Problem Set 3

CSC 463
Due by March 13, 2020, 2pm

Each problem set counts for 10% of your mark. You may consult with others concerning the general approach for solving problems on assignments, but you must write up all solutions entirely on your own. Copying assignments is a serious academic offense and will be dealt with accordingly. You may cite results discussed in lecture or the course textbook. You are encouraged to write precisely and concisely; it should be possible to write your solutions to the problem set within a page per question. Submit your work online by uploading a pdf file or image of your solutions onto Crowdmark. In all problems, you can assume that you are given valid encodings as input to the problem.

1. A language L is in coNP if the complement $\bar{L} \in \mathbf{N P}$. It is generally believed that $\mathbf{N P} \neq \mathbf{c o N P}$, which implies that $\mathbf{P} \neq \mathbf{N P}$.
A Boolean formula ϕ is a tautology if ϕ evaluates to true on every possible truth assignment. Let TAUT $=\{\langle\phi\rangle \mid \phi$ is a tautology $\}$ be the set of Boolean tautologies. Show that TAUT is coNP-Complete (i.e. TAUT $\in \mathbf{c o N P}$ and there is reduction $\mathbf{A} \leq_{\mathbf{p}}$ TAUT for all $A \in$ coNP).
2. A partial 3-colouring of a graph G is a map $g: V^{\prime} \mapsto\{1,2,3\}$ such that $g(u) \neq g(v)$ for vertices $u, v \in V^{\prime}$ in some subset $V^{\prime} \subset V$ provided (u, v) is an edge in G. We say that g extends to a full 3 -colouring of G if there is a 3 -colouring f covering all vertices of G such that $f(u)=g(u)$ for all $u \in V^{\prime}$. Let PARTIAL-3COL be the problem of determining given $\langle G, g\rangle$ where g is a partial 3 -colouring of G, whether or not g extends to a full 3 -colouring of G.
Show that there is a reduction PARTIAL-3COL \leq_{p} 3COL. Therefore, there is an efficient decision-to-search reduction for 3COL.
3. A Boolean formula ϕ is nice if it is in conjunctive normal form, and each clause consists entirely of unnegated or negated variables. Let NICE-SAT be the problem of determining if a nice Boolean formula is satisfiable or not. Prove that NICE-SAT is NP-Complete.
4. Given a graph G, we say that a subset of its vertices $S \subset V$ is triangle-free if for every size three subset $\{u, v, w\} \subset S$, at least one of the edges $u v, v w, u w$ is not in the graph G. Let TF be the problem of determining if a graph G has a triangle-free subset of size at least k. Show that TF is NP-Complete by reducing from independent set.
5. (Optional/ungraded: for extra knowledge and extra practice) Recall a weighted graph is a graph with a function $w: E \mapsto \mathbb{Z}^{+}$assigning weights to its edges. Given a graph G, a cut is a division of the vertices into disjoint sets (S, T) with $S \cup T=V$. An edge crosses the cut if one of its endpoints is in S and the other endpoint is in T. The weight of a cut in a weighted graph is the sum $\sum_{e \in E} w(e)$ over all edges e crossing the cut. Given a weighted graph, show that the problem of determining if it has a cut of weight at least k is NP-Complete. This problem is related to the Ising model of magnetism studied in physics.
