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Abdel-rahman Mohamed, George E. Dahl, and Geoffrey Hinton

Abstract—Gaussian mixture models are currently the domi-
nant technique for modeling the emission distribution of hidden
Markov models for speech recognition. We show that better
phone recognition on the TIMIT dataset can be achieved by
replacing Gaussian mixture models by deep neural networks
that contain many layers of features and a very large number
of parameters. These networks are first pre-trained as a multi-
layer generative model of a window of spectral feature vectors
without making use of any discriminative information. Once the
generative pre-training has designed the features, we perform
discriminative fine-tuning using backpropagation to adjust the
features slightly to make them better at predicting a probability
distribution over the states of monophone hidden Markov models.

Index Terms—Acoustic Modeling, deep belief networks, neural
networks, phone recognition

I. I NTRODUCTION

A Utomatic speech Recognition (ASR) has evolved signifi-
cantly over the past few decades. Early systems typically

discriminated isolated digits or yes/no, whereas current sys-
tems can do quite well at recognizing telephone-quality, spon-
taneous speech. A huge amount of progress has been made
in improving word recognition rates, but the core acoustic
modeling has remained fairly stable, despite many attempts
to develop better alternatives.

A typical ASR system uses Hidden Markov Models
(HMMs) to model the sequential structure of speech signals,
with each HMM state using a mixture of Gaussians to model a
spectral representation of the sound wave. The most common
spectral representation is a set of Mel Frequency Cepstral
coefficients (MFCCs) derived from a window of about 25 ms
of speech. The window is typically advanced by about 10 ms
per frame, and each frame of coefficients is augmented with
differences and differences of differences with nearby frames.

One research direction involves using deeper acoustic mod-
els that contain many layers of features. The work in [1] pro-
poses a hierarchical framework where each layer is designedto
capture a set of distinctive feature landmarks. For each feature,
a specialized acoustic representation is constructed in which
that feature is easy to detect. In [2], a probabilistic generative
model is introduced where the dynamic structure in the hidden
vocal tract resonance space is used to characterize long-span
contextual influence across phonetic units.

Feedforward neural networks have been used in many
ASR systems [3], [4], [5]. Inspired by insights from [6],
the TRAP architecture [7] models a whole second of speech
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using a feature vector that describes segments of the temporal
evolution of critical-band spectral densities within a single
critical band. Sub-word posterior probabilities are estimated
using feedforward neural networks for each critical band and
these probabilities are merged to produce the final estimate
of the posterior probabilities using another feedforward neural
network. In [8], the split temporal context system is introduced
which modifies the TRAP system by including, in the middle
layer of the system, splits over time as well as over frequency
bands before the final merger neural network.

Feedforward neural networks offer several potential advan-
tages over GMMs:

• Their estimation of the posterior probabilities of HMM
states does not require detailed assumptions about the
data distribution.

• They allow an easy way of combining diverse features,
including both discrete and continuous features.

• They use far more of the data to constrain each parameter
because the output on each training case is sensitive to a
large fraction of the weights.

The benefit of each weight in a neural network being
constrained by a larger fraction of training cases than each
parameter in a GMM has been masked by other differences
in training. Neural networks have traditionally been trained
purely discriminatively, whereas GMMs are typically trained
as generative models (even if discriminative training is per-
formed later in the training procedure). Generative training
allows the data to impose many more bits of constraint on the
parameters (see below), thus partially compensating for the
fact that each component of a large GMM must be trained on
a very small fraction of the data.

MFCCs, GMMs, and HMMs co-evolved as a way of doing
speech recognition when computers were too slow to explore
more computationally intensive approaches. MFCCs throw
away a lot of the information in the sound wave, but pre-
serve most of the information required for discrimination.By
including temporal differences, MFCCs partially overcomethe
very strong conditional independence assumption of HMMs,
namely that successive frames are independent given the
hidden state of the HMM. The temporal differences also allow
diagonal covariance Gaussians to model the strong temporal
covariances by reducing these particular pairwise covariances
to individual coefficients. As we shall see, a Fourier transform
based filterbank, densely distributed on a mel-scale, is a
potential alternative to MFCCs for models that can easily
model correlated features [7].

GMMs are easy to fit to data using the EM algorithm,
especially when they have diagonal covariance matrices, and
with enough components they can model any distribution.
They are, however, statistically inefficient at modeling high-
dimensional data that has any kind of componential structure.
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Suppose, for example, thatN significantly different patterns
can occur in one sub-band andM significantly different pat-
terns can occur in another sub-band. Suppose also that which
pattern occurs in each sub-band is approximately independent.
A GMM requires NM components to model this structure
because each component must generate both sub-bands (each
piece of data has only a single latent cause). On the other
hand, a model that explains the data using multiple causes
only requiresN +M components, each of which is specific to
a particular sub-band. This exponential inefficiency of GMMs
for modeling factorial structure leads to ASR systems that
have a very large number of Gaussians, most of which must
be estimated from a very small fraction of the data.

In this paper, we focus on a more powerful alternative
to GMMs for relating HMM states to feature vectors. In
particular, we reconsider the use of multi-layer, feed-forward
neural networks that take a window of feature vectors as input
and produce posterior probabilities of HMM states as output.

Previous instantiations of the neural network approach
have used the backpropagation algorithm to train the neural
networks discriminatively. These approaches coincided nicely
with a trend initiated by [9] in which generative modeling
is replaced by discriminative training. Discriminative training
is a very sensible thing to do when using computers that
are too slow to learn a really good generative model of the
data. As generative models get better, however, the advantage
of discriminative training gets smaller1 and is eventually
outweighed by a major disadvantage: the amount of constraint
that the data imposes on the parameters of a discriminative
model is equal to the number of bits required to specify the
correct labels of the training cases, whereas the amount of
constraint for a generative model is equal to the number of
bits required to specify the input vectors of the training cases.
So when the input vectors contain much more structure than
the labels, a generative model can learn many more parameters
before it overfits.

The benefit of learning a generative model is greatly mag-
nified when there is a large supply of unlabeled speech in
addition to the training data that has been labeled by a forced
HMM alignment. We do not make use of unlabeled data in
this paper, but it could only improve our results relative to
purely discriminative approaches.

Naturally, many of the high-level features learned by the
generative model may be irrelevant for making the required
discriminations, even though they are important for explaining
the input data. However, this is a price worth paying if
computation is cheap andsomeof the high-level features are
very good for discriminating between the classes of interest.

The main novelty of our work is to show that we can achieve
consistently better phone recognition performance by “pre-
training” a multi-layer neural network, one layer at a time,as
a generativemodel of the window of speech coefficients. This
pre-training makes it easier to optimize deep neural networks
that have many layers of hidden units and it also allows

1It is impossible for a discriminatively trained system to produce better
estimates of the posterior probability ratio of two classes than the ratio of
the probabilities of generating the data from a mixture of two, class-specific,
generative models if these models and their mixing proportionsare correct.

many more parameters to be used before overfitting occurs.
The generative pre-training creates many layers of feature
detectors that become progressively more complex. A subse-
quent phase of discriminative fine-tuning, using the standard
backpropagation algorithm, then slightly adjusts the features
in every layer to make them more useful for discrimination.
The big advantage of this new way of training multi-layer
neural networks is that the limited amount of information in
the labels is not used to design features from scratch. It is only
used to change the features ever so slightly in order to adjust
the class boundaries. The features themselves are discovered
by building a multi-layer generative model of the much richer
information in the window of speech coefficients, and this does
not require labeled data.

Our approach makes two major assumptions about the
nature of the relationship between the input data, which in this
case is a window of speech coefficients, and the labels, which
are HMM states produced by a forced alignment using a pre-
existing ASR model. First, we assume that the discrimination
we want to perform is more directly related to the underlying
causes of the data than to the individual elements of the
data itself. Second, we assume that a good feature-vector
representation of the underlying causes can be recovered from
the input data by modeling its higher-order statistical structure.

It is easy to dream up artificial tasks in which our two
assumptions are entirely wrong, but a purely discriminative
machine learning approach, such as a support vector machine
with a polynomial kernel, would still work very well. Suppose,
for example, that the label assigned to a window of speech
coefficients is simply the parity of two particular components
of the binarized data. Our approach would almost certainly
fail because this information is unlikely to be preserved inthe
high-level features and, even if it is preserved, it will be in
a much more complex form than the simple form it had in
the data. Our claim is that, because of the highly structured
way in which speech is generated, this artificial task is exactly
what ASR is not like, and machine learning methods that do
not make use of the huge difference between these two tasks
have no long term future in ASR.

II. L EARNING A MULTILAYER GENERATIVE MODEL

There are two very different ways to understand our ap-
proach to learning a multi-layer generative model of a window
of speech coefficients. In thedirectedview, we fit a multilayer
generative model that has infinitely many layers of latent
variables, but uses weight sharing among the higher layers
to keep the number of parameters under control. In the
undirected, “energy-based” view, we fit a relatively simple
type of learning module that only has one layer of latent
variables, but then we treat the activities of the latent variables
as data and fit the same type of module again to this new
“data”. This can be repeated as many times as we like to
learn as many layers of latent variables as we desire.

A. Theundirected view

The simple learning module used in the undirected view is
called a “Restricted Boltzmann Machine” (RBM). It is a bi-
partite graph in which visible units that represent observations
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are connected to hidden units that learn to represent features
using undirected weighted connections. An RBM is restricted
in the sense that there are no visible-visible or hidden-hidden
connections. In the simplest type of RBM, the binary RBM,
both the hidden and visible units are binary and stochastic.To
deal with real-valued input data, we use a Gaussian-Bernoulli
RBM in which the hidden units are binary but the input units
are linear with Gaussian noise. We will explain the Gaussian-
Bernoulli RBM later after first explaining the simpler binary
RBM.

In a binary RBM, the weights on the connections and the
biases of the individual units define a probability distribution
over the joint states of the visible and hidden units via an
energy function. The energy of a joint configuration is:

E(v,h|θ) = −
V

∑

i=1

H
∑

j=1

wijvihj −
V

∑

i=1

bivi −
H

∑

j=1

ajhj (1)

where θ = (w,b,a) and wij represents the symmetric
interaction term between visible uniti and hidden unitj while
bi and aj are their bias terms.V andH are the numbers of
visible and hidden units.

The probability that an RBM assigns to a visible vectorv

is:

p(v|θ) =

∑

h
e−E(v,h)

∑

u

∑

h
e−E(u,h)

(2)

Since there are no hidden-hidden connections, the conditional
distributionp(h|v, θ) is factorial and is given by:

p(hj = 1|v, θ) = σ(aj +

V
∑

i=1

wijvi) (3)

where σ(x) = (1 + e−x)
−1. Similarly, since there are

no visible-visible connections, the conditional distribution
p(v|h, θ) is factorial and is given by:

p(vi = 1|h, θ) = σ(bi +

H
∑

j=1

wijhj), (4)

Exact maximum likelihood learning is infeasible in a large
RBM because it is exponentially expensive to compute the
derivative of the log probability of the training data. Never-
theless, RBMs have an efficientapproximatetraining proce-
dure called “contrastive divergence” [10] which makes them
suitable as building blocks for learning DBNs. We repeatedly
update each weight,wij , using the difference between two
measured, pairwise correlations:

∆wij ∝ 〈vihj〉data− 〈vihj〉reconstruction (5)

The first term on the RHS of Eq. 5 is the measured frequency
with which visible unit i and hidden unitj are on together
when the visible vectors are samples from the training set and
the states of the hidden units are determined by Eq. 3. The
second term is the measured frequency with whichi andj are
both on when the visible vectors are “reconstructions” of the
data vectors and the states of the hidden units are determined
by applying Eq. 3 to the reconstructions. Reconstructions are
produced by applying Eq. 4 to the hidden states that were

computed from the data when computing the first term on the
RHS of Eq. 5.

The contrastive divergence learning rule does not follow the
maximum likelihood gradient. Understanding why it works at
all is much easier using the directed view, so we defer the
explanation to the next section. After learning the weightsin
an RBM module, we use the states of the hidden units, when
driven by real data, as the data for training another module of
the same kind. This process can be repeated to learn as many
layers of features as we desire. Again, understanding why this
greedy approach works is much easier using the directed view.

For Gaussian-Bernoulli RBMs2 the energy of a joint con-
figuration is:

E(v,h|θ) =
V

∑

i=1

(vi − bi)
2

2
−

V
∑

i=1

H
∑

j=1

wijvihj−
H

∑

j=1

ajhj (6)

Since there are no visible-visible connections, the conditional
distributionp(v|h, θ) is factorial and is given by:

p(vi|h, θ) = N



bi +
H

∑

j=1

wijhj , 1



 (7)

whereN (µ, V ) is a Gaussian with meanµ and varianceV .
Apart from these differences, the inference and learning rules
for a Gaussian-Bernoulli RBM are the same as for a binary
RBM, though the learning rate needs to be smaller.

B. Thedirected view

In the undirected view, it is easy to say what we do, but
hard to justify it. In the alternative “directed” view, the learning
algorithm is more complicated to explain, but much easier to
justify [11].

Fig. 1. A multi-layer sigmoid belief net composed of stochasticbinary units.

Consider a sigmoid belief net [12] that consists of multiple
layers of binary stochastic units as shown in figure 1. The
higher “hidden” layers represent binary features and the bot-
tom, “visible”, layer represents a binary data vector (we will

2To keep the equation simple, we assume that the Gaussian noise level of
all the visible units is fixed at 1. We also normalize the input data to have a
fixed variance of1 for each component over the whole training set.
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show how to handle real-valued data later). Generating data
from the model is easy. First, binary states are chosen for the
top layer of hidden units using their biases to determine the
log odds of choosing1 or 0. Given the binary states of the
units in layerk, binary states are chosen in parallel for all
of the units in layerk − 1 by applying the logistic sigmoid
function σ(x) = (1 + e−x)

−1 to the total input received from
the layer above plus the unit’s own bias:

p(h
(k−1)
i =1|h(k),W(k)) = σ(b

(k−1)
i +

∑

j

w
(k)
ij h

(k)
j ) (8)

whereh
(k) is the vector of binary states for layerk andh

(k)
j

is its jth element.W(k) is the matrix of weights from layer
k to layerk−1, w

(k)
ij is an element of that matrix, andb(k)

j is
the bias of unitj in layerk. The vector of states of the visible
units,v, is also calledh(0).

Now consider the problem of adjusting the weights on the
top-down connections so that the model is more likely to gen-
erate the binary training data on its visible units. Performing
gradient ascent in the expected log probability of generating
the training data is very simple if we can get unbiased samples
of the hidden states from their posterior distribution given an
observed data vector:

∆wij ∝
〈

h
(k)
j

(

h
(k−1)
i − p(h

(k−1)
i =1|h(k),W(k))

)〉

(9)

where the angle brackets denote an expectation over the
training data. If we want to ensure that every weight update
increases the log probability of the data, we need to use a very
small learning rate and we need to average over many samples
from the posterior. In practice, it is much more efficient to use
a larger learning rate on small mini-batches of the data.

Unfortunately, getting unbiased samples from the exponen-
tially large posterior appears to be intractable for all butthe
smallest models.3 Consider, for example, the posterior in the
first hidden layer. This posterior is the normalized productof
a complicated, non-factorial prior created by the layers above
and a complicated non-factorial “likelihood term” createdby
the observed states of the visible units. When generating data
from the model, the units in the first hidden layer are, by
definition, conditionally independent given the states of the
units in the layer above. When inferring the posterior, however,
they are not conditionally independent given the states of the
units in the layer below, even with a uniform prior, due to the
phenomenon of “explaining away” [13].

Approximate samples from the posterior can be obtained
by using a slow Markov chain Monte Carlo method [12] or
a fast but crude approximation [14]. There is, however, one
very special form of sigmoid belief net in which sampling
from the posterior distribution in every hidden layer is just
as easy as generating data from the model. In fact, inference
and generation are the same process, but running in opposite

3In this respect, mixture models appear to be far superior. The exact
posterior over the mixture components is easy to compute because it only has
as many terms as the number of components. This computational simplicity,
however, comes at a terrible price: The whole data vector must be generated
by a single component. As we shall see later, it is possible to achieve an
equally simple posterior whilst allowing multiple simultaneous causes.

directions.

1) Learning with tied weights:Consider a sigmoid belief
net with an infinite number of layers and with tied symmetric
weights between layers as shown in figure 2. In this net, the
posterior in the first hidden layer is factorial: The hidden units
are independent given the states of the visible units. This
occurs because the correlations created by the prior coming
from all of the layers above exactly cancel the anti-correlations
in the likelihood term coming from the layer below [11].
Moreover, the factorial posterior can be computed by simply
multiplying the visible vector by the transposed weight matrix
and then applying the logistic function to each element:

p(h
(1)
j =1|v,W) = σ(b

(1)
j +

∑

i

wijvi) (10)

Notice that this simple operation computes the normalized
product of the prior and the likelihood terms, not the likelihood
term, which is considerably more complicated.

Fig. 2. An infinite sigmoid belief net with tied weights. Alternate layers
must have the same number of units. The tied weights make inference much
simpler in this net than in a general sigmoid belief net.

Once the posterior has been sampled for the first hidden
layer, exactly the same process can be used for the next hidden
layer. So inference is extremely easy in this special kind of
network. Learning is a little more difficult because every copy
of the tied weight matrix gets different derivatives. However,
we know in advance that the expected derivatives will be
zero for very high level layers. This is because the bottom-
up inference process is really a Markov chain that eventually
converges to its stationary distribution in the higher layers.
When it is sampling from its stationary distribution, the current
weights are perfect for explaining the samples, so, on average,
there is no derivative. When the weights and biases are small,
this Markov chain converges rapidly and we can approximate
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gradient ascent in the log likelihood quite well by just adding
the derivatives for the first two layers [10].

The tied weights mean that the process of inferringh
(2)

from h
(1) is the same as the process of generatingv from

h
(1). Consequently,h(2) can be viewed as a noisy but unbiased

estimate of the probabilities for the visible units predicted by
h

(1). Similarly h
(3) can be viewed as a noisy estimate of the

probabilities for the units in the first hidden layer predicted
by h

(2). We can use these two facts and equation 9 to get an
unbiased estimate of the sum of the derivatives for the first
two layers of weights. This gives the following learning rule
which is known as “contrastive divergence” [10]:

∆wij ∝
〈

h
(1)
j (vi − h

(2)
i ) + h

(2)
i (h

(1)
j − h

(3)
j )

〉

∝ 〈vih
(1)
j 〉 − 〈h

(2)
i h

(3)
j 〉 (11)

where the angle brackets denote expectations over the training
data (or a representative mini-batch).

As the weights and biases grow, it makes sense to add
the derivatives for more layers [15] and for learning really
good generative models this is essential [16]. For the purpose
of creating sensible feature detectors, however, even a
rather poorly tuned generative model is good enough, and
the learning rule in equation 11 is sufficient even when the
weights get quite large. The approximate maximum likelihood
derivatives produced by this learning rule become highly
biased, but they are cheap to compute and they also have
very low variance [17] which is important for allowing a high
learning rate when the derivatives are estimated from small
mini-batches of data. These issues are discussed further in
[18].

2) Learning different weights in each layer:Now that
we have efficient inference and learning procedures for an
infinite sigmoid belief net with tied weights, the next step
is to make the generative model more powerful by allowing
different weights in different layers. First, we learn withall of
the weight matrices tied together. Then we untie the bottom
weight matrix from the other matrices and freeze the values
of its weights. This frozen matrix is now calledW (1). Then,
keeping all the remaining matrices tied together, we continue
to learn the higher matrices, treating the inferred state vector
h

(1) in just the same way as we previously treatedv. This
involves first inferringh

(1) from v by using (W (1))T and
then inferring h

(2), h
(3), and h

(4) in a similar bottom-up
manner usingW or WT . The inference for the higher hidden
layers produces unbiased samples givenh

(1), but the simple
inference method no longer gives an exactly unbiased sample
for h

(1) because the higher weight matrices are no longer equal
to W (1) so they no longer create a prior that exactly cancels
the correlations in the likelihood term. However, the posterior
for h

(1) is still approximately factorial and it can be proved
that if we continue to inferh(1) as if the higher matrices had
not changed, then learning improves a variational lower bound
on the log probability of the training data [11]4.

4The proof assumes that each layer of weights is learned by following the
maximum likelihood derivative, rather than using the contrastive divergence
approximation.

We can repeat the process of freezing and untying the lowest
copy of the currently tied weight matrices as many times as
we like, so we can learn as many layers of features as we
desire. When we have learnedK layers of features, we are
left with a directed generative model called a “deep belief
net” (DBN) that hasK different weight matrices between
the lower layers and an infinite number of higher layers that
all use theKth weight matrix or its transpose. We then
simply throw away all layers above theKth and add a final
“softmax” layer of label units representing HMM states. We
also jettison the probabilistic interpretation that was used to
justify the generative learning, and we treat the whole system
as a feedforward, deterministic neural network. This network
is then discriminatively fine-tuned by using backpropagation
to maximize the log probability of the correct HMM state5.

For the softmax final layer, the probability of labell given
the real-valued activations of the final layer of features (which
we call h(K) even though they are no longer binary sampled
values) is defined to be

p(l|h(K)) =
exp(bl +

∑

i h
(K)
i wil)

∑

m exp(bm +
∑

i h
(K)
i wim)

(12)

wherebl is the bias of the label andwil is the weight from
hidden uniti in layerK to labell. The discriminative training
must learn the weights from the last layer of features to the
label units, but it does not need to create any new feature
detectors. It simply fine-tunes existing feature detectorsthat
were discovered by the unsupervised “pre-training.”

To model real values in the visible layer, we simply replace
the binary unit by linear units with Gaussian noise that has
a variance of 1. This does not changep(h(1)|v) and the
distribution for visible uniti given h

(1) is a Gaussian with
unit variance and meanµi given by:

µi = b
(0)
i +

∑

j

w
(1)
ij h

(1)
j (13)

This type of generative pre-training followed by discrimi-
native fine-tuning has been used successfully for hand-written
character recognition [11], [10], [19], dimensionality reduction
[20], 3-D object recognition [21], [22], extracting road maps
from cluttered aerial images [23], information retrieval [24],
[25] and machine transliteration [26]. As we shall see, it is
also very good for phone recognition.

III. U SING DEEP BELIEF NETS FOR PHONE RECOGNITION

In order to apply DBNs with fixed input and output dimen-
sionality to phone recognition, we use a context window of
n successive frames of speech coefficients to set the states
of the visible units of the lowest layer of the DBN. Once
it has been pre-trained as a generative model, the resulting
feedfoward neural network is discriminatively trained to output
a probability distribution over the possible labels of the central
frame. To generate phone sequences, the sequence of predicted

5In a convenient abuse of the correct terminology, we sometimes use
“DBN” to refer to a feedforward neural network that was initialized using
a generatively trained deep belief net, even though the feedforward neural
network is clearly very different from a belief net.



6 SUBMITTED TO IEEE TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

probability distributions over the possible labels for each frame
is fed into a standard Viterbi decoder.

Strictly speaking, since the HMM implements a prior over
states, we should divide out the prior from the posterior
distribution over HMM states produced by the DBN, although
for our particular task it made no difference.

IV. EXPERIMENTAL SETUP

A. TIMIT corpus

Phone recognition experiments were performed on the
TIMIT corpus.6 We used the 462 speaker training set and re-
moved all SA records (i.e., identical sentences for all speakers
in the database) since they could bias the results. A separate
development set of 50 speakers was used for tuning all of the
meta parameters, such as the number of layers and the size of
each layer. Results are reported using the 24-speaker core test
set, which excludes the development set.

The speech was analyzed using a 25-ms Hamming window
with a 10-ms fixed frame rate. In most of the experiments,
we represented the speech using 12th-order Mel frequency
cepstral coefficients (MFCCs) and energy, along with their first
and second temporal derivatives. For some experiments, we
used a Fourier-transform-based filter-bank with 40 coefficients
distributed on a mel-scale (and energy) together with theirfirst
and second temporal derivatives.

The data were normalized so that, averaged over the training
cases, each coefficient or first derivative or second derivative
had zero mean and unit variance. We used 183 target class
labels (i.e., 3 states for each one of the 61 phones). After
decoding, the 61 phone classes were mapped to a set of 39
classes as in [27] for scoring. All of our experiments used
a bigram language model over phones, estimated from the
training set.

B. Computational setup

Training DBNs of the sizes used in this paper is quite com-
putationally expensive. Training was accelerated by exploiting
graphics processors, in particular GPUs in a NVIDIA Tesla
S1070 system, using the CUDAMAT library [28]. A single
pass over the entire training set (an “epoch”) for a model with
5 hidden layers and 2048 units per layer took about 6 minutes
during pre-training of the topmost layer and about 11 minutes
during fine-tuning the whole network with backpropagation.A
single GPU learns at 20 times faster than a single2.66 GHz
Xeon core.

V. EXPERIMENTS

For all experiments, we fixed the parameters for the Viterbi
decoder. Specifically, we used a zero word insertion probabil-
ity and a language model scale factor of1.0.

All DBNs were pre-trained with a fixed recipe using
stochastic gradient decent with a mini-batch size of 128
training cases. For Gaussian-binary RBMs, we ran 225 epochs
with a fixed learning rate of 0.002 while for binary-binary
RBMs we used 75 epochs with a learning rate of 0.02.

6http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.

The theory used to justify the pre-training algorithm as-
sumes that when the states of the visible units are reconstructed
from the inferred binary activities in the first hidden layer,
they are reconstructed stochastically. To reduce noise in the
learning, we actually reconstructed them deterministically and
used the real values (see [18] for more details).

For fine-tuning, we used stochastic gradient descent with
the same mini-batch size as in pre-training. The learning rate
started at0.1. At the end of each epoch, if the substitution error
on the development set increased, the weights were returnedto
their values at the beginning of the epoch and the learning rate
was halved. This continued until the learning rate fell below
0.001.

During both pre-training and fine-tuning, a small weight-
cost of0.0002 was used and the learning was accelerated by
using a momentum of0.9 (except for the first epoch of fine-
tuning which did not use momentum). [18] gives a detailed
explanation of weight-cost and momentum and sensible ways
to set them.

Figure 3 and figure 4 show the effect of varying the size
of each hidden layer and the number of hidden layers. For
simplicity we used the same size for every hidden layer in a
network. For these comparisons, the number of input frames
was fixed at11.
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Fig. 3. Phone error rate on the development set as a function ofthe number
of layers and size of each layer, using11 input frames.

The main trend visible in figures 3 and 4 is that adding
more hidden layers gives better performance, though the gain
diminishes as the number of layers increases. Using more
hidden units per layer also improves performance when the
number of hidden layers is less than 4, but with more hidden
layers the number of units has little effect provided it is atleast
1024. The advantage of using a deep architecture is clear if
we consider the best way to use a total of2048 hidden units:
It is better to use two layers of1024 or four layers of512
than one layer of2048.

To benefit from having many hidden layers, it is necessary
to do generative pre-training. With a single hidden layer of
2048 units, generative pre-training gives a phone error rate of
24.5% and exactly the same fine-tuning algorithm started from
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Fig. 4. Phone error rate on the core test set as a function of the number of
layers and size of each layer, using 11 input frames.

small random weights gives 24.4%. So generative pre-training
does not help. Adding a second hidden layer causes a larger
proportional increase in the number of trainable parameters
than adding a third hidden layer because the input and output
layers are much smaller than the hidden layers and because
adjacent hidden layers are fully connected. This large increase
in capacity makes the model far more flexible, but it also
makes it overfit far more easily. Figure 5 and figure 6 show
that for networks that are not pre-trained (but still use early
stopping), these two effects apparently cancel out, whereas for
pre-trained networks there is less overfitting so extra layers
help. Although the advantage of pre-training is not as largeas
for some other tasks [20], [29], it is still required to gain an
advantage from using extra hidden layers.
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Fig. 5. Phone error rate on the development set as a function ofthe number
of hidden layers using randomly initialized and pretrained networks.

Fixing the number of hidden units per layer to3072 and
varying the number of frames in the input window (figures 7
and 8 and also 3 and 4) shows that the best performance on
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Fig. 6. Phone error rate on the core test set as a function of the number of
hidden layers using randomly initialized and pretrained networks.

the development set is achieved using11, 17, or 27 frames
and this is true whatever the number of hidden layers. Much
smaller (7 frames) and much bigger (37 frames) windows give
significantly worse performance. The range from110ms to
270ms covers the average size of phones or syllables. Smaller
input windows miss important discriminative information in
the context, while networks with larger windows are probably
getting distracted by the almost irrelevant information far
from the center of the window. The TRAP [7] architecture
successfully uses1 second long windows, but it dedicates
separate networks to model different parts of the spectrum
which simplifies the learning task. Larger windows would
probably work better using triphone targets which provide the
network with more information about the context and make
the peripheral frames more relevant.
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Fig. 7. Phone error rate on the development set as a function ofthe number
of layers, using 3072 hidden units per layer.

Since all but the output layer weights are pre-trained, it
could be helpful to introduce a “bottleneck” at the last layer
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Fig. 8. Phone error rate on the core test set as a function of the number of
layers, using 3072 hidden units per layer.

of the DBN to combat overfitting by reducing the number of
weights that are not pre-trained. A bottleneck layer followed
by a softmax is exactly equivalent to using a distributed output
code for each class and then making the class probabilities
proportional to the exponentiated squared difference between
the code for a class and the activity pattern in the bottleneck
layer [30]. Figure 9 shows that having a bottleneck layer does
not actually improve PER for a typical network with 5 hidden
layers of 2048 units and an input window of 11 frames of
MFCCs.
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Fig. 9. The effect of the size of the bottleneck on the phone error rate for a
typical network with 11 input frames and 5 hidden layers of 2048 units per
layer (except for the last hidden layer).

In all of the previous experiments MFCCs were used
as the input representation. MFCCs attempt to reduce the
dimensionality of the input by eliminating variations thatare
irrelevant for recognition and spoon-feeding the recognizer
with a modest-sized input representation that is designed
to make recognition easy. With a more powerful learning
procedure, better recognition performance can be achieved
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Fig. 10. Phone error rates as a function of the number of layers, using a
context window of filter bank coefficients as input features to the DBN.

by using a less pre-processed input representation consisting
of a large number of filter-bank coefficients augmented with
temporal differences and differences of differences. Figure
10 shows that a DBN is capable of making good use of
the more detailed information available in this larger input
representation. For the DBN system that perfomed best on the
development set, the phone error rate on the TIMIT core test
set was 20.7%.

TABLE I
Reported results on TIMIT core test set

Method PER

Stochastic Segmental Models [31] 36%
Conditional Random Field [32] 34.8%

Large-Margin GMM [33] 33%
CD-HMM [34] 27.3%

Augmented conditional Random Fields [34] 26.6%
Recurrent Neural Nets [35] 26.1%

Bayesian Triphone HMM [36] 25.6%
Monophone HTMs [37] 24.8%

Heterogeneous Classifiers [38] 24.4%
Triphone HMMs discriminatively trained w/ BMMI [39] 22.7%
Monophone Deep Belief Networks(DBNs) (this work) 20.7%

Table I compares the best performing DBN model with
previously reported results on the TIMIT core test set7.

VI. CONCLUSIONS AND FUTURE WORK

So far as we know, the work reported in this paper was the
first application to acoustic modeling of neural networks in
which multiple layers of features are generatively pre-trained.
Since then, our approach has been extended to explicitly model
the covariance structure of the input features [40]. It has been
also used to jointly train the acoustic and language models
using the full utterance rather than a local window of frames

7In [8] a PER of 21.48% is reported on thecomplete test set of TIMIT.
The speech units used are not the same as the standard TIMIT definitions
and their method would very probably give a worse result usingthe standard
speech units.
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[41]. It has been also applied to a large vocabulary task
[42] where the competing GMM approach uses a very large
number of components. In this latter task it gives a very large
advantage relative to the GMM.

We are currently exploring alternatives input representations
that allow deep neural networks to see more of the relevant
information in the sound-wave, such as very precise coinci-
dences of onset times in different frequency bands. We are also
exploring ways of using recurrent neural networks to greatly
increase the amount of detailed information about the past
that can be carried forward to help in the interpretation of the
future.
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