Tutorial 4: NP-Completeness

CSC 463
March 6, 2020

1. The Cook-Levin theorem shows that there is a polynomial time reduction reduction $A \leq_{p}$ 3SAT for any language $A \in \mathbf{N P}$. Sometimes this reduction can be described more easily than the reduction presented in the Cook-Levin theorem.
Show that there is a polynomial time reduction $\mathbf{3 C O L} \leq_{\mathbf{p}} \mathbf{3 S A T}$, where $\mathbf{3 C O L}$ is the problem of deciding if a graph G is three-colourable.
2. Let $k>3$ be an integer. Show that the problem of deciding if a graph has a k-colouring is NP-Complete assuming that 3COL is NP-Complete.
3. In class, we stated that a Boolean formula ϕ in conjunctive normal form can be converted into a Boolean formula ϕ^{\prime} with at most 3 literals per clause that is satisfiable iff ϕ is, thus showing a reduction $\mathbf{S A T} \leq_{\mathbf{p}} \mathbf{3 S A T}$. One way of this doing is converting breaking up any clause $l_{1} \vee \cdots \vee l_{n}$ in ϕ with $n>3$ literals into two clauses $\left(l_{1} \vee l_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee l_{3} \vee \cdots \vee l_{n}\right)$, where z_{1} is a new variable and then recursively applying this procedure to the longer clause, until each clause has at most three variables.

Prove that ϕ is satisfiable if and only if ϕ^{\prime} produced by this algorithm from ϕ is satisfiable.
4. Recall in the proof of the Cook-Levin theorem we used 2×3 sized windows to check if each row in the computational tableau follows from the previous one according to the transition function of a non-deterministic Turing machine N.
Show that the proof would have failed if we tried to use 2 x 2 sized windows by giving an example of an illegal window that is consistent with the transition function of N across its 2×2 subwindows.
5. An interesting property of NP-Complete problems is that their search and decision versions are polynomially equivalent, while this is not believed to be true for an arbitrary problem in NP.
Prove that for the case of VERTEX - COVER by showing that if you have an algorithm A that checks if a graph has a vertex cover of size k and only outputs a yes or no answer, then you use A to find a vertex covering of G of size k if one exists.

