# Tutorial 2: Turing Machines and Decidability 

CSC 463
January 24, 2020

1. Show that a language $L$ is decidable iff there is some enumerator $E$ that prints the strings of $L$ in lexicographic order.
2. Let $A$ and $B$ be decidable languages. Show that the union $A \cup B$, the intersection $A \cap B$, the concatenation $A B=\{u v \mid u \in A, v \in B\}$, and the complement $\bar{A}$ are also decidable.
Which of the above closure properties remain true when decidable is replaced by semidecidable?
3. Show that $A$ is semi-decidable if and only if there is a mapping reduction $A \leq_{m} A_{T M}$. Recall that $A_{T M}$ is the language

$$
A_{T M}=\{\langle M, w\rangle: M \text { is a Turing machine that accepts } w\} .
$$

This exercise, combined with the fact that $A_{T M}$ is semidecidable, shows that $A_{T M}$ is complete for the class of semi-decidable problems.
4. Show that if $A$ is semi-decidable and there is a mapping reduction $A \leq_{m} \bar{A}$, then $A$ is decidable.

