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Missed a blog post? Finish it by next Friday, Dec 2 @ 5pm
and email the TAs Richard and Conroy to let them know.

Grade reduction will apply, but you can avoid a 0.



Epidemics and Contagion
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Epidemics



Epidemics

Why study epidemics in a computer science class!?
Epidemics are diseases that travel socially

The structure of social interaction networks determine the spread of disease

2014 West Africa Ebola Epidemic
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Epidemics

Which outbreak is more dangerous to the population!?
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Epidemics

Types of epidemic diffusion:
Explosive spread through a population
“Slow burn” persistence over long periods of time

Wave-like cyclical patterns

2014 West Africa Ebola Epidemic
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Epidemics

Explosive spread: Bubonic Plague (the “Black Death”): wiped out ~50% of
the population in Europe (~150 million people) in 7 years
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Epidemics

Other epidemics are cyclical
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Epidemics

What determines how an epidemic might spread!?
Properties of the disease

Structure of the network

What network!?
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Contact Networks

Node for each person

Edge if two people come into contact with each other in a way that makes
it possible for a disease to spread
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Contact Networks

Once you've got through the laborious process of mapping out the contact network, can you u:
disease!

No! Definition of “contact” depends on the disease

Airborne transmission: edge between everyone who was in the same car, etc.)
— many edges

Close contact / sexual transmission: sparser graph

UK fish farm exchanges CH sexual contact network
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Contact Networks

Big part of real-world epidemic research is constructing contact networks

Lots of work on travel patterns in cities, the worldwide airline network,
etc. to understand how diseases can spread in today’s world

TRANSPORTATION
CLUSTERS

3.200 airports
60.000 routes

Color = Longitude
Size = Number of routes
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CC-BY martingrandjean.ch 2016
Data: openflights.org

http://www.martingrandjean.ch/connected-world-air-traffic-network/
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Contact Networks

Not just human contact networks

Animal/livestock networks and plant networks
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Behavioural vs. Biological Contagion

Biological/epidemic diffusion: no decision-making!

Decision cascade High school contact network
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Modeling Epidemic Diffusion

Biggest difference: model transmission as random

, but also the processes by which diseases spread from
one person to another are so complex and unobservable at the individual
level that it's most useful to think of them as random

Use randomness to abstract away difficult biological questions about the
mechanics of spread

Behaviour (last class): Epidemics (today):
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Modeling Epidemic Diffusion



Branching Process

Basic structure of epidemic diffusion:
Someone gets infected
Then they infect some number of people

Those people infect others
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Branching Process

Model as a random process on a tree:

Wave |: First person infected, infects each of k neighbors with independent probability p

Wave 2: For each infected person, they infect each of k neighbors with independent
probability p

Wave 3+: repeat for each infected person

Here k=3



Branching Process

Model parameters:

k: number of individuals each person can possibly infect:

Higher transmission probability p:

Lower transmission probability p:

(a) The contact network for a branching process
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(b) With high contagion probability, the infection spreads widely

(c¢) With low contagion probability, the infection is likely to die out quickly



Branching Process: Outcomes

Only two possibilities in the long run: blow up or die out
How does it die out!?

> Dies out if and only if none of the nodes on a given level are infected

Disease might blow up:

(b) With high contagion probability, the infection spreads widely

Disease has already died out:
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(¢) With low contagion probability, the infection is likely to die out quickly



Branching Process

Only two possibilities in the long run: blow up or die out
How does it die out!?

> Dies out if and only if none of the nodes on a given level are infected

Define Basic reproductive humber Ro: the
number of expected new cases caused by an individual

(c) With low contagion probability, the infection is likely to die out quickly



Branching Process

Only two possibilities in the long run: blow up or die out
How does it die out!?

> Dies out if and only if none of the nodes on a given level are infected

Define Basic reproductive humber Ro: the
number of expected new cases caused by an individual

Ro = pk

(c) With low contagion probability, the infection is likely to die out quickly



Branching Process: Ro

Claim: Epidemic spread in the branching process model is entirely controlled by the reproductive
number Ro :

If Ro <1 then with probability | the disease dies out after a finite number of steps.

If Ro >1 then with probability > 0 the disease persists by infecting at least one person in
each wave.

“Go big or go home.”

(c) With low contagion probability, the infection is likely to die out quickly



Branching Process: Ro

Ro=pk<I:
With probability | the disease dies out after a finite number of steps

Below replacement; disease isn’t able to replenish itself.
Even if it grows momentarily, it trends downward.

Ro=pk > I:
with probability > 0 the disease persists by infecting at least
one person in each wave
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Always trending upward. Could still get “unlucky” and die
out, but there’s a non-zero chance it runs forever.

(b) With high contagion probability, the infection spreads widely
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(c) With low contagion probability, the infection is likely to die out quickly



Branching Process: Ro

Ro=pk<I:
With probability | the disease dies out after a finite number of steps

Below replacement; disease isn’t able to replenish itself.
Even if it grows momentarily, it trends downward.

Ro=pk > I:
with probability > 0 the disease persists by infecting at least
one person in each wave

SO b0 oo 3 O06 003000060

Always trending upward. Could still get “unlucky” and die
out, but there’s a non-zero chance it runs forever.

(b) With high contagion probability, the infection spreads widely

What happens when p or k change near pk=17? SN
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(c) With low contagion probability, the infection is likely to die out quickly



Sensitivity of p and k

Because epidemics have a “critical threshold”, it can be worth it to do a lot of work or expend resources
to push p or k down a little bit.

Quarantine = reduce k

Improved sanitation = reduce p
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(b) With high contagion probability, the infection spreads widely
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(c) With low contagion probability, the infection is likely to die out quickly



Disease Transmission Ro
Measles Airborne 12—-18
Diphtheria Saliva 6-7
Smallpox Airborne droplet 5-7
Polio Fecal-oral route 5-7
Rubella Airborne droplet 57
Mumps Airborne droplet 4-7
HIV/AIDS Sexual contact 2-5
Pertussis Airborne droplet | 5.5[2]
SARS Airborne droplet | 2-53!
Influenza , 4
Airborne droplet | 2-314
(1918 pandemic strain)
Ebola , ,
Bodily fluids | 1.5-2.505
(2014 Ebola outbreak)

COVID-19: ~2




General Models of
Contagion



Epidemics on General Graphs

WVe just studied epidemics as ideal trees
But of course real-life networks are more complicated than that

What does epidemic diffusion look like in general graphs!?
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SIR Epidemic Models

Simple lifecycle model with three stages:
S = Susceptible
I = Infectious: node is infected and infects with prob p

R = Removed: after tj time, no longer infected or infectious

PRI 228




SIR Epidemic Models

S = Susceptible
I = Infectious: node is infected and infects with prob p

R = Removed: after ¢ time, no longer infected or infectious

Initially some nodes in | state, rest in S state.
Each node in | state remains infected for € time steps

During each step, each node has probability p of infecting
each susceptible neighbour

After € time steps, no longer S nor I3 removed to R



SIR Epidemics on Networks




SIR Epidemics on Networks




SIR Epidemics on Networks




SIR Epidemics on Networks

Typical run of SIR on a graph representing a contact network
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Big questions in epidemiology: how many will an epidemic infect?
How will the spread change with changes in parameters?
Based on that, what are best defences!?



SIR Epidemic Extensions

to accommodate different parameters

Some contacts more likely than others:

— probability puv that is pair-dependent

Disease goes through different stages (infectious incubation, then less infectious
symptomatic transmission):

— SEIR or S“lII”R: either Exposed state or several different infectious states (with
different p’s or t’s)

SIS: later in the lecture

Mutations (infectiousness, breaking immunity, etc)

.x.




From trees to networks

Recall that analysis of Ro was for trees:

Do we have the same knife-edge RO ~ | result in general graphs!?



From trees to networks

Recall that analysis of Ro was for trees:

What happens on other networks? Consider p=2/3, k=2.



From trees to networks

What happens on other networks? Consider p=2/3, k=2.

ettt

Calculate Ro as number of expected new cases per node
RO = (2/3)*2 =4/3 > |

But this will almost certainly die out: (1/3)4 = 1/81 chance that all four edges fail even if both
nodes are infected

Prob that this happens after finite number of steps converges to |



Now: SIS Epidemic Model

S = Susceptible

I = Infectious: node is infected and infects with prob p

Initially some nodes in I state, rest in S state.
Each node in | state remains infected for € time steps

During each step, each node has probability p of infecting
all neighbors

After €) time steps, node returns to S

oo



SIS Epidemic Example

<

p=1/2
t =1



SIS Epidemic Example

p=1/2

QY



SIS Epidemic Example

p=1/2

QL4



SIS Epidemic Example

p=1/2

QLY



SIS Epidemic Example

p=1/2

QLLEE



SIR vs. SIS

SIR: “burning through” a finite supply of susceptible

SIS: can run for a very long time, cycling through targets

SIS, like SIR, has a critical threshold (“knife-edge”/"tipping
point”); trickier mathematical analysis. On non-trees both depend
on more than just Ro.

ooo oo




SIS as SIR on a bigger network

Consider time=-expanded network: if u connects to v in network, have u; connect to v+

SIS is SIR on a time-expanded network.

(t: = | here)

................................................................................




Transient Contacts & Concurrency

So far, we've been analyzing static networks

This is reasonable when the rate of transmission is typically much faster than edge creation/
deletion

But some epidemic diseases last for years (HIV)

When edges are active becomes very important



Transient Contacts & Concurrency

A less random model: it matters in what order contact is
made in the contact network.

[1,5] [1,5]
[2,6] [2,6]
[7,11] [12,16]
\" w Vv w
[12,16] [7,11]

Concurrency: having two or more contacts at once.

[1,5] [1,5]
[2,6] [2,6]
[12,16] [3,7]
\ w Vv w
[7,11] [1,5]




Transient Contacts & Concurrency

Small changes in times can produce
There are rich classes of network models incorporating transience and concurrency
It>s not enough to just know the structure
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Oscillations

Diseases can be cyclical / have oscillations (like measles and syphilis)

To model this, vary the model so nodes have temporary immunity

SIRS: Susceptible, Infected for | steps, Recovered for R steps, then Susceptible again
This can parts of the network

But for large fluctuations at the global network level, need small-world structure (random long-
range contacts)
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Oscillations

Diseases can be cyclical / have oscillations (like the flu)

But for large fluctuations at the global network level, need small-world structure (random long-range
contacts)
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Epidemics vs. Behaviour

In epidemic models, nodes get infected from one particular other node

To model information spread, people often use epidemic models ("viral diffusion”)
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But many social phenomena (behaviours, beliefs, practices, etc.) are complex: costly, risky, uncertain, etc.



Epidemics vs. Behaviour

When a behaviour is risky, costly, or uncertain, you may not do it just because one of your friends is
(but this is what epidemic diffusion looks like)

Social movements, health technologies, political activism, etc.

E.g.: PrEP medication is the best latest in HIV prevention — one pill a day gives 90% prevention.

But in two trials in sub-Saharan Africa, it didn’t work ... because no one was taking it! (fears of
discrimination, etc.)

How do you get behaviour to diffuse?



Epidemics vs. Behaviour

Previously we saw a model of behaviour diffusion based on utility

This is an example of complex diffusion: in general, need more
than one neighbour to adopt before you adopt a behaviour.

R LR LR I



Epidemics vs. Behaviour

Simple vs. complex diffusion

j . ,
Epidemics vs. behaviour What's the difference!

Recall the small-world model
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Simple Diffusion

Large
world:

Small
world:




Complex Diffusion

Large
world:

DAY 2 DAY 100

1
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Small
world:




Simple vs. Complex Diffusion

Weak ties are extremely useful for simple diffusion and
contagion, but they inhibit complex diffusion!




