
Looking Ahead and Course Review

CSC 463

April 3, 2020



Why is P versus NP hard?

I We believe that not every problem in NP has a
polynomial-time algorithm.

I The techniques that complexity theorists have developed have
not worked to separate P and NP.

I Some of these techniques are discussed in Sipser’s book
(Chapter 9 and 10).



Diagonalization

I Recall that we used Cantor’s diagonalization argument to
show that there is a semi-decidable problem that is not
decidable. So we can do something similar to show that there
is a problem in NP not in P?

I The answer is no. This concept is made rigorous by the
concept of relativization.

Theorem (Baker-Gill-Solovay (1975))

There are oracle Turing machines A,B where PA = NPA and
PB 6= NPB .

I This rules out a large class of possible proof techniques
towards the P versus NP problem.



Circuit Complexity

I Another natural model of computation is circuits.

I Every problem in P has a family of circuits with poly(n) gates.

I Hence if we can prove that a problem in NP cannot be solved
using a family of polynomially-sized circuits, then we will have
proven P 6= NP.

I We know that there are Boolean functions f requiring
Ω(2

n

n )-sized circuits to compute, but we do not know that
these functions f define languages in NP.

I Boolean functions f : {0, 1}∗ 7→ {0, 1} and languages are related by

considering the languages L = f −1(0) or L = f −1(1).



Circuit Complexity

I Unfortunately this approach has not seemed to give strong
separations in general so far for the P versus NP problem.

I We still cannot prove superlinear circuit size lower bounds
functions in NP.

Theorem (Schnorr 1974)

Any family of circuits for the parity function
f (x1, . . . , xn) =

∑n
i=1 xi (mod 2) requires at least 3n − o(n) gates.

I We are still far from proving P 6= NP with this approach!



Circuit Complexity

I There are more powerful results for restricted forms of
circuits, some even for NP-Complete problems.

Theorem (Razborov 1985)

Let k ≤ n1/4. Any monotone circuit for computing the clique

function CLIQUEk,n(x1, . . . , x(n2)
) requires size 2ε

√
k .

In particular, this is not polynomially sized for k = Θ(n1/4).

I But it has been shown that these techniques used to prove
these bounds for restricted circuits cannot work in general if
we believe cryptography is possible in this universe. This
observation is known as the natural proofs barrier.



Other computational models

I Complexity theorists have studied other computational models
as a way to gain insight on the P versus NP problem.

I Interactive proofs can be considered as a generalization of NP
where a verifier is probabilistic rather than a deterministic
machine.

I The study of interactive proofs has to lead to important
discoveries such as the PCP Theorem on probabilistically
checkable proofs.

I The PCP Theorem then leads to guarantees on how well
NP-hard optimization problems can be approximated in
polynomial time under P 6= NP.



Other computational models

I Some examples of other computational models include:
I Communication complexity.
I Algebraic circuits for polynomials.
I Computational with real numbers (Blum-Shub-Smale model)
I Quantum computers and other physics-inspired models of

computation.
I Descriptive complexity and models inspired by logic.
I Many more that have yet to be discovered!

I The hope is studying these other computational models will
give insight on the nature of computation and find
applications in other areas of computing, mathematics, and
science.



Course Summary: Computability

I We define precisely what it means for a problem to be solvable
by an algorithm using the Turing machine model.

I We gave some evidence for the Church-Turing thesis that any
physically implementable model of computation can be
efficiently simulated by a Turing machine.

I We showed some examples of uncomputable problems: the
halting problem, Post Correspondence Problem,
Kolmogorov-incompressibility of strings.

I The main techniques we used were diagonalization arguments
and computable mapping reductions.

I This is related to formal program verification (Rice’s Theorem)
and foundations of mathematics (incompleteness theorems).



Course Summary: Time Complexity

I We also care about problems who are a decidable in principle,
but may not have an efficient algorithm.

I We use polynomial-time algorithms as a definition of an
efficient algorithm.

I Problems in NP are the problems where given a potential
solution, we can verify if it is an actual solution efficiently.
There are many practically relevant problems in NP.

I The concept of NP-Completeness is used to give evidence
that problems do not have polynomial time algorithms.

I If P 6= NP, then any NP−Complete problem does not have a
polynomial time algorithm.



Course Summary: Time Complexity

I We proved the Cook-Levin theorem stating that Boolean
satisfiability is a problem that is NP-Complete.

I From that result, we used a chain of polynomial time
reductions to show that other problems are also
NP-Complete: clique finding, independent set, vertex
covering, graph colouring, Hamiltonian path etc.

I When NP-Complete problems are encountered in real life,
approximation algorithms are often used to tackle them so
that useful solutions can be obtained efficiently.



Course Summary: Space Complexity

I Another useful resource is memory or space.

I Space is a powerful resource. We expect PSPACE 6= P.

I An example of a PSPACE-Complete problem is quantified
Boolean satisfiability under polynomial time reductions.

I Proving PSPACE-Completeness is stronger evidence of
intractibility than NP-Completeness, we conjecture all
inclusions

P ⊆ NP ⊆ PSPACE ⊆ EXP

are strict.

I We know for sure P 6= EXP using the time hierarchy theorem.



Course Summary: Space Complexity

I For some applications, we only have access to small space.
This motivates the study of small space complexity classes L
and NL.

I Determining if a directed graph has a path between two
vertices s, t is a problem that is NL-Complete using log space
reductions.

I We know the inclusions

L ⊆ NL = coNL ⊆ P

and expect all inclusions to the strict.



Course Summary



Course Summary

Figure: Image from
https://jeremykun.com/2012/02/29/other-complexity-classes/

https://jeremykun.com/2012/02/29/other-complexity-classes/

