other

A pair of strategies (S,T) is a Nash equilibrium if S is a best 
response to T and T is a best response to S



Players: Offense, Defense

Strategies: Run, Pass and Defend Run, Defend Pass

Payoff matrix:

Mixed Strategies Example: Football

159

180 CHAPTER 6. GAMES

O↵ense

Defense
Defend Pass Defend Run

Pass 0, 0 10,�10
Run 5,�5 0, 0

Figure 6.15: Run-Pass Game

an attack-defense game with two players named “o↵ense” and “defense” respectively, and

where the attacker has a stronger option (pass) and a weaker option (run).)

Just as in Matching Pennies, it’s easy to check that there is no Nash equilibrium where

either player uses a pure strategy: both have to make their behavior unpredictable by ran-

domizing. So let’s work out a mixed-strategy equilibrium for this game: let p be the prob-

ability that the o↵ense passes, and let q be the probability that the defense defends against

the pass. (We know from Nash’s result that at least one mixed-strategy equilibrium must

exist, but not what the actual values of p and q should be.)

We use the principle that a mixed equilibrium arises when the probabilities used by each

player makes his opponent indi↵erent between his two options.

• First, suppose the defense chooses a probability of q for defending against the pass.

Then the expected payo↵ to the o↵ense from passing is

(0)(q) + (10)(1� q) = 10� 10q,

while the expected payo↵ to the o↵ense from running is

(5)(q) + (0)(1� q) = 5q.

To make the o↵ense indi↵erent between its two strategies, we need to set 10�10q = 5q,

and hence q = 2/3.

• Next, suppose the o↵ense chooses a probability of p for passing. Then the expected

payo↵ to the defense from defending against the pass is

(0)(p) + (�5)(1� p) = 5p� 5,

with the expected payo↵ to the defense from defending against the run is

(�10)(p) + (0)(1� p) = �10p.

To make the defense indi↵erent between its two strategies, we need to set 5p�5 = �10p,

and hence p = 1/3.

Thus, the only possible probability values that can appear in a mixed-strategy equilibrium

are p = 1/3 for the o↵ense, and q = 2/3 for the defense, and this in fact forms an equilibrium.

No Nash equilibria in this game

O’s expected payoff for Pass when D plays p:    0*(q)+10*(1-q) = 10-10q

O’s expected payoff for Run when D plays q:     5*(q)+0*(1-q) = 5q

Defense makes Offense indifferent when q=2/3

Mixed Nash:
q = 2/3
p = 1/3
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Traffic modeled as a game

161

x/100 min 45 min

45 min

A

C

D

B

y/100 min

Players: Drivers 1,2,3…,4000

Strategies: A-C-B, A-D-B

Payoffs: Negative drive time

A-C-B time: -(x/100 + 45)

A-D-B time: -(45 + y/100)

Notice that this actually describes many equilibria:  any set of strategies “2000 choose top, 
2000 choose bottom” is an equilibrium (players are interchangeable, so any set of 2000 can 
be using ACB and any set of 2000 can be using ADB)

For any other set of strategies, deviation benefits someone (therefore isn’t an equilibrium)

You want to lower your drive time, 

so we take the negative drive time as the “payoff”



Braess’s Paradox

162

6.2. REASONING ABOUT BEHAVIOR IN A GAME 161

A Related Story: The Prisoner’s Dilemma. The outcome of the Exam-or-Presentation

Game is closely related to one of the most famous examples in the development of game the-

ory, the Prisoner’s Dilemma. Here is how this example works.

Suppose that two suspects have been apprehended by the police and are being interro-

gated in separate rooms. The police strongly suspect that these two individuals are respon-

sible for a robbery, but there is not enough evidence to convict either of them of the robbery.

However, they both resisted arrest and can be charged with that lesser crime, which would

carry a one-year sentence. Each of the suspects is told the following story. “If you confess,

and your partner doesn’t confess, then you will be released and your partner will be charged

with the crime. Your confession will be su�cient to convict him of the robbery and he will

be sent to prison for 10 years. If you both confess, then we don’t need either of you to testify

against the other, and you will both be convicted of the robbery. (Although in this case

your sentence will be less — 4 years only — because of your guilty plea.) Finally, if neither

of you confesses, then we can’t convict either of you of the robbery, so we will charge each

of you with resisting arrest. Your partner is being o↵ered the same deal. Do you want to

confess?”

To formalize this story as a game we need to identify the players, the possible strategies,

and the payo↵s. The two suspects are the players, and each has to choose between two possi-

ble strategies — Confess (C) or Not-Confess (NC). Finally, the payo↵s can be summarized

from the story above as in Figure 6.2. (Note that the payo↵s are all 0 or less, since there are

no good outcomes for the suspects, only di↵erent gradations of bad outcomes.)

Suspect 1

Suspect 2
NC C

NC �1,�1 �10, 0
C 0,�10 �4,�4

Figure 6.2: Prisoner’s Dilemma

As in the Exam-or-Presentation Game, we can consider how one of the suspects — say

Suspect 1 — should reason about his options.

• If Suspect 2 were going to confess, then Suspect 1 would receive a payo↵ of �4 by

confessing and a payo↵ of �10 by not confessing. So in this case, Suspect 1 should

confess.

• If Suspect 2 were not going to confess, then Suspect 1 would receive a payo↵ of 0 by

confessing and a payo↵ of �1 by not confessing. So in this case too, Suspect 1 should

confess.

So confessing is a strictly dominant strategy — it is the best choice regardless of what the

other player chooses. As a result, we should expect both suspects to confess, each getting a

Routing:

Prisoner’s Dilemma:



How bad can it get?

163

Routing:

Ratio between socially optimal and selfish routing (called the “Price of Anarchy”)?

This example: 80/65 = 1.23x worse

Worst case: How bad can it get?

For selfish routing, “Price of Anarchy” = 4/3



Game Theoretic Model of Cascades

Model every friendship edge as a 2 player coordination game
2 players – each chooses technology A or B

Each person can only adopt one “behavior”, A or B
You gain more payoff if your friend has adopted the same behavior as you

164

[Morris 2000]

Local view of the network of node v

Game Theory + Social Networks can help us think about this question!



Calculation of Node v
Let v have d neighbours — some adopt A and some adopt B

Say fraction p of v’s neighbours adopt A and 1-p adopt B

165

q
ba
bp =
+

>
Threshold:
v chooses A if

p… frac. v’s neighbours choosing A
q… payoff threshold

Payoffv = a·p·d         if v chooses A 
= b·(1-p)·d    if v chooses B

Thus: v chooses A if: 
a·p·d > b·(1-p)·d



Another example with a=3 and b=2

166

What are the impediments to spread?

Densely connected communities
• 1–3 are well-connected with each other but poorly 

connected to the rest of the network
• Similar story for 11–17
• Homophily impedes diffusion

A cluster of density p is a set of nodes such that every node in 
the set has at least a p fraction of its neighbours in the set

Nodes {1,2,3} are a cluster of density p = 2/3

Nodes {11,12,13,14,15,16,17} are a cluster of density p = 2/3



Simple Herding Model
Decision to be made (resto choice, adopt a new technology, support 
political position, etc)
People decide sequentially, and see all choices of those who acted 
earlier
Each person has some private information that can help guide 
their decision
People can’t directly observe what others know, but can observe 
what they do

167
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Simple Herding Model
Model: n students in a classroom, urn in front
Two urns with marbles:

“Majority-blue” urn has 2/3 blue, 1/3 red
“Majority-red” urn has 2/3 red, 1/3 blue
50%/50% chance that the urn is majority blue/red

One by one, each student privately gets to look at 1 marble, put it 
back without showing anyone else, and guess if the urn is Majority-
blue or Majority-red

169



Simple Herding Model
Student 1: Just guess the colour she sees
Student 2: 

If same as first person, guess that colour. 
But if different from first, then since he knows first guess was what 
first person saw, then he’s indifferent between the two. Guess what he 
saw

Student 3: 
If first 2 are opposite colours, guess what she sees (tiebreaker)
If previous 2 are the same colour (blue) and S3 draws red, then it’s 
like he has drawn three times and gotten two blue, so she should 
guess majority-blue, despite her own private information!
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Which is it?

or

“Broadcast” “Viral”

Big media (CNN, BBC, NYT, Fox)
Celebrities (Biebs, Taylor Swift)

Organically spreading 
content
Chain letters

171



How to measure virality?

Simple average!

Originally studied in mathematical chemistry [Wiener 1947] => “Wiener index”

Solution: average path length between nodes

172
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How Things Spread
Networks define how behaviours, ideas, beliefs, diseases, etc. spread

Last class: behaviour (adoption of an innovation or technology) and information

Today: 

Epidemics 

174



Epidemics

Which disease is more dangerous to the population?

175

vs.

= infected

= susceptible



Modeling Epidemic Diffusion
Biggest difference: model transmission as random

No decision-making, but also the processes by which diseases spread from 
one person to another are so complex and unobservable at the individual 
level that it’s most useful to think of them as random

Use randomness to abstract away difficult biological questions about the 
mechanics of spread

Random with 
some probability

176

Behaviour (last class): Epidemics (today):



Model as a random process on a tree:

Wave 1: First person infected, infects each of k neighbors with independent 
probability p

Wave 2: For each infected person, they infect each of k neighbors with 
independent probability p

Wave 3+: repeat for each infected person

Branching Process

177

Extends infinitely below

Here k=3



Branching Process: R0

R0 = pk

178

Only two possibilities in the long run: blow up or die out 
How does it die out?

 Dies out if and only if none of the nodes on a given level are infected

Define Basic reproductive number R0: 
the number of expected new cases caused by 
an individual

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.



Claim: Epidemic spread in the branching process model is entirely 
controlled by the reproductive number R0  :

▪  If R0 <1 then with probability 1 the disease dies out after a 
finite number of steps.

▪  If R0 >1 then with probability > 0 the disease persists by 
infecting at least one person in each wave.

“Go big or go home.”

R0 = pk

179

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Branching Process: R0



SIR Epidemic Models
S = Susceptible

I = Infectious: node is infected and infects with prob p
R = Removed: after tI time, no longer infected or infectious

Initially some nodes in I state, rest in S state.

Each node in I state remains infected for tI time steps

During each step, each node has probability p of infecting  
each susceptible neighbour

After tI time steps, no longer S nor I; removed to R
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Now: SIS Epidemic Model
S = Susceptible

I = Infectious: node is infected and infects with prob p

Initially some nodes in I state, rest in S state.

Each node in I state remains infected for tI time steps

During each step, each node has probability p of infecting  
all neighbors

After tI time steps, node returns to S

S I

181



Transient Contacts & Concurrency

21.6. TRANSIENT CONTACTS AND THE DANGERS OF CONCURRENCY 663

v

u x

w

y

[1,5]

[7,11]

[2,6]

[12,16]

(a) In a contact network, we can annotate the
edges with time windows during which they existed.

v

u x

w

y

[1,5]

[12,16]

[2,6]

[7,11]

(b) The same network as in (a), except that the
timing of the w-v and w-y partnerships have been
reversed.

Figure 21.8: Di↵erent timings for the edges in a contact network can a↵ect the potential for
a disease to spread among individuals. For example, in (a) the disease can potentially pass
all the way from u to y, while in (b) it cannot.

point in time (a few people have many, which is important as well); and the identities of

these contacts can shift significantly while the disease progresses, as new sexual partnerships

are formed and others break up.

So for modeling the contact network in such diseases, it is important to take into account

the fact that contacts are transient — they do not necessarily last through the whole course

of the epidemic, but only for particular windows of time. Thus, we will consider contact

networks in which each edge is annotated with the period of time during which it existed

— that is, the time range over which it was possible for one endpoint of the edge to have

passed the disease directly to the other.

Figure 21.8(a) shows an example of this, with the numbers inside square brackets indi-

cating the time ranges when each edge exists. Thus the u-v and w-x partnerships happen

first, and they overlap in time; after this, w has a partnership with v and then later with y.

Note also that for this section — in keeping with the motivation from HIV/AIDS and similar

diseases — we assume the edges to be undirected rather than directed, to indicate that in-

fection can pass in either direction between a pair of people in a partnership. (As in previous

sections, we could also accomplish this by having directed edges pointing in both directions

between each pair of connected people, but since everything here will be symmetric, it is

more convenient to use undirected edges.)

The Consequences of Transient Contacts. A little experimentation with the example

in Figure 21.8(a) indicates how the timing of di↵erent edges can a↵ect the spread of a disease.

21.6. TRANSIENT CONTACTS AND THE DANGERS OF CONCURRENCY 665

v

u x

w

y

[1,5]

[12,16]

[2,6]

[7,11]

(a) No node is involved in any concurrent partner-
ships

v

u x

w

y

[1,5]

[3,7]

[2,6]

[1,5]

(b) All partnerships overlap in time

Figure 21.10: In larger networks, the e↵ects of concurrency on disease spreading can become
particularly pronounced.

epidemic itself. A timing pattern of particular interest — and concern — to HIV researchers

is concurrency [307, 406].

A person is involved in concurrent partnerships if he or she has two or more active

partnerships that overlap in time. For example, in each of Figures 21.9(a) and 21.9(b), node

v has partnerships with each of u and w. But in the first of these figures, the partnerships

happen serially — first one, then the other — while in the second, they happen concurrently,

overlapping in time. The concurrent pattern causes the disease to circulate more vigorously

through this three-person network. u and w may not be aware of each other’s existence,

but the concurrent partnerships make it possible for either of u or w to spread the disease

to the other; the serial partnerships only allow spreading from u to w, but not the other

way. In larger examples one can find more extreme e↵ects; for example, Figure 21.10(b)

di↵ers from Figure 21.10(a) only in that the time windows of the partnerships have been

“pushed together” so that they all overlap. But the e↵ect is considerable: where the pattern

in Figure 21.10(a) allowed di↵erent parts of the network to be “walled o↵” from each other

by the timing e↵ects, the concurrent partnerships make it possible for any node with the

disease to potentially spread it to any other.

In simulations with various notions of concurrency, Morris and Kretzschmar found that

small changes in the amount of concurrency — keeping other variables like the average

number and duration of partnerships fixed — could produce large changes in the size of

the epidemic [307]. Qualitatively, this aligns well with the intuition from earlier sections,

that changing the average number of new cases of a disease caused by an infected individual

even slightly can sometimes have significant consequences. For some of the simplest models,

such as the branching process, it is possible to make this intuition precise; for more complex

A less random model: it matters in what order contact is made in the 
contact network.
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Concurrency: having two or more contacts at once.



Epidemics vs. Behaviour
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Simple vs. complex diffusion
Epidemics vs. behaviour

What's the difference?

Recall the small-world model



Simple Diffusion
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Large world:

Small world:


