Tutorial 2: Turing Machines and Decidability

CSC 463

January 24, 2020

- 1. Show that a language L is decidable iff there is some enumerator E that prints the strings of L in lexicographic order.
- Let A and B be decidable languages. Show that the union A∪B, the intersection A∩B, the concatenation AB = {uv|u ∈ A, v ∈ B}, and the complement Ā are also decidable.
 Which of the above closure properties remain true when decidable is replaced by semi-
- 3. Show that A is semi-decidable if and only if there is a mapping reduction $A \leq_m A_{TM}$. Recall that A_{TM} is the language

decidable?

 $A_{TM} = \{ \langle M, w \rangle : M \text{ is a Turing machine that accepts } w \}.$

This exercise, combined with the fact that A_{TM} is semidecidable, shows that A_{TM} is **complete** for the class of semi-decidable problems.

4. Show that if A is semi-decidable and there is a mapping reduction $A \leq_m \overline{A}$, then A is decidable.