The Cook-Levin Theorem

CSC 463

February 28, 2020

NP-Completeness

> A problem A is NP-Complete if A € NP and every problem
in NP reduces to A.

» Showing that A is NP-Complete provides evidence that A
cannot have efficient (polynomial-time) algorithm.
> We saw a sequence of reductions that proved that various

problems are NP-Complete, assuming the NP-completeness of
3SAT.

Cook-Levin Theorem

» A Boolean formula is satisfiable if you can assign truth values
to x1,...,Xp SO that ¢(xi,...,xp) is true.

» Recall that a Boolean formula ¢ is in conjunctive normal form
of ¢(x1,...,%n) = Ny ¢i where each ¢; is an OR of literals
(a variable x or its complement X). Each ¢; is called a clause.

> We remove the 3 variable per clause and conjunctive normal
form restrictions for now and add it in later.

Theorem (SAT is NP-Complete)

Determining if a Boolean formula ¢ is satisfiable or not is an
NP-Complete problem.

The Main ldeas

» SAT € NP since given a truth assignment for xi, ..., x,, you
can check if ¢(x1,...,x,) = 1 in polynomial time by
evaluating the formula on a given assignment.

> We now need to show that there is a polynomial-time
reduction A <, SAT for every A in NP.

» A € NP means that there is a non-deterministic Turing
machine N running in O(n*) time that decides A. We will
construct a Boolean formula ¢ that is satisfiable if and only if
some branch of N's computation accepts a given input w.

The Main ldeas

> A tableau for non-deterministic TM N is a table listing its
configurations on some branch of its computation tree.

» So determining if w € A is equivalent to whether or not there
is a tableau using encoding an accepting computation of N on
input w.

qo|wp(wWal-« | e eloe e oo i) e o Wp

Fe [F | Fe| F|F

He | F | Fe| F|F

Figure: Part of a tableau

The Main Ideas: Encoding the Tableau as a Formula

» Each entry of a tableau T of the tableau can be a state g; of
the TM @, an element of the tape alphabet I or #. Let
C = QUT U {#}. We define a propositional variable x; ; s for
every cell in row 7, column j, and element s € C.

> We interpret x;j s as true iff T[ij] =s.

> N accepts w iff

1. Each cell is well-defined.

2. The first row is an initial configuration with w as the input.

3. Each row follows from the previous row using the transition
function given by N.

4. Some row has a cell that includes an accepting state Gaccept-

We can express each of these conditions using propositional
logic in the variables Xx; ; s.

Condition 1: Well-defined Tableau

» A well-defined tableau means that every cell T[i,] in the
tableau is filled with exactly one element (possibly the blank
symbol).

» In propositional logic cell T[i, j] being filled with exactly one
element is equivalent to the proposition

¢ij = (\/x,,;s) AN s V)

seC s,teC,s#t
being true.
» We have a well-defined tableau iff
¢cel/ = /\¢U
iJ

is true.

Condition 2: The Initial Configuration

» The formula

Gstart = X114 N X1.2,g0 N X13,m A XL A -+ X1 042w, 1)

A X430 N A X 0(nk)—1,U - + - X1,0(nk) 4

is true iff w = wy ... w, is given as the input.

Condition 3: Valid Transitions

> A window in the tableau is a 2x3 piece with adjacent rows
and columns.

di|az|as

d4 | ds | de

> A window is legal if it does not violate transition function of
N. Determining which windows are legal can be done by case
analysis.

» Example: assuming that tape alphabet is {a, b, c}

alb
alc

is never a legal window for any Turing machine.

Condition 3: Valid Transitions

» Example: suppose the TM N has a transition function
5(CI17 b) = {(CI27 G, L)) (q27 a, R)} then

a

a1

b

a

a1

b

alc|qi alp|a

az

a

C

a

a

qz

alc|a alp|a

are all legal windows for N's computation but

cannot be.

a

a1

b

a1

b

Condition 3: Valid Transitions

» Observation 1: Each row in the tableau is a configuration
following the previous row according to N if and only if each
window in the tableau is legal.

» Proof Sketch: For any row i, the configuration in row i + 1 can
differ from row 7 in at most 3 consecutive positions so
checking all legal windows is the same is checking that the
tableau is valid according to N.

» Observation 2: The number of legal windows is finite
(<1C1°)

Condition 3: Valid Transitions

» Hence the condition that each row follows from the previous
according to N can be expressed as the condition:

¢move = /\ ¢Window,i,j

1<i,j<O(nk)
where @yindow,i,j expresses the condition that the window with
cells (a1, ..., as) with top middle cell at (7, /) is legal.
Dwindow,i,j = \/ (Xij—1,a1 A Xijay A Xij41,05/\

(a1,..-,36) is legal

Xit1j—1,a8 AN Xit1j,a5 /N Xit1,j+1,26)

Condition 4: Accepting Configuration

» The tableau is accepting iff some cell in the tableau contains
an accepting state.

>

(lsaccept = \/ Xi.j,Qaccept
ij

iff the tableau is accepting.

Putting it Together

» Given a non-deterministic Turing machine N and some input
w we have shown that there is a propositional formula ¢
defined by

(Z)N,w = (z)cell A (z)start A (z)move A Qbaccept
that is satisfiable if and only N accepts w.

» The subformulas encode the 4 conditions needed there be an
accepting tableau for the computation of N on input w.

P It remains to show that the reduction is computable in
polynomial time.

Polynomial Time Reduction

» We assumed that the N runs in O(n*) time on inputs of
length n so the tableau has O(n*) rows and O(n*) columns.

» The formula constructed by the reduction has O(n?K) literals,
since there is a constant size formula for each cell of the
tableau.

» The formula for each cell can be generated efficiently from a
description of NDTM N.
» All together this gives a reduction with runtime poly(n).

» This completes the reduction A <, SAT. We can produce a
formula ¢y in polynomial time that, which is satisfiable iff
w e A.

Reducing SAT to CNF-3SAT

» Converting an Boolean formula to one in CNF-form that
preserves satisfiability can be done in polynomial time. (See
Sipser for details)

» Now suppose we have a clause ¢ = L V ---V [, with n > 3.
Introduce a new variable z and rewrite the clause as
(/1\//2\/2)/\(2\/‘--\//,1).

Do this recursively until all clauses have 3 variables.
» Example with n =5,

(hVhVz)AN(Z@Z VBV 2R)AN(Z2V V).

» Claim: This procedure can be done in poly-time and preserves
satisfiability. So we have shown that SAT <, CNF-3SAT.

The Tree of Reductions

/ SATISFIABILITY\

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE

NODE SET

COVER PACKING CHROMATIC NUMBER

FEEDBACK FEEDBACK DIRECTED

EXACT CLIQUE
NODE SET ARC SET HAMILTON COVER COVER
cIrcury COVERING
3-DIMENSTONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT

SEQUENCING PARTITION

MAX CUT

Figure: Karp (1972): Reducibility among Combinatorial Problems

So now you know how to prove the Cook-Levin Theorem! !

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep,.. THE RUNNING TIME 5 O(P¥*nY
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN. I JUST
WANTED TO LEARN
How TO PROGRAM
VIPEO GAMES,

!Comic from abtrusegoose.com

Next week: more examples of NP-Complete problems

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

2

¢ CHOTCHWKIES RESTAURANT

WHPPE'“ZERSM

NXED FRUIT 2.15
FRENCH FRIES 275
SIDE 5ALAD 3.35
HoT WiNGs 3.55
MozzaREUA STIKS 4-20
SAMPLER PLATE 5.80
—— SANDWICHES ~—
RARRFOIIE L 5T

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.
| - EXACTY? UK.
HERE, THESE PAPERS ON THE KNAPBACK
PROBLEM MIGHT HELP YOU OUT
LISTEN, T HAVE Six OTHER
TABLES TO GET T0 —

~AS FAST AS POSSIBLE, (F (OURSE. WANT
SOMETHING ON TRAVELING SALESYAN? /

\.
(XLLR

2Comic from xked

