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Today

A4 due next week
A4 tex posted on Quercus



Today

Missed a blog post? Finish it by next Friday, Dec 2 @ 5pm 
and email the TAs Richard and Conroy to let them know. 

Grade reduction will apply, but you can avoid a 0.



Today

Epidemics and Contagion
Voting



Epidemics
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Epidemics
Why study epidemics in a computer science class?

Epidemics are diseases that travel socially
The structure of social interaction networks determine the spread of disease

6



Epidemics

Which outbreak is more dangerous to the population?
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vs.

= infected

= susceptible



Epidemics
Types of epidemic diffusion:

▪ Explosive spread through a population 

▪ "Slow burn” persistence over long periods of time

▪ Wave-like cyclical patterns
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Epidemics
Explosive spread: Bubonic Plague (the “Black Death”): wiped out ~50% of 
the population in Europe (~150 million people) in 7 years
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Epidemics
Other epidemics are cyclical
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Epidemics
What determines how an epidemic might spread?

▪  Properties of the disease

▪  Structure of the network

What network?
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Contact Networks
Node for each person

Edge if two people come into contact with each other in a way that makes 
it possible for a disease to spread

12
UK fish farm exchanges CH sexual contact network



Contact Networks
Once you’ve got through the laborious process of mapping out the contact network, can you use it to study any 
disease?

UK fish farm exchanges CH sexual contact network
13

No! Definition of “contact” depends on the disease

▪  Airborne transmission: edge between everyone who was in the same car, etc.) 
— many edges

▪  Close contact / sexual transmission: sparser graph



Contact Networks
Big part of real-world epidemic research is constructing contact networks
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Lots of work on travel patterns in cities, the worldwide airline network, 
etc. to understand how diseases can spread in today’s world

http://www.martingrandjean.ch/connected-world-air-traffic-network/

http://www.martingrandjean.ch/connected-world-air-traffic-network/


Contact Networks
Not just human contact networks

15

Animal/livestock networks and plant networks 



Biological/epidemic diffusion: no decision-making!
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Decision cascade

Behavioural vs. Biological Contagion

High school contact network



Modeling Epidemic Diffusion
Biggest difference: model transmission as random

No decision-making, but also the processes by which diseases spread from 
one person to another are so complex and unobservable at the individual 
level that it’s most useful to think of them as random

Use randomness to abstract away difficult biological questions about the 
mechanics of spread

Random with 
some probability

17

Behaviour (last class): Epidemics (today):



Modeling Epidemic Diffusion



Basic structure of epidemic diffusion:
▪Someone gets infected

▪Then they infect some number of people

▪Those people infect others

Branching Process



Model as a random process on a tree:

Wave 1: First person infected, infects each of k neighbors with independent probability p

Wave 2: For each infected person, they infect each of k neighbors with independent 
probability p

Wave 3+: repeat for each infected person

Extends infinitely below

Here k=3

Branching Process



k: number of individuals each person can possibly infect:

Higher transmission probability p: 

Lower transmission probability p:
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(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Model parameters:

Branching Process



Branching Process: Outcomes
648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Only two possibilities in the long run: blow up or die out 
How does it die out?

 Dies out if and only if none of the nodes on a given level are infected

Disease might blow up:

Disease has already died out:



Branching Process
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(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Define Basic reproductive number R0: the 
number of expected new cases caused by an individual

Only two possibilities in the long run: blow up or die out 
How does it die out?

 Dies out if and only if none of the nodes on a given level are infected



Branching Process
648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Define Basic reproductive number R0: the 
number of expected new cases caused by an individual

Only two possibilities in the long run: blow up or die out 
How does it die out?

 Dies out if and only if none of the nodes on a given level are infected

R0 = pk



Claim: Epidemic spread in the branching process model is entirely controlled by the reproductive 
number R0  :

▪  If R0 <1 then with probability 1 the disease dies out after a finite number of steps.

▪  If R0 >1 then with probability > 0 the disease persists by infecting at least one person in 
each wave.

“Go big or go home.”

R0 = pk
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(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Branching Process: R0
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(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

R0 = pk < 1:
With probability 1 the disease dies out after a finite number of steps
Below replacement; disease isn’t able to replenish itself.  
Even if it grows momentarily, it trends downward.

R0 = pk > 1:
with probability > 0 the disease persists by infecting at least 
one person in each wave 

Always trending upward.  Could still get “unlucky” and die 
out, but there’s a non-zero chance it runs forever.

Branching Process: R0
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(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

R0 = pk < 1:
With probability 1 the disease dies out after a finite number of steps
Below replacement; disease isn’t able to replenish itself.  
Even if it grows momentarily, it trends downward.

R0 = pk > 1:
with probability > 0 the disease persists by infecting at least 
one person in each wave 

Always trending upward.  Could still get “unlucky” and die 
out, but there’s a non-zero chance it runs forever.

Branching Process: R0

What happens when p or k change near pk=1?



Sensitivity of p and k648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

Because epidemics have a “critical threshold”, it can be worth it to do a lot of work or expend resources 
to push p or k down a little bit.

Quarantine = reduce k
Improved sanitation = reduce p



COVID-19: ~2



General Models of 
Contagion



Epidemics on General Graphs

We just studied epidemics as ideal trees

But of course real-life networks are more complicated than that

What does epidemic diffusion look like in general graphs?



Simple lifecycle model with three stages:

▪ S = Susceptible

▪ I  = Infectious: node is infected and infects with prob p
▪ R = Removed: after tI time, no longer infected or infectious

S

I

R

SIR Epidemic Models



S = Susceptible

I = Infectious: node is infected and infects with prob p
R = Removed: after tI time, no longer infected or infectious

Initially some nodes in I state, rest in S state.

Each node in I state remains infected for tI time steps

During each step, each node has probability p of infecting  
each susceptible neighbour

After tI time steps, no longer S nor I; removed to R

SIR Epidemic Models



SIR Epidemics on Networks
652 CHAPTER 21. EPIDEMICS
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Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to tI = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed
(R) state.

Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-o↵”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not di�cult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving

p=1/2 

tI =1
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Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-o↵”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not di�cult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving

p=1/2 

tI =1

SIR Epidemics on Networks
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Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-o↵”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not di�cult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving

p=1/2 

tI =1

SIR Epidemics on Networks



Typical run of SIR on a graph representing a contact network

Big questions in epidemiology: how many will an epidemic infect? 
How will the spread change with changes in parameters? 
Based on that, what are best defences?

SIR Epidemics on Networks



SIR Epidemic Extensions
Many extensions to accommodate different parameters

Some contacts more likely than others: 

→ probability puv that is pair-dependent 

Disease goes through different stages (infectious incubation, then less infectious 
symptomatic transmission): 

→ SEIR or S“III”R: either Exposed state or several different infectious states (with 
different p’s or t’s)

SIS: later in the lecture

Mutations (infectiousness, breaking immunity, etc)



From trees to networks

Recall that analysis of R0 was for trees:

Do we have the same knife-edge R0 ~ 1 result in general graphs?

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.



From trees to networks

Recall that analysis of R0 was for trees:

What happens on other networks? Consider p=2/3, k=2.

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

21.3. THE SIR EPIDEMIC MODEL 653

Figure 21.3: In this network, the epidemic is forced to pass through a narrow “channel” of
nodes. In such a structure, even a highly contagious disease will tend to die out relatively
quickly.

the other details of the model as they are.

More elaborate extensions to the model involve separating the I state into a sequence

of several states (e.g. early, middle, and late periods of the infection), and allowing the

contagion probabilities to vary across these states [238]. This could be used, for example,

to model a disease with a highly contagious incubation period, followed by a less contagious

period while symptoms are being expressed. Researchers have also considered variations on

the SIR model in which the disease-causing pathogen is mutating (and thus changing its

disease characteristics) over the course of the outbreak [183].

The Role of the Basic Reproductive Number. We now discuss some observations

about the SIR model, focusing on the most basic version of the model in an arbitrary

network. First, let’s recall the claim made at the end of Section 21.2, that in networks

that do not have a tree structure, the simple dichotomy in epidemic behavior determined

by the basic reproductive number R0 does not necessarily hold. In fact, it is not hard to

construct an example showing how this dichotomy breaks down. To do this, let’s start with

the network depicted in Figure 21.3, and suppose that these layers of two nodes at a time

continue indefinitely to the right. Let’s consider an SIR epidemic in which tI = 1, the

infection probability p is 2/3, and the two nodes at the far left are the ones that are initially

infected.

When we don’t have a tree network, we need to decide how to define an analogue of

the basic reproductive number. In a network as highly structure as the one in Figure 21.3,

we can work directly from the definition of R0 as the expected number of new cases of the

disease caused by a single individual. (For less structured networks, one can consider R0

to be the expected number of new cases caused by a randomly chosen individual from the

population.) In Figure 21.3, each infected node has edges to two nodes in the next layer;

since it infects each with probability 2/3, the expected number of new cases caused by this



What happens on other networks? Consider p=2/3, k=2.
21.3. THE SIR EPIDEMIC MODEL 653

Figure 21.3: In this network, the epidemic is forced to pass through a narrow “channel” of
nodes. In such a structure, even a highly contagious disease will tend to die out relatively
quickly.

the other details of the model as they are.

More elaborate extensions to the model involve separating the I state into a sequence

of several states (e.g. early, middle, and late periods of the infection), and allowing the

contagion probabilities to vary across these states [238]. This could be used, for example,

to model a disease with a highly contagious incubation period, followed by a less contagious

period while symptoms are being expressed. Researchers have also considered variations on

the SIR model in which the disease-causing pathogen is mutating (and thus changing its

disease characteristics) over the course of the outbreak [183].

The Role of the Basic Reproductive Number. We now discuss some observations

about the SIR model, focusing on the most basic version of the model in an arbitrary

network. First, let’s recall the claim made at the end of Section 21.2, that in networks

that do not have a tree structure, the simple dichotomy in epidemic behavior determined

by the basic reproductive number R0 does not necessarily hold. In fact, it is not hard to

construct an example showing how this dichotomy breaks down. To do this, let’s start with

the network depicted in Figure 21.3, and suppose that these layers of two nodes at a time

continue indefinitely to the right. Let’s consider an SIR epidemic in which tI = 1, the

infection probability p is 2/3, and the two nodes at the far left are the ones that are initially

infected.

When we don’t have a tree network, we need to decide how to define an analogue of

the basic reproductive number. In a network as highly structure as the one in Figure 21.3,

we can work directly from the definition of R0 as the expected number of new cases of the

disease caused by a single individual. (For less structured networks, one can consider R0

to be the expected number of new cases caused by a randomly chosen individual from the

population.) In Figure 21.3, each infected node has edges to two nodes in the next layer;

since it infects each with probability 2/3, the expected number of new cases caused by this

Calculate R0 as number of expected new cases per node

R0 = (2/3)*2 = 4/3 > 1

But this will almost certainly die out: (1/3)4 = 1/81 chance that all four edges fail even if both 
nodes are infected

Prob that this happens after finite number of steps converges to 1

From trees to networks



Now: SIS Epidemic Model

S = Susceptible

I = Infectious: node is infected and infects with prob p

Initially some nodes in I state, rest in S state.

Each node in I state remains infected for tI time steps

During each step, each node has probability p of infecting  
all neighbors

After tI time steps, node returns to S

S I



SIS Epidemic Example
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Figure 21.5: In an SIS epidemic, nodes can be infected, recover, and then be infected again.
In each step, the nodes in the Infectious state are shaded.

21.4 The SIS Epidemic Model

In the previous sections we have been considering models for epidemics in which each in-

dividual contracts the disease at most once. However, a simple variation on these models

allows us to reason about epidemics where nodes can be reinfected multiple times.

To represent such epidemics, we have nodes that simply alternate between two possible

states: Susceptible (S) and Infectious (I). There is no Removed state here; rather, after a

node is done with the Infectious state, it cycles back to the Susceptible state and is ready to

catch the disease again. Because of this alternation between the S and I states, we refer to

the model as the SIS model.

Aside from the lack of an R state, the mechanics of the model follow the SIR process

very closely.

• Initially, some nodes are in the I state and all others are in the S state.

• Each node v that enters the I state remains infectious for a fixed number of steps tI .

• During each of these tI steps, v has a probability p of passing the disease to each of its

susceptible neighbors.

• After tI steps, node v is no longer infectious, and it returns to the S state.

Figure 21.5 shows an example of the SIS model unfolding on a three-node contact network

with tI = 1. Notice how node v starts out infected, recovers, and later becomes infected

again — we can imagine this as the contact network within a three-person apartment, or a

three-person family, where people pass a disease on to others they’re living with, and then

get it back from them later.

As with the SIR model, the SIS model can be extended to handle more general kinds of

assumptions: di↵erent contagion probabilities between di↵erent pairs of people; probabilistic

p=1/2 

tI =1
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assumptions: di↵erent contagion probabilities between di↵erent pairs of people; probabilistic
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21.4 The SIS Epidemic Model

In the previous sections we have been considering models for epidemics in which each in-

dividual contracts the disease at most once. However, a simple variation on these models

allows us to reason about epidemics where nodes can be reinfected multiple times.

To represent such epidemics, we have nodes that simply alternate between two possible

states: Susceptible (S) and Infectious (I). There is no Removed state here; rather, after a

node is done with the Infectious state, it cycles back to the Susceptible state and is ready to

catch the disease again. Because of this alternation between the S and I states, we refer to

the model as the SIS model.

Aside from the lack of an R state, the mechanics of the model follow the SIR process

very closely.

• Initially, some nodes are in the I state and all others are in the S state.

• Each node v that enters the I state remains infectious for a fixed number of steps tI .

• During each of these tI steps, v has a probability p of passing the disease to each of its

susceptible neighbors.

• After tI steps, node v is no longer infectious, and it returns to the S state.

Figure 21.5 shows an example of the SIS model unfolding on a three-node contact network

with tI = 1. Notice how node v starts out infected, recovers, and later becomes infected

again — we can imagine this as the contact network within a three-person apartment, or a

three-person family, where people pass a disease on to others they’re living with, and then

get it back from them later.

As with the SIR model, the SIS model can be extended to handle more general kinds of

assumptions: di↵erent contagion probabilities between di↵erent pairs of people; probabilistic

p=1/2 

tI =1

SIS Epidemic Example



SIR vs. SIS

SIR: “burning through” a finite supply of susceptible

SIS: can run for a very long time, cycling through targets

SIS, like SIR, has a critical threshold (“knife-edge”/“tipping 
point”); trickier mathematical analysis. On non-trees both depend 
on more than just R0.

S IS I R



SIS as SIR on a bigger network
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(a) To represent the SIS epidemic using the SIR model, we use a “‘time-expanded” contact network
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(b) The SIS epidemic can then be represented as an SIR epidemic on this time-expanded network.

Figure 21.6: An SIS epidemic can be represented in the SIR model by creating a separate copy of the
contact network for each time step: a node at time t can infect its contact neighbors at time t + 1.

can potentially catch the disease at time t+1 if v is infected at time t. Figure 21.6(a) shows

this construction applied to the contact network from Figure 21.5.

The point is that the same SIS disease dynamics that previously circulated around in the

original contact network can now flow forward in time through the time-expanded contact

network, with copies of nodes that are in the I state at time t producing new infections in

copies of nodes at time t + 1. But on this time-expanded graph we have an SIR process,

since any copy of a node can be treated as removed (R) once its one time step of infection

is over; and with this view of the process, we have the same distribution of outcomes as the

original SIS process. Figure 21.6(b) shows the course of the SIR epidemic that corresponds

to the SIS epidemic in Figure 21.5.

Consider time-expanded network: if u connects to v in network, have ut connect to vt+1

SIS is SIR on a time-expanded network.

(tI = 1 here)



Transient Contacts & Concurrency

■ So far, we’ve been analyzing static networks

■ This is reasonable when the rate of transmission is typically much faster than edge creation/
deletion

■ But some epidemic diseases last for years (HIV)

■ When edges are active becomes very important



Transient Contacts & Concurrency
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(a) In a contact network, we can annotate the
edges with time windows during which they existed.
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(b) The same network as in (a), except that the
timing of the w-v and w-y partnerships have been
reversed.

Figure 21.8: Di↵erent timings for the edges in a contact network can a↵ect the potential for
a disease to spread among individuals. For example, in (a) the disease can potentially pass
all the way from u to y, while in (b) it cannot.

point in time (a few people have many, which is important as well); and the identities of

these contacts can shift significantly while the disease progresses, as new sexual partnerships

are formed and others break up.

So for modeling the contact network in such diseases, it is important to take into account

the fact that contacts are transient — they do not necessarily last through the whole course

of the epidemic, but only for particular windows of time. Thus, we will consider contact

networks in which each edge is annotated with the period of time during which it existed

— that is, the time range over which it was possible for one endpoint of the edge to have

passed the disease directly to the other.

Figure 21.8(a) shows an example of this, with the numbers inside square brackets indi-

cating the time ranges when each edge exists. Thus the u-v and w-x partnerships happen

first, and they overlap in time; after this, w has a partnership with v and then later with y.

Note also that for this section — in keeping with the motivation from HIV/AIDS and similar

diseases — we assume the edges to be undirected rather than directed, to indicate that in-

fection can pass in either direction between a pair of people in a partnership. (As in previous

sections, we could also accomplish this by having directed edges pointing in both directions

between each pair of connected people, but since everything here will be symmetric, it is

more convenient to use undirected edges.)

The Consequences of Transient Contacts. A little experimentation with the example

in Figure 21.8(a) indicates how the timing of di↵erent edges can a↵ect the spread of a disease.
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(a) No node is involved in any concurrent partner-
ships
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Figure 21.10: In larger networks, the e↵ects of concurrency on disease spreading can become
particularly pronounced.

epidemic itself. A timing pattern of particular interest — and concern — to HIV researchers

is concurrency [307, 406].

A person is involved in concurrent partnerships if he or she has two or more active

partnerships that overlap in time. For example, in each of Figures 21.9(a) and 21.9(b), node

v has partnerships with each of u and w. But in the first of these figures, the partnerships

happen serially — first one, then the other — while in the second, they happen concurrently,

overlapping in time. The concurrent pattern causes the disease to circulate more vigorously

through this three-person network. u and w may not be aware of each other’s existence,

but the concurrent partnerships make it possible for either of u or w to spread the disease

to the other; the serial partnerships only allow spreading from u to w, but not the other

way. In larger examples one can find more extreme e↵ects; for example, Figure 21.10(b)

di↵ers from Figure 21.10(a) only in that the time windows of the partnerships have been

“pushed together” so that they all overlap. But the e↵ect is considerable: where the pattern

in Figure 21.10(a) allowed di↵erent parts of the network to be “walled o↵” from each other

by the timing e↵ects, the concurrent partnerships make it possible for any node with the

disease to potentially spread it to any other.

In simulations with various notions of concurrency, Morris and Kretzschmar found that

small changes in the amount of concurrency — keeping other variables like the average

number and duration of partnerships fixed — could produce large changes in the size of

the epidemic [307]. Qualitatively, this aligns well with the intuition from earlier sections,

that changing the average number of new cases of a disease caused by an infected individual

even slightly can sometimes have significant consequences. For some of the simplest models,

such as the branching process, it is possible to make this intuition precise; for more complex

A less random model: it matters in what order contact is 
made in the contact network.

Concurrency: having two or more contacts at once.



Small changes in times can produce large differences in global epidemic spread
There are rich classes of network models incorporating transience and concurrency 

It’s not enough to just know the structure

Transient Contacts & Concurrency



Oscillations
Diseases can be cyclical / have oscillations (like measles and syphilis)

To model this, vary the model so nodes have temporary immunity
SIRS: Susceptible, Infected for I steps, Recovered for R steps, then Susceptible again

This can produce oscillations in very localized parts of the network

But for large fluctuations at the global network level, need small-world structure (random long-
range contacts)

Measles



Diseases can be cyclical / have oscillations (like the flu)

But for large fluctuations at the global network level, need small-world structure (random long-range 
contacts)

(c = long-range 
link probability)

Oscillations



Epidemics vs. Behaviour

In epidemic models, nodes get infected from one particular other node

To model information spread, people often use epidemic models ("viral diffusion”)

But many social phenomena (behaviours, beliefs, practices, etc.) are complex: costly, risky, uncertain, etc.



When a behaviour is risky, costly, or uncertain, you may not do it just because one of your friends is 
(but this is what epidemic diffusion looks like)

Social movements, health technologies, political activism, etc.

E.g.: PrEP medication is the best latest in HIV prevention → one pill a day gives 90% prevention.

But in two trials in sub-Saharan Africa, it didn’t work ... because no one was taking it! (fears of 
discrimination, etc.)

How do you get behaviour to diffuse?

Epidemics vs. Behaviour



Previously we saw a model of behaviour diffusion based on utility

This is an example of complex diffusion: in general, need more 
than one neighbour to adopt before you adopt a behaviour.

Epidemics vs. Behaviour



Simple vs. complex diffusion
Epidemics vs. behaviour What's the difference?

Recall the small-world model

Epidemics vs. Behaviour



Simple Diffusion

Large 
world:

Small 
world:



Complex Diffusion

Large 
world:

Small 
world:



Simple vs. Complex Diffusion

Weak ties are extremely useful for simple diffusion and 
contagion, but they inhibit complex diffusion!

Weak ties inhibit 
complex diffusion!


