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ABSTRACT

Deep Belief Networks (DBNs) are a very competitive alternative
to Gaussian mixture models for relating states of a hidden Markov
model to frames of coefficients derived from the acoustic input.
They are competitive for three reasons: DBNs can be fine-tuned
as neural networks; DBNs have many non-linear hidden layers;
and DBNs are generatively pre-trained. This paper illustrates how
each of these three aspects contributes to the DBN’s good recog-
nition performance using both phone recognition performance on
the TIMIT corpus and a dimensionally reduced visualization of the
relationships between the feature vectors learned by the DBNs that
preserves the similarity structure of the feature vectors at multiple
scales. The same two methods are also used to investigate the most
suitable type of input representation for a DBN.

Index Terms— Deep belief networks, neural networks, acoustic
modeling

1. INTRODUCTION

Although automatic speech recognition (ASR) has evolved signifi-
cantly over the past few decades, ASR systems are challenged when
they encounter audio signals that differ significantly from the lim-
ited conditions under which they were originally trained. The long
term research goal is to develop systems that are capable of dealing
with the large variety of speech, speaker, channel, and environmental
conditions which people typically encounter. Models with high ca-
pacity are needed to model this diversity in the speech signal. A typ-
ical ASR system uses Hidden Markov Models (HMMs) to model the
sequential structure of speech signals, with each HMM state using a
Gaussian mixture model (GMM) to model some type of spectral rep-
resentation of the sound wave. Some ASR systems use feedforward
neural networks [1, 2].

DBNs [3] were proposed for acoustic modeling in speech recog-
nition [4] because they have a higher modeling capacity per param-
eter than GMMs and they also have a fairly efficient training pro-
cedure that combines unsupervised generative learning for feature
discovery with a subsequent stage of supervised learning that fine-
tunes the features to optimize discrimination. Motivated by the good
performance of DBNs on the TIMIT corpus, several leading speech
research groups have used DBN acoustic models for a variety of
LVCSR tasks [5, 6] achieving very competitive performance.

This paper investigates which aspects of the DBN are responsi-
ble for its good performance. The next section introduces the eval-
uation setup that is used throughout the paper. Section 3 discusses
the three main strengths of a DBN acoustic model. Then section 4
uses the arguments of section 3 to propose better input features for a
DBN.

2. EVALUATION SETUP

We used phone recognition error rates (PER) on the TIMIT corpus
to evaluate how variations in the acoustic model influence recogni-
tion performance. We removed all SA records (i.e., identical sen-
tences for all speakers in the database) for both training and testing.
Some of the SA records are used for the feature visualization exper-
iment in section 4. A development set of 50 speakers was used for
tuning the meta-parameters while results are reported using the 24-
speaker core test set. The speech was analyzed using a 25-ms Ham-
ming window with a 10-ms fixed frame rate. Three different types
of features were used: Fourier-transform-based log filter-bank with
40 coefficients (and energy) distributed on a mel-scale (referred to
as “fbank”), dct transformed fbank features (“dct”), and 12th-order
Mel frequency cepstral coefficients derived from the dct features
(“MFCC”). All features were augmented with their first and second
temporal derivatives. Then data were normalized so that each coef-
ficient or first derivative or second derivative had zero mean andunit
variance across the training cases. We used 183 target class labels:
3 states for each of the 61 phones. After decoding, the 61 phone
classes were mapped to a set of 39 classes for scoring. All of our
experiments used a bigram language model over phones, estimated
from the training set.

3. ANATOMY OF A DBN ACOUSTIC MODEL

Strictly speaking, a DBN is a graphical model with multiple layers of
binary latent variables that can be learned efficiently, one layer at a
time, by using an unsupervised learning procedure that maximizes a
variational lower bound on the log probablility of the acoustic input.
Because of the way it is learned, the graphical model has the conve-
nient property that the top-down generative weights can be used in
the opposite direction for performing inference in a single bottom-up
pass. This allows the learned graphical model to be treated as a feed-
forward multi-layer neural network which can then be fine-tuned to
optimize discrimination using back-propagation. In a mild abuse of
terminology, the resulting feedforward neural network is also called
a DBN.

Systems with DBN acoustic models achieve good recognition
performance because of three distinct properties of the DBN: it is a
neural network which is a very flexible model; it has many non-linear
hidden layers which makes it even more flexible; it is generatively
pretrained which acts as a strong, domain-dependent regularizer on
the weights.

3.1. The advantage of being a neural network

Neural networks offer several potential modelling advantages. First,
a neural network’s estimation of the HMM state posteriors does not
require detailed assumptions about the data distribution. They can
also easily combine diverse features, including both discrete and



continuous features. A very important feature of neural networks
is their ”distributed representation” of the input, i.e., many neurons
are active simultaneously to represent each input vector. This makes
neural networks exponentially more compact than GMMs. Suppose,
for example, thatN significantly different patterns can occur in one
sub-band andM significantly different patterns can occur in another.
Suppose also the patterns occur in each sub-band roughly indepen-
dently. A GMM model requiresNM components to model this
structure because each component of the mixture must generate both
sub-bands; each piece of data has only a single latent cause. On the
other hand, a model that explains the data using multiple causes only
requiresN+M components, each of which is specific to a particular
sub-band. This property allows neural networks to model a diversity
of speaking styles and background conditions with much less train-
ing data because each neural network parameter is constrained by a
much larger fraction of the training data than a GMM parameter.

3.2. The advantage of being deep

The second key idea of DBNs is “being deep.” Deep acoustic mod-
els are important because the low level, local, characteristics are
taken care of using the lower layers while higher-order and highly
non-linear statistical structure in the input is modeled by the higher
layers. This fits with human speech recognition which appears to
use many layers of feature extractors and event detectors [7]. The
state-of-the-art ASR systems use a sequence of feature transforma-
tions (e.g., LDA, STC, fMLLR, fBMMI), cross model adaptation,
and lattice-rescoring which could be seen as carefully hand-designed
deep models. Table 1 compares the PERs of a shallow network with
one hidden layer of 2048 units modelling 11 frames of MFCCs to a
deep network with four hidden layers each containing 512 units. The
comparison shows that, for a fixed number of trainable parameters,
a deep model is clearly better than a shallow one.

Table 1. The PER of a shallow and a deep network.

Model 1 layer of 2048 4 layers of 512

dev 23% 21.9%
core 24.5% 23.6%

3.3. The advantage of generative pre-training

One of the major motivations for generative training is the belief
that the discriminations we want to perform are more directly related
to the underlying causes of the acoustic data than to the individual
elements of the data itself. Assuming that representations that are
good for modelingp(data) are likely to use latent variables that are
more closely related to the true underlying causes of the data, these
representations should also be good for modelingp(label|data).
DBNs initialize their weights generatively by layerwise training of
each hidden layer to maximize the likelihood of the input from the
layer below. Exact maximum likelihood learning is infeasible in net-
works with large hidden layers because it is exponentially expen-
sive to compute the derivative of the log probability of the training
data. Nevertheless, each layer can be trained efficiently using an
approximate training procedure called “contrastive divergence” [8].
Training a DBN without the generative pre-training step to model 15
frames of fbank coefficients caused the PER to jump by about 1%
as shown in figure(1). We can think of the generative pre-training
phase as a strong regularizer that keeps the final parameters close to
a good generative model. We can also think of the pre-training as

an optimization trick that initializes the parameters near a good local
maximum ofp(label|data).
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Fig. 1. PER as a function of the number of layers.

4. WHICH FEATURES TO USE WITH DBNS

State-of-the-art ASR systems do not use fbank coefficients as the in-
put representation because they are strongly correlated so modeling
them well requires either full covariance Gaussians or a huge number
of diagonal Gaussians which is computationally expensive at decod-
ing time. MFCCs offer a more suitable alternative as their individual
components tend to be independent so they are much easier to model
using a mixture of diagonal covariance Gaussians. DBNs do not
require uncorrelated data so we compared the PER of the best per-
forming DBNs trained with MFCCs (using 17 frames as input and
3072 hidden units per layer) and the best performing DBNs trained
with fbank features (using 15 frames as input and 2048 hidden units
per layer) as in figure 2. The performance of fbank features is about
1.7% better than MFCCs which might be wrongly attributed to the
fact that fbank features have more dimensions than MFCCs. Dimen-
sionality of the input is not the crucial property (see p. 3).
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Fig. 2. PER as a function of the number of layers.
To understand this result we need to visualize the input vectors

(i.e. a complete window of say 15 frames) as well as the learned hid-
den activity vectors in each layer for the two systems (DBNs with
8 hidden layers plus a softmax output layer were used for both sys-
tems). A recently introduced visualization method called “t-SNE”
[9] was used for producing 2-D embeddings of the input vectors
or the hidden activity vectors. t-SNE produces 2-D embeddings
in which points that are close in the high-dimensional vector space



are also close in the 2-D space. It starts by converting the pairwise
distances,dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distributionqij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circlesre-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both the MFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-
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Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.
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Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay

fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.
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