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NP-Completeness

I A problem A is NP-Complete if A ∈ NP and every problem
in NP reduces to A.

I Showing that A is NP-Complete provides evidence that A
cannot have efficient (polynomial-time) algorithm.

I We saw a sequence of reductions that proved that various
problems are NP-Complete, assuming the NP-completeness of
3SAT.



Cook-Levin Theorem

I A Boolean formula is satisfiable if you can assign truth values
to x1, . . . , xn so that φ(x1, . . . , xn) is true.

I Recall that a Boolean formula φ is in conjunctive normal form
of φ(x1, . . . , xn) =

∧m
i=1 φi where each φi is an OR of literals

(a variable x or its complement x̄). Each φi is called a clause.

I We remove the 3 variable per clause and conjunctive normal
form restrictions for now and add it in later.

Theorem (SAT is NP-Complete)

Determining if a Boolean formula φ is satisfiable or not is an
NP-Complete problem.



The Main Ideas

I SAT ∈ NP since given a truth assignment for x1, . . . , xn, you
can check if φ(x1, . . . , xn) = 1 in polynomial time by
evaluating the formula on a given assignment.

I We now need to show that there is a polynomial-time
reduction A ≤p SAT for every A in NP.

I A ∈ NP means that there is a non-deterministic Turing
machine N running in O(nk) time that decides A. We will
construct a Boolean formula φ that is satisfiable if and only if
some branch of N’s computation accepts a given input w .



The Main Ideas

I A tableau for non-deterministic TM N is a table listing its
configurations on some branch of its computation tree.

I So determining if w ∈ A is equivalent to whether or not there
is a tableau using encoding an accepting computation of N on
input w .

# q0 w1 w2 . . . . . . . . . . . . . . . . . . wn #

# w ′1 q1 w2 . . . . . . . . . . . . . . . . . . wn #

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #

Figure: Part of a tableau



The Main Ideas: Encoding the Tableau as a Formula

I Each entry of a tableau T of the tableau can be a state qi of
the TM Q, an element of the tape alphabet Γ or #. Let
C = Q ∪ Γ ∪ {#}. We define a propositional variable xi ,j ,s for
every cell in row i , column j , and element s ∈ C .

I We interpret xi ,j ,s as true iff T[i,j] = s.

I N accepts w iff

1. Each cell is well-defined.
2. The first row is an initial configuration with w as the input.
3. Each row follows from the previous row using the transition

function given by N.
4. Some row has a cell that includes an accepting state qaccept .

We can express each of these conditions using propositional
logic in the variables xi ,j ,s .



Condition 1: Well-defined Tableau

I A well-defined tableau means that every cell T [i , j ] in the
tableau is filled with exactly one element (possibly the blank
symbol).

I In propositional logic cell T [i , j ] being filled with exactly one
element is equivalent to the proposition

φij =

(∨
s∈C

xi ,j ,s

)
∧

 ∧
s,t∈C ,s 6=t

(xi ,j ,s ∨ xi ,j ,t)


being true.

I We have a well-defined tableau iff

φcell =
∧
i ,j

φij

is true.



Condition 2: The Initial Configuration

I The formula

φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ . . . x1,n+2,wn

∧ x1,n+3,t ∧ · · · ∧ x1,O(nk )−1,t . . . x1,O(nk ),#

(1)

is true iff w = w1 . . .wn is given as the input.



Condition 3: Valid Transitions

I A window in the tableau is a 2x3 piece with adjacent rows
and columns.

a1 a2 a3
a4 a5 a6

I A window is legal if it does not violate transition function of
N. Determining which windows are legal can be done by case
analysis.

I Example: assuming that tape alphabet is {a, b, c}

a b c

a c c

is never a legal window for any Turing machine.



Condition 3: Valid Transitions

I Example: suppose the TM N has a transition function
δ(q1, b) = {(q2, c , L), (q2, a,R)} then

a q1 b
q2 a c

a q1 b
a a q2

a c q1

a c a

a b a

a b a

are all legal windows for N’s computation but

a q1 b
q1 b b

cannot be.



Condition 3: Valid Transitions

I Observation 1: Each row in the tableau is a configuration
following the previous row according to N if and only if each
window in the tableau is legal.
I Proof Sketch: For any row i , the configuration in row i + 1 can

differ from row i in at most 3 consecutive positions so
checking all legal windows is the same is checking that the
tableau is valid according to N.

I Observation 2: The number of legal windows is finite
(≤ |C |6.)



Condition 3: Valid Transitions

I Hence the condition that each row follows from the previous
according to N can be expressed as the condition:

φmove =
∧

1≤i ,j<O(nk )

φwindow ,i ,j

where φwindow ,i ,j expresses the condition that the window with
cells (a1, . . . , a6) with top middle cell at (i , j) is legal.

φwindow ,i ,j =
∨

(a1,...,a6) is legal

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3∧

xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)



Condition 4: Accepting Configuration

I The tableau is accepting iff some cell in the tableau contains
an accepting state.

I
φaccept =

∨
ij

xi ,j ,qaccept

iff the tableau is accepting.



Putting it Together

I Given a non-deterministic Turing machine N and some input
w we have shown that there is a propositional formula φ
defined by

φN,w = φcell ∧ φstart ∧ φmove ∧ φaccept
that is satisfiable if and only N accepts w .

I The subformulas encode the 4 conditions needed there be an
accepting tableau for the computation of N on input w .

I It remains to show that the reduction is computable in
polynomial time.



Polynomial Time Reduction

I We assumed that the N runs in O(nk) time on inputs of
length n so the tableau has O(nk) rows and O(nk) columns.

I The formula constructed by the reduction has O(n2k) literals,
since there is a constant size formula for each cell of the
tableau.

I The formula for each cell can be generated efficiently from a
description of NDTM N.

I All together this gives a reduction with runtime poly(n).

I This completes the reduction A ≤p SAT . We can produce a
formula φN,w in polynomial time that, which is satisfiable iff
w ∈ A.



Reducing SAT to CNF-3SAT

I Converting an Boolean formula to one in CNF-form that
preserves satisfiability can be done in polynomial time. (See
Sipser for details)

I Now suppose we have a clause φ = l1 ∨ · · · ∨ ln with n > 3.
Introduce a new variable z and rewrite the clause as

(l1 ∨ l2 ∨ z) ∧ (z̄ ∨ · · · ∨ ln).

Do this recursively until all clauses have 3 variables.

I Example with n = 5,

(l1 ∨ l2 ∨ z1) ∧ (z̄1 ∨ l3 ∨ z2) ∧ (z̄2 ∨ l4 ∨ l5).

I Claim: This procedure can be done in poly-time and preserves
satisfiability. So we have shown that SAT ≤p CNF-3SAT.



The Tree of Reductions

Figure: Karp (1972): Reducibility among Combinatorial Problems



So now you know how to prove the Cook-Levin Theorem! 1

1Comic from abtrusegoose.com



Next week: more examples of NP-Complete problems 2

2Comic from xkcd


