
Phone Recognition with the Mean-Covariance
Restricted Boltzmann Machine

George E. Dahl, Marc’Aurelio Ranzato, Abdel-rahman Mohamed, and Geoffrey Hinton
Department of Computer Science

University of Toronto
{gdahl, ranzato, asamir, hinton}@cs.toronto.edu

Abstract

Straightforward application of Deep Belief Nets (DBNs) to acoustic modeling
produces a rich distributed representation of speech data that is useful for recogni-
tion and yields impressive results on the speaker-independent TIMIT phone recog-
nition task. However, the first-layer Gaussian-Bernoulli Restricted Boltzmann
Machine (GRBM) has an important limitation, shared with mixtures of diagonal-
covariance Gaussians: GRBMs treat different components of the acoustic input
vector as conditionally independent given the hidden state. The mean-covariance
restricted Boltzmann machine (mcRBM), first introduced for modeling natural im-
ages, is a much more representationally efficient and powerful way of modeling
the covariance structure of speech data. Every configuration of the precision units
of the mcRBM specifies a different precision matrix for the conditional distribu-
tion over the acoustic space. In this work, we use the mcRBM to learn features
of speech data that serve as input into a standard DBN. The mcRBM features
combined with DBNs allow us to achieve a phone error rate of 20.5%, which is
superior to all published results on speaker-independent TIMIT to date.

1 Introduction

Acoustic modeling is a fundamental problem in automatic continuous speech recognition. Most
state of the art speech recognition systems perform acoustic modeling using the following approach
[1]. The acoustic signal is represented as a sequence of feature vectors; these feature vectors typ-
ically hold a log spectral estimate on a perceptually warped frequency scale and are augmented
with the first and second (at least) temporal derivatives of this spectral information, computed using
smoothed differences of neighboring frames. Hidden Markov models (HMMs), with Gaussian mix-
ture models (GMMs) for the emission distributions, are used to model the probability of the acoustic
vector sequence given the (tri)phone sequence in the utterance to be recognized.1 Typically, all of the
individual Gaussians in the mixtures are restricted to have diagonal covariance matrices and a large
hidden Markov model is constructed from sub-HMMs for each triphone to help deal with the ef-
fects of context-dependent variations. However, to mitigate the obvious data-sparsity and efficiency
problems context dependence creates, modern systems perform sophisticated parameter tying by
clustering the HMM states using carefully constructed decision trees to make state tying choices.

Although systems of this sort have yielded many useful results, diagonal covariance CDHMM
models have several potential weaknesses as models of speech data. On the face of things at
least, feature vectors for overlapping frames are treated as independent and feature vectors must
be augmented with derivative information in order to enable successful modeling with mixtures of
diagonal-covariance Gaussians (see [2, 3] for a more in-depth discussion of the exact consequences
of the delta features). However, perhaps even more disturbing than the frame-independence assump-
tion are the compromises required to deal with two competing pressures in Gaussian mixture model

1We will refer to HMMs with GMM emission distributions as CDHMMs for continuous-density HMMs.

1



training: the need for expressive models capable of representing the variability present in real speech
data and the need to combat the resulting data sparsity and statistical efficiency issues. These pres-
sures of course exist for other models as well, but the tendency of GMMs to partition the input space
into regions where only one component of the mixture dominates is a weakness that inhibits efficient
use of a very large number of tunable parameters. The common decision to use diagonal covariance
Gaussians for the mixture components is an example of such a compromise of expressiveness that
suggests that it might be worthwhile to explore models in which each parameter is constrained by a
large fraction of the training data. By contrast, models that use the simultaneous activation of a large
number of hidden features to generate an observed input can use many more of their parameters to
model each training example and hence have many more training examples to constrain each param-
eter. As a result, models that use non-linear distributed representations are harder to fit to data, but
they have much more representational power for the same number of parameters.

The diagonal covariance approximation typically employed for GMM-based acoustic models is
symptomatic of, but distinct from, the general representational inefficiencies that tend to crop up
in mixture models with massive numbers of highly specialized, distinctly parameterized mixture
components. Restricting mixture components to have diagonal covariance matrices introduces a
conditional independence assumption between dimensions within a single frame. The delta-feature
augmentation mitigates the severity of the approximation and thus makes outperforming diagonal
covariance Gaussian mixture models difficult. However, a variety of precision matrix modeling
techniques have emerged in the speech recognition literature. For example, [4] describes a basis
superposition framework that includes many of these techniques.

Although the recent work in [5] on using deep belief nets (DBNs) for phone recognition begins to
attack the representational efficiency issues of GMMs, Gaussian-Bernoulli Restricted Boltzmann
Machines (GRBMs) are used to deal with the real-valued input representation (in this case, mel-
frequency cepstral coefficients). GRBMs model different dimensions of their input as conditionally
independent given the hidden unit activations, a weakness akin to restricting Gaussians in a GMM
to have diagonal covariance. This conditional independence assumption is inappropriate for speech
data encoded as a sequence of overlapping frames of spectral information, especially when many
frames are concatenated to form the input vector. Such data can exhibit local smoothness in both
frequency and time punctuated by bursts of energy that violate these local smoothness properties.
Performing a standard augmentation of the input with temporal derivative information, as [5] did,
will of course make it easier for GRBMs to deal with such data, but ideally one would use a model
capable of succinctly modeling these effects on its own.

Inspired by recent successes in modeling natural images, the primary contribution of this work is to
bring the mean-covariance restricted Boltzmann machine (mcRBM) of [6] to bear on the problem
of extracting useful features for phone recognition and to incorporate these features into a deep
architecture similar to one described in [5]. We demonstrate the efficacy of our approach by reporting
results on the speaker-independent TIMIT phone recognition task. TIMIT, as argued in [7], is an
ideal dataset for testing new ideas in speech recognition before trying to scale them up to large
vocabulary tasks because it is phonetically rich, has well-labeled transcriptions, and is small enough
not to pose substantial computational challenges at test time. Our best system achieves a phone
error rate on the TIMIT corpus of 20.5%, which is superior to all published results on speaker-
independent TIMIT to date. We obtain these results without augmenting the input with temporal
difference features since a sensible model of speech data should be able to learn to extract its own
useful features that make explicit inclusion of difference features unnecessary.

2 Using Deep Belief Nets for Phone Recognition

Following the approach of [5], we use deep belief networks (DBNs), trained via the unsupervised
pretraining algorithm described in [8], combined with supervised fine-tuning using backpropagation,
to model the posterior distribution over HMM states given a local window of the acoustic input. We
construct training cases for the DBN by taking n adjacent frames of acoustic input and pairing
them with the identity of the HMM state for the central frame. We obtain the labels from a forced
alignment with a CDHMM baseline. During the supervised phase of learning, we optimize the cross-
entropy loss for the individual HMM-state predictions, as a more convenient proxy for the number
of mistakes (insertions, deletions, substitutions) in the phone sequence our system produces, which

2



is what we are actually interested in. In order to compare with the results [5], at test time, we use
the posterior probability distribution over HMM states that the DBN produces in place of GMM
likelihoods in an otherwise standard Viterbi decoder. Since the HMM defines a prior over states, it
is better to divide the posterior probabilities of the DBN by the frequencies of the 183 labels in the
training data [9], but in our experiments this did not noticeably change the results.

3 The Mean-Covariance Restricted Boltzmann Machine

The previous work of [5] used a GRBM for the initial DBN layer. The GRBM associates each
configuration of the visible units, v, and hidden units, h, with a probability density according to

P (v,h) ∝ e−E(v,h), (1)
where E(v,h) is given by

E(v,h) =
1
2

(v − b)T(v − b)− cTh− vTWh, (2)

and where W is the matrix of visible/hidden connection weights, b is a visible unit bias, and c is
a hidden unit bias. Equation 2 implicitly assumes that the visible units have a diagonal covariance
Gaussian noise model with a variance of 1 on each dimension.

Another option for learning to extract binary features from real-valued data that has enjoyed success
in vision applications is the mean-covariance RBM (mcRBM), first introduced in [10] and [6]. The
mcRBM has two groups of hidden units: mean units and precision units. Without the precision
units, the mcRBM would be identical to a GRBM. With only the precision units, we have what
we will call the “cRBM”, following the terminology in [6]. The precision units are designed to
enforce smoothness constraints in the data, but when one of these constraints is seriously violated,
it is removed by turning off the precision unit. The set of active precision units therefore specifies
a sample-specific covariance matrix. In order for a visible vector to be assigned high probability
by the precision units, it must only fail to satisfy a small number of the precision unit constraints,
although each of these constraints could be egregiously violated.

The cRBM can be viewed as a particular type of factored third order Boltzmann machine. In other
words, the RBM energy function is modified to have multiplicative interactions between triples of
two visible units, vi and vj , and one hidden unit hk. Unrestricted 3-way connectivity causes a cubic
growth in the number of parameters that is unacceptable if we wish to scale this sort of model to
high dimensional data. Factoring the weights into a sum of 3-way outer products can reduce the
growth rate of the number of parameters in the model to one that is comparable to a normal RBM.
After factoring, we may write the cRBM energy function2 (with visible biases omitted) as:

E(v,h) = −dTh− (vTR)2Ph, (3)
where R is the visible-factor weight matrix, d denotes the hidden unit bias vector, and P is the
factor-hidden, or “pooling” matrix. The squaring in equation 3 (and in other equations with this
term) is performed elementwise. We force P to only have non-positive entries. We must constrain
P in this way to avoid a model that assigns larger and larger probabilities (more negative energies)
to larger and larger inputs.

The hidden units of the cRBM are still (just as in GRBMs) conditionally independent given the states
of the visible units, so inference remains simple. However, the visible units are coupled in a Markov
Random Field determined by the settings of the hidden units. The interaction weight between two
arbitrary visible units vi and vj , which we shall denote w̃i,j , depends on the states of all the hidden
units according to:

w̃i,j =
∑

k

∑
f

hkrifrjfpkf .

The conditional distribution of the hidden units (derived from 3) given the visible unit states v is:

P (h|v) = σ
(
d +

(
(vTR)2P

)T)
,

2In order to normalize the distribution implied by this energy function, we must restrict the visible units to a
region of the input space that has finite extent. However, once we add the mean RBM this normalization issue
vanishes.

3



where σ denotes the elementwise logistic sigmoid, σ(x) = (1+e−x)−1. The conditional distribution
of the visible units given the hidden unit states for the cRBM is given by:

P (v|h) ∼ N
(
0,
[
R
(
diag(−PTh)

)
RT
]−1
)
. (4)

The cRBM always assigns highest probability to the all zero visible vector. In order to allow the
model to shift the mean, we add an additional set of binary hidden units whose vector of states we
shall denote m. The product of the distributions defined by the cRBM and the GRBM forms the
mcRBM. If EC(v,h) denotes the cRBM energy function (equation 3) and EM (v,m) denotes the
GRBM energy function (equation 2), then the mcRBM energy function is:

EMC(v,h,m) = EC(v,h) + EM (v,m). (5)

The gradient of the EM term moves the minimum of EMC away from the zero vector, but how far
it moves depends on the curvature of the precision matrix defined by EC . The resulting conditional
distribution over the visible units, given the two sets of hidden units is:

P (v|h,m) ∝ N (ΣWm,Σ) ,

where
Σ =

(
R
(
diag(−PTh)

)
RT
)−1

.

Thus the mcRBM can produce conditional distributions over the visible units, given the hidden units,
that have non-zero means, unlike the cRBM.

Just like other RBMs, the mcRBM can be trained using the following update rule, for some generic
model parameter θ:

∆θ ∝ 〈−∂E
∂θ
〉data + 〈∂E

∂θ
〉reconstruction.

However, since the matrix inversion required to sample from P (v|h,m) can be expensive, we inte-
grate out the hidden units and use Hybrid Monte Carlo (HMC) [11] on the mcRBM free energy to
obtain the reconstructions.

It is important to emphasize that the mcRBM model of covariance structure is much more powerful
than merely learning a covariance matrix in a GRBM. Learning the covariance matrix for a GRBM
is equivalent to learning a single global linear transformation of the data, whereas the precision
units of an mcRBM are capable of specifying exponentially many different covariance matrices and
explaining different visible vectors with different distributions over these matrices.

3.1 Practical details

In order to facilitate stable training, we make the precision unit term in the energy function insen-
sitive to the scale of the input data by normalizing by the length of v. This makes the conditional
P (v|h) clearly non-Gaussian. We constrain the columns of P to have unit L1 norm and to be sparse.
We enforce one-dimensional locality and sparsity in P by setting entries beyond a distance of one
from the main diagonal to zero after every update. Additionally, we constrain the columns of R to
all have equal L2 norms and learn a single global scaling factor shared across all the factors. The
non-positivity constraint on the entries of P is maintained by zeroing out, after each update, any
entries that become positive.

4 Deep Belief Nets

Learning is difficult in densely connected, directed belief nets that have many hidden layers because
it is difficult to infer the posterior distribution over the hidden variables, when given a data vector,
due to the phenomenon of explaining away. Markov chain Monte Carlo methods [12] can be used
to sample from the posterior, but they are typically very time-consuming. In [8] complementary
priors were used to eliminate the explaining away effects, producing a training procedure which is
equivalent to training a stack of restricted Boltzmann machines.

The stacking procedure works as follows. Once an RBM has been trained on data, we can infer
the hidden unit activation probabilities given a data vector and re-represent the data vector as the
vector of corresponding hidden activations. Since the RBM has been trained to reconstruct the data

4



R

P

W

m h

v

W2

W3

h2

h3

Figure 1: An mcRBM with two RBMs stacked on top

well, the hidden unit activations will retain much of the information present in the data and pick
up (possibly higher-order) correlations between different data dimensions that exist in the training
set. Once we have used one RBM as a feature extractor we can, if desired, train an additional RBM
that treats the hidden activations of the first RBM as data to model. After training a sequence of
RBMs, we can compose them to form a generative model whose top two layers are the final RBM
in the stack and whose lower layers all have downward-directed connections that implement the
p(hk−1|hk) learned by the kth RBM, where h0 = v.

The weights obtained by the greedy layer-by-layer training procedure described for stacking RBMs,
above, can be used to initialize the weights of a deep feed-forward neural network. Once we add
an output layer to the pre-trained neural network, we can discriminatively fine-tune the weights of
this neural net using any variant of backpropagation [13] we wish. Although options for fine-tuning
exist other than backpropagation, such as the up-down algorithm used in [8], we restrict ourselves
to backpropagation (updating the weights every 128 training cases) in this work for simplicity and
because it is sufficient for obtaining excellent results.

Figure 1 is a diagram of two RBMs stacked on top of an mcRBM. Note that the RBM immediately
above the mcRBM uses both the mean unit activities and the precision unit activities together as
visible data. Later, during backpropagation, after we have added the softmax output unit, we do
not backpropagate through the mcRBM weights, so the mcRBM is a purely unsupervised feature
extractor.

5 Experimental Setup

5.1 The TIMIT Dataset

We used the TIMIT corpus3 for all of our phone recognition experiments. We used the 462 speaker
training set and removed all SA records (i.e., identical sentences for all speakers in the database),
since they could potentially bias our results. A development set of 50 speakers was used for hand-
tuning hyperparameters and automated decoder tuning. As is standard practice, results are reported
using the 24-speaker core test set. We produced the training labels with a forced alignment of an
HMM baseline. Since there are three HMM states per phone and 61 phones, all DBN architectures
had a 183-way softmax output unit. Once the training labels have been created, the HMM baseline

3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.

5



is no longer needed; we do not combine or average our results with any HMM+GMM system. After
decoding, starting and ending silences were removed and the 61 phone classes were mapped to a set
of 39 classes as in [14] for scoring. We removed starting and ending silences before scoring in order
to be as similar to [5] as possible. However, to produce a more informative comparison between our
results and results in the literature that do not remove starting and ending silences, we also present
the phone error rate of our best model using the more common scoring strategy. During decoding,
we used a simple bigram language model over phones. Our results would certainly improve with
a trigram language model. In order to be able to make useful comparisons between different DBN
architectures (and achieve the best results), we optimized the Viterbi decoder parameters (the word
insertion probability and the language model scale factor) on the development set and then used the
best performing setting to compute the phone error rate (PER) for the core test set.

5.2 Preprocessing

Since we have completely abandoned Gaussian mixture model emission distributions, we are no
longer forced to use temporal derivative features. For all experiments the acoustic signal was ana-
lyzed using a 25-ms Hamming window with 10-ms between the left edges of successive frames. We
use the output from a mel scale filterbank, extracting 39 filterbank output log magnitudes and one
log energy per frame. Once groups of 15 frames have been concatenated, we perform PCA whiten-
ing and preserve the 384 most important principal components. Since we perform PCA whitening
anyway, the discrete cosine transform used to compute mel frequency cepstral coefficients (MFCCs)
from the filterbank output is not useful. Determining the number of frames of acoustic context to
give to the DBN is an important preprocessing decision; preliminary experiments revealed that mov-
ing to 15 frames of acoustic data, from the 11 used in [5], could provide improvements in PER when
training a DBN on features from a mcRBM. It is possible that even larger acoustic contexts might
be beneficial as well. Also, since the mcRBM is trained as a generative model, doubling the input
dimensionality by using a 5-ms advance per frame is unlikely to cause serious overfitting and might
well improve performance.

5.3 Computational Setup

Training DBNs of the sizes used in this paper can be computationally expensive. We accelerated
training by exploiting graphics processors, in particular GPUs in a NVIDIA Tesla S1070 system,
using the wonderful library described in [15]. The wall time per epoch varied with the architecture.
An epoch of training of an mcRBM that had 1536 hidden units (1024 precision units and 512 mean
units) took 20 minutes. When each DBN layer had 2048 hidden units, each epoch of pre-training for
the first DBN layer took about three minutes and each epoch of pretraining for the fifth layer took
seven to eight minutes, since we propagated through each earlier layer. Each epoch of fine-tuning
for such a five-DBN-layer architecture took 12 minutes. We used 100 epochs to train the mcRBM,
50 epochs to train each RBM in the stack and 14 epochs of discriminative fine-tuning of the whole
network for a total of nearly 60 hours, about 34 of which were spent training the mcRBM.

6 Experiments

Since one goal of this work is to improve performance on TIMIT by using deep learning architec-
tures, we explored varying the number of DBN layers in our architecture. In agreement with [5], we
found that in order to obtain the best results with DBNs on TIMIT, multiple layers were essential.

Figure 2 plots phone error rate on both the development set and the core test set against the number
of hidden layers in a mcRBM-DBN (we don’t count the mcRBM as a hidden layer since we do not
backpropagate through it). The particular mcRBM-DBN shown had 1536 hidden units in each DBN
hidden layer, 1024 precision units in the mcRBM, and 512 mean units in the mcRBM. As the number
of DBN hidden layers increased, error on the development and test sets decreased and eventually
leveled off. The improvements that deeper models can provide over shallower models were evident
from results reported in [5]; the results for the mcRBM-DBN in this work are even more dramatic. In
fact, an mcRBM-DBN with 8 hidden layers is what exhibits the best development set error, 20.17%,
in these experiments. The same model gets 21.7% on the core test set (20.5% if starting and ending
silences are included in scoring). Furthermore, at least 5 DBN hidden layers seem to be necessary

6



1 2 3 4 5 6 7 8 9
Number of DBN Hidden Layers

20

21

22

23

24

25

P
h
o
n
e
 E

rr
o
r 

R
a
te

 (
P
E
R

)

Dev Set
Test Set

Figure 2: Effect of increasing model depth

Table 1: The effect of DBN layer size on Phone Error Rate for 5 layer mcRBM-DBN models

Model devset testset
512 units 21.4% 22.8%
1024 units 20.9% 22.3%
1536 units 20.4% 21.9%
2048 units 20.4% 21.8%

to break a test set PER of 22%. Models of this depth (note also that an mcRBM-DBN with 8 DBN
hidden layers is really a 9 layer model) have rarely been employed in the deep learning literature (cf.
[8, 16], for example).

Table 1 demonstrates that once the hidden layers are sufficiently large, continuing to increase the
size of the hidden layers did not seem to provide additional improvements. In general, we did not
find our results to be very sensitive to the exact number of hidden units in each layer, as long the
hidden layers were relatively large.

To isolate the advantage of using an mcRBM instead of a GRBM, we need a clear comparison that is
not confounded by the differences in preprocessing between our work and [5]. Table 2 provides such
a comparison and confirms that the mcRBM feature extraction causes a noticeable improvement in
PER. The architectures in table 2 use 1536-hidden-unit DBN layers.

Table 3 compares previously published results on the speaker-independent TIMIT phone recognition
task to the best mcRBM-DBN architecture we investigated. Results marked with a * remove starting

Table 2: mcRBM-DBN vs GRBM-DBN Phone Error Rate

Model devset PER testset PER
5 layer GRBM-DBN 22.3% 23.7%

mcRBM + 4 layer DBN 20.6% 22.3%

7



Table 3: Reported (speaker independent) results on TIMIT core test set

Method PER
Stochastic Segmental Models [17] 36%
Conditional Random Field [18] 34.8%
Large-Margin GMM [19] 33%
CD-HMM [20] 27.3%
Augmented conditional Random Fields [20] 26.6%
Recurrent Neural Nets [21] 26.1%
Bayesian Triphone HMM [22] 25.6%
Monophone HTMs [23] 24.8%
Heterogeneous Classifiers [24] 24.4%
Deep Belief Networks(DBNs) [5] 23.0*%
Triphone HMMs discriminatively trained w/ BMMI [7] 22.7%
Deep Belief Networks with mcRBM feature extraction (this work) 21.7*%
Deep Belief Networks with mcRBM feature extraction (this work) 20.5%

and ending silences at test time before scoring. One should note that the work of [7] used triphone
HMMs and a trigram language model whereas in this work we used only a bigram language model
and monophone HMMs, so table 3 probably underestimates the error reduction our system provides
over the best published GMM-based approach.

7 Conclusions and Future Work

We have presented a new deep architecture for phone recognition that combines a mcRBM feature
extraction module with a standard DBN. Our approach attacks both the representational inefficiency
issues of GMMs and an important limitation of previous work applying DBNs to phone recognition.
The incorporation of features extracted by a mcRBM into an approach similar to that of [5] produces
results on speaker-independent TIMIT superior to those that have been reported to date. However,
DBN-based acoustic modeling approaches are still in their infancy and many important research
questions remain. During the fine-tuning, one could imagine backpropagating through the decoder
itself and optimizing an objective function more closely related to the phone error rate. Since the
pretraining procedure can make use of large quantities of completely unlabeled data, leveraging
untranscribed speech data on a large scale might allow our approach to be even more robust to
inter-speaker acoustic variations and would certainly be an interesting avenue of future work.

References
[1] S. Young, “Statistical modeling in continuous speech recognition (CSR),” in UAI ’01: Proceedings of the

17th Conference in Uncertainty in Artificial Intelligence, San Francisco, CA, USA, 2001, pp. 562–571,
Morgan Kaufmann Publishers Inc.

[2] C. K. I. Williams, “How to pretend that correlated variables are independent by using difference obser-
vations,” Neural Comput., vol. 17, no. 1, pp. 1–6, 2005.

[3] J.S. Bridle, “Towards better understanding of the model implied by the use of dynamic features in
HMMs,” in Proceedings of the International Conference on Spoken Language Processing, 2004, pp.
725–728.

[4] K. C. Sim and M. J. F. Gales, “Minimum phone error training of precision matrix models,” IEEE
Transactions on Audio, Speech & Language Processing, vol. 14, no. 3, pp. 882–889, 2006.

[5] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Deep belief networks for phone recognition,” in NIPS
Workshop on Deep Learning for Speech Recognition and Related Applications, 2009.

[6] M. Ranzato and G. Hinton, “Modeling pixel means and covariances using factorized third-order boltz-
mann machines,” in Proc. of Computer Vision and Pattern Recognition Conference (CVPR 2010), 2010.

[7] T. N. Sainath, B. Ramabhadran, and M. Picheny, “An exploration of large vocabulary tools for small
vocabulary phonetic recognition,” in IEEE Automatic Speech Recognition and Understanding Workshop,
2009.

8



[8] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” Neural Compu-
tation, vol. 18, pp. 1527–1554, 2006.

[9] N. Morgan and H. Bourlard, “Continuous speech recognition,” Signal Processing Magazine, IEEE, vol.
12, no. 3, pp. 24 –42, may 1995.

[10] M. Ranzato, A. Krizhevsky, and G. Hinton, “Factored 3-way restricted Boltzmann machines for modeling
natural images,” in Proceedings of the International Conference on Artificial Intelligence and Statistics,
2010, vol. 13.

[11] R. M. Neal, Bayesian Learning for Neural Networks, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1996.

[12] R. M. Neal, “Connectionist learning of belief networks,” Artificial Intelligence, vol. 56, no. 1, pp. 71–113,
1992.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating
errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[14] K. F. Lee and H. W. Hon, “Speaker-independent phone recognition using hidden markov models,” IEEE
Transactions on Audio, Speech & Language Processing, vol. 37, no. 11, pp. 1641–1648, 1989.

[15] V. Mnih, “Cudamat: a CUDA-based matrix class for python,” Tech. Rep. UTML TR 2009-004, Depart-
ment of Computer Science, University of Toronto, November 2009.

[16] V. Nair and G. E. Hinton, “3-d object recognition with deep belief nets,” in Advances in Neural Infor-
mation Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
Eds., 2009, pp. 1339–1347.

[17] V. V. Digalakis, M. Ostendorf, and J. R. Rohlicek, “Fast algorithms for phone classification and recog-
nition using segment-based models,” IEEE Transactions on Signal Processing, vol. 40, pp. 2885–2896,
1992.

[18] J. Morris and E. Fosler-Lussier, “Combining phonetic attributes using conditional random fields,” in
Proc. Interspeech, 2006, pp. 597–600.

[19] F. Sha and L. Saul, “Large margin gaussian mixture modeling for phonetic classification and recognition,”
in Proc. ICASSP, 2006, pp. 265–268.

[20] Y. Hifny and S. Renals, “Speech recognition using augmented conditional random fields,” IEEE Trans-
actions on Audio, Speech & Language Processing, vol. 17, no. 2, pp. 354–365, 2009.

[21] A. Robinson, “An application of recurrent nets to phone probability estimation,” IEEE Transactions on
Neural Networks, vol. 5, no. 2, pp. 298–305, 1994.

[22] J. Ming and F. J. Smith, “Improved phone recognition using bayesian triphone models,” in Proc. ICASSP,
1998, pp. 409–412.

[23] L. Deng and D. Yu, “Use of differential cepstra as acoustic features in hidden trajectory modelling for
phonetic recognition,” in Proc. ICASSP, 2007, pp. 445–448.

[24] A. Halberstadt and J. Glass, “Heterogeneous measurements and multiple classifiers for speech recogni-
tion,” in Proc. ICSLP, 1998.

9


