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Abstract

Hidden Markov Models (HMMs) have been the state-of-thetechniques for
acoustic modeling despite their unrealistic independessamptions and the very
limited representational capacity of their hidden staldgre are many proposals
in the research community for deeper models that are capdibiedeling the
many types of variability present in the speech generatioggss. Deep Belief
Networks (DBNs) have recently proved to be very effectivedosariety of ma-
chine learning problems and this paper applies DBNs to dgicon®deling. On
the standard TIMIT corpus, DBNs consistently outperforimeottechniques and
the best DBN achieves a phone error rate (PER) of 23.0% onltElcore test
set.

1 Introduction

A state-of-the-art Automatic Speech Recognition (ASR}aystypically uses Hidden Markov Mod-
els (HMMs) to model the sequential structure of speech $$gmath local spectral variability mod-
eled using mixtures of Gaussian densities. HMMs make twa@ssumptions. The first assumption
is that the hidden state sequence can be well-approximatad & first order Markov chain where
each states; at timet depends only orb;_,. Second, observations at different time steps are as-
sumed to be conditionally independent given a state segueithough these assumptions are not
realistic, they enable tractable decoding and learning &ith large amounts of speech data. Many
methods have been proposed for relaxing the very strongtiamal independence assumptions of
standard HMMs (e.g. [1, 2, 3, 4]). Substantial researchreffas been devoted to going beyond
the “beads-on-a-string” view of speech to representingcsitre in speech above the level of the
phonetic segment [5, 6, 7]. This has led to promising residisg segment- and landmark-based
methods for phone recognition (e.g, [8, 9]).

The limited representational capacity of HMMs preventsiitfeom modeling streams of interact-
ing knowledge sources in the speech signal which may reagigieper architectures with multiple
layers of representations. The work in [10] proposes a tihieal framework where each layer is
designed to capture a set of distinctive feature landmdrks.each feature, a specialized acoustic
representation is constructed in which that feature bgwiesses itself. In [11], a probabilistic gen-
erative model is introduced where the dynamic structuréénhiidden vocal tract resonance space
is used to characterize long-span contextual influencesagrhonetic units. Feedforward neural
networks were used in other multilayer frameworks, such@3RAP architecture [12]. The TRAP
architecture uses a one second long feature vector thatloessegments of temporal evolution of
critical-band spectral densities within a single critibaind. Sub-word posterior probabilities are
estimated using feedforward neural networks for eachcatitband which are merged to produce
the final estimation of posterior probabilities using amotfeedforward neural network in the last
layer. In [13], the split temporal context system is introdd which modifies the TRAP system by
including splits over time as well as over frequency bandfiénmiddle layer of the system before
the final merger neural network.



In this work, we propose using Deep Belief Networks (DBNg)][tb model the spectral variabil-

ities in speech. DBNSs are probabilistic generative modwds$ are composed of multiple layers of
stochastic latent variables with Restricted Boltzmann iaes (RBMs) as their building blocks.

DBNSs have a greedy layer-wise unsupervised learning dlgoras well as a discriminative fine-
tuning procedure for optimizing performance on classificatasks.

DBNs and related models have been used successfully forluettdn character recognition [14,
15], 3-D object recognition [16], information retrieval118], motion capture data modeling [19,
20], and machine transliteration [21].

2 Deep belief networks

Learning is difficult in densely connected, directed betiefs that have many hidden layers because
it is difficult to infer the posterior distribution over thedden variables, when given a data vector,
due to the phenomenon of explaining away. Markov chain M@ado methods [22] can be used
to sample from the posterior, but they are typically veryginonsuming.

In [14] complementary priors were used to eliminate the @ixjohg away effects producing a train-
ing procedure which is equivalent to training a sequencesificted Boltzmann machines (RBMs)
[23]. An RBM is a bipartite graph in which visible units thapresent observations are connected
to binary, stochastic hidden units using undirected weigltonnections. They are restricted in the
sense that there are no visible-visible or hidden-hiddemeoctions. RBMs have an efficient training
procedure which makes them suitable as building blocks &®Belief Networks (DBNS).

2.1 Restricted Boltzmann machines

An RBM is a particular type of Markov Random Field (MRF) thatstone layer of binary stochastic
hidden units and one layer of binary stochastic visiblegjmitthough the units need not be Bernoulli
random variables and can in fact have any distribution irettonential family [24]. Typically, all
visible units are connected to all hidden units, but there ray visible-visible or hidden-hidden
connections [figure 1-(a)]. The weights on the connectior$the biases of the individual units
define a probability distribution over the binary state westy of the visible units via an energy
function. The energy of the joint configuratigm, h) is given by [24]:
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wheref = (w, b, a) andw;; represents the symmetric interaction term between visibie; and
hidden unitj while b; anda; are their bias terms) and are the numbers of visible and hidden
units. The probability that the model assigns to a visibleteev is:
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Since there are no hidden-hidden or visible-visible cotinas, the conditional distributions{v|h)
andp(h|v) are factorial and are given by:

p(hy =1|v;0) = O’(Z wiv; + aj)
H
p(’l)i = 1|h, 9) = J(Z ’LUZ'jhj + bl), (3)

whereo(z) = (1 + e*z)_l. To train an RBM to model the joint distribution of data andssd labels,
the visible vector is concatenated with a binary vector aésllabels. The energy function becomes:
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Furthermorep(l|v) can be computed exactly using:
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The value ofp(1]v) can be computed efficiently by exploiting the conditionaleépendence of the
hidden units, which allows the hidden units to be margimaliput in a time that is linear in the
number of hidden units.
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Figure 1: The DBN is composed of RBMs.

2.2 RBM training
221 Generativetraining of an RBM

Following the gradient of the joint likelihood function ofith and labels, the update rule for the
visible-hidden weights is

Aw;j = (Vihj)data — (Vilj) model (7
The expectatiotfv; 1) a4 1S the frequency with which the visible unit and the hidden unfi; are
on together in the training set agi@ ;) o4 iS that same expectation under the distribution defined
by the model. The term.)...qc: takes exponential time to compute exactly so the Contestiv
Divergence (CD) approximation to the gradient is used ats{@5]. The new update rule becomes:

Aw;j = (vihj)data — (Vilj)1 (8)

where(.); represents the expectation with respect to the distribudgfcsamples from running the
Gibbs sampler initialized at the data for one full step.

2.2.2 Discriminativetraining of a DBN using backpropagation

The RBM pretraining procedure of a DBN can be used to inéathe weights of a deep neural
network, which can then be discriminatively fine-tuned bgKmopagating error derivatives. The
“recognition” weights of the DBN become the weights of a gl neural network.



2.2.3 Hybrid training of an RBM

In cases where the RBM models the joint distribution of \&sitlata and class labels, a hybrid train-
ing procedure can be used to fine-tune the generativelyetlggarameters. Since the log conditional
probability, log p(1|v), can be computed exactly, the gradient can also be computetiye The
update rule for the visible-hidden weights is
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To avoid model overfitting, we follow the gradient of a hybfichction f (v, 1) which contains both
generative and discriminative components:

f(v,1) = ap(1lv) + p(v|l) (10)

In this casep(v|l) works as a regularizer and is learned by using the origitifawith the recon-
structed data to infer the states of the hidden units at tbeoéthe sampling step. The parameter
controls the emphasis given to the discriminative compboéthe objective function. Since the
original labels are used during hidden layer reconstradtio evaluatingp(v|l), the label biases are
updated using the gradient pfl|v) only.

2.3 DBNsstructure

Each layer of hidden units learns to represent featuresctitire higher order correlations in the
original input data [figure 1-(b)]. The key idea behind tiagha deep belief net by training a se-
quence of RBMs is that the model parametérdearned by an RBM define bogi{v|h, #) and the
prior distribution over hidden vectorp(h|6), so the probability of generating a visible vecter,

can be written as:
p(v) = p(h|0)p(v|h,0) (11)
h

After learningd, p(v|h, 6) is kept whilep(h|#) can be replaced by a better model that is learned by
treating the hidden activity vectors produced from theniray data as the training data for another
RBM. This replacement improves a variational lower boundhenprobability of the training data
under the composite model [14]. So a DBN can be viewed as an BBRMlefines a prior over the
top layer of hidden variables in a directed belief net, coretdiwith a set of “recognition” weights

to perform fast approximate inference.

2.4 Using DBNsfor phone recognition

In order to apply DBNs with fixed input and output dimensidtyaio phone recognition, a context
window of n successive frames of feature vectors is used to set the sifatiee visible units of the
lower layer of the DBN which produces a probability disttilbn over the possible labels of the
the central frame. To generate phone sequences, a sequegmmbdability distributions over the
possible labels for each frame are fed into a standard Vitiedoder.

We employed two general types of DBN architectures. Botksyse greedy layer-wise Contrastive
Divergence (CD) pretraining for initializing weights. Thiest architecture [figure 2-(a)] adds a final
layer of variables that represent the desired outputs tedonmns a purely discriminative fine-tuning
phase using backpropagation. We refer to this architeetsifP-DBN.” The second type used an
RBM associative memory for the final layer to model the joietsity of the labels and inputs
[figure 2-(b)]. For fine-tuning, derivatives of the hybridjettive function in 10 are followed. Only
the discriminative component of the weight updates is pgaped back through the earlier layers in
the network during the fine-tuning stage. We refer to thisiéecture as “AM-DBN.”

25 Generalized softmax (GSM) output layer

When the number of possible classes is very large and thebdistn of frequencies for differ-
ent classes is far from uniform, it may sometimes be advaatagjto use a different encoding for
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Figure 2: The DBN architectures used in this work.

the class targets than the standard onécodoftmax encoding [25]. It is quite straightforward to
use an arbitrary fixed binary code for each class. Supposepvegent each class with its own
dimensional code vector and thus we hawvautput units for our model. Let be theg-dimensional
column vector generated by the network for a certain inpeesp segment; needs to be trans-
formed into a vector of class posterior probabilities.Clf is the row vector holding the code for
classj, then the expression for the probability the model assigmtasst given z becomes

eCtZ
C,z
>, 0

If we allow C; to be thejth row of the identity matrix, we recover the normal softmagmssion.

P(l)9, 2) = (12)

3 Experimental setup

3.1 TIMIT corpus

Phone recognition experiments were performed on the TIMIfpas!. The 462 speaker training
set was used. All SA records (i.e., identical sentences If@paakers in the database) were re-
moved as they could bias the results. A development set gb&dkers was used for model tuning.
Results are reported using the 24-speaker core test setspBeeh was analyzed using a 25-ms
Hamming window with a 10-ms fixed frame rate. In all the exments, we represented the speech
using 12th-order Mel frequency cepstral coefficients (MBL&hd energy, along with their first and
second temporal derivatives. The data were normalizedve haro mean and unit variance. All
experiments used a context window of 11 frames as the visiiales. We used 183 target class
labels (i.e., 3 states for each one of the 61 phones). Afteodirg, starting and ending silences
were removed and the 61 phone classes were mapped to a setlak88s as in [26] for scoring.
All of our experiments used a bigram language model over eboastimated from the training set.
The decoder parameters were tuned to optimize performamdeeodevelopment set for each run
using grid search.

3.2 Computational setup

Training DBNs of the sizes used in this paper is quite contpmrtally expensive. Training was
accelerated by exploiting a graphics processor. A singts paer the entire training set during
pretraining took about 5 minutes. An epoch of fine-tuninghwitickpropagation took around 13
minutes. The discriminative gradient computation for hglraining was substantially more ex-

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC93S1



pensive. Each epoch of hybrid fine-tuning took around an.hbloese time estimates represent the
largest architecture running on one of the GPUs in a NVIDIAIa&1070 system.

4 Experiments

For all experiments, the Viterbi decoder parameters (i@word insertion probability, the language
model scale factor) were optimized on the development sktram the best performing setting was
used to compute the phone error rate (PER) for the core test se

Figure 3 explores the effect of varying the number of hiddgrets in the model. The BP-DBN
architecture is used with 2048 hidden units per layer. Altdels use the same fixed random binary
code matrix to convert the 128 network output units into phulities over the target 183 states’
labels.
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Figure 3: The effect of the model depth on PER.

Adding a second layer significantly reduces the PER as shoviigure 3. By adding more layers,
the PER on the development set starts to plateau while thedPERe test stays between 23% and
24% after adding tha'" layer. This motivates the decision to restrict most of thpeginents to
four and five layer models.

Phone error rates (PER) for four-layer architectures wiffieignt hidden layer sizes are presented
in table 1.

Table 1:The effect of layer size on PER

| Model [ devset| testset |

1024 units

21.94%

23.46%

2048 units

22.00%

23.36%

3072 units

21.74%

23.54%

We generally focused our computational resources on exgeis with2048 units per hidden layer
since the performance was not significantly different fdfedent numbers of units per layer.

To check the effect of using the Generalized softmax (GSMhaoutput layer of the network,
we compared its performance to the standard 183-way softmigput layer. Both a 4 hidden layer
model using a 128-dimensional GSM and the same architegtiing a standard softmax achieved
22% PER on the development set. On the core test set, The PER &SM model is 23.36%
while the standard Softmax PER is 23.9%. The 128-dimenk®8& model can be viewed as a 5
layer DBN with a final layer of fixed weights. To be clear on thaimsource of improvement, we
compared the 128-dimensional GSM model to a 5 layer DBN withal layer of 128 hidden units



and a 5 layer DBN with 2048 units in each layer. Table 2 shows hlaving a “bottleneck” at the
last layer of the DBN is useful to combat overfitting and to@irage the model to share features
between different classes. Since all but the output layéghtein a BP-DBN-style architecture are
pretrained, a learned bottleneck substantially reducesitimber of parameters that do not receive
the benefits of pretraining. If we simply use a random fixedatyircode for classes, although the
model still has almost as many weights that aren’t pretch@sean architecture without a bottleneck,
the model is forced to share features between classes leegacts output code bit is on for a random
subset of approximately half of the classes. Either makieddst hidden layer substantially smaller
than the other layers or using a fixed (not learned) transftian between the DBN output units and
the actual 183 classes was sufficient for achieving goodtsggyven with minimal weight decay.
Additionally, we were unable to achieve as strong resulgsétiminary experiments using L2 weight
decay alone. Unsurprisingly, learning the weights betwberclasses and the penultimate 128 unit
layer produced better results than using a fixed randompimatrix; however, using an unlearned
random transformation did not substantially degrade perémce.

Table 2:The effect of GSM on PER

| Model | devset | testset |

128-dimensional GSM | 22.00% | 23.36%
4 layers + 128 hidden unitg 22.00% | 23.00%
4 layers + 2048 hidden units 21.98% | 23.73%
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Figure 4: The effect of bottleneck size on PER.

As shown in figure 4, the quality of the results was quite i@silto changes in the size of the final
hidden layer. In general, as long as there were at gastidden units in the fifth hidden layer,
phone error rates on the development set were practicallgtinguishable. By examining results
on the core test set, although many of the differences arstatistically significant, we note that
some reduction in the size of fifth layer compared to the folayer seems helpful.

Table 3 presents the PER achieved by using the AM-DBN aicthite for 2048 and 3072 Associa-
tive Memory (AM) sizes on top of a 3 layer network with 2048tsrfor each layer. The AM-DBN
architecture, although not better than the BP-DBN archite¢ has a nice mechanism for avoiding
overfitting without using a bottleneck which is importanniuch deeper belief networks.

Table 4 compares the best performing DBN model with preWjotepported results on the TIMIT
core test set. The lowest PER on the core test set was observed using ar8By®BN architecture
of 2048 hidden units per layer plus a bottleneck layer of Iii&before the 183-way softmax which
is a 1.4% absolute improvement in PER over the best reporétdad in the literature.

2In [13] a PER of 21.48% is reported on themplete test set of TIMIT. The speech units used are not the
same as the standard TIMIT definitions.



Table 3:PERs using AM-DBN architecture

| Model [ devset] testset|

3k AM || 22.39 | 23.85
2k AM || 22.52 | 23.96

Table 4:Reported results on TIMIT core test set

| Method | PER |
Stochastic Segmental Models [27] 36%
Conditional Random Field [28] 34.8%
Large-Margin GMM [29] 33%
CD-HMM [4] 27.3%
Augmented conditional Random Fields [4] 26.6%
Recurrent Neural Nets [30] 26.1%
Bayesian Triphone HMM [31] 25.6%
Monophone HTMs [32] 24.8%
Heterogeneous Classifiers [33] 24.40%
Deep Belief Networks(DBNSs) (this work) 23.0%

5 Conclusions and futurework

In this work, two types of Deep Belief Network were investiggfor acoustic modeling; the back-
propagation DBN (BP-DBN) and the associative memory DBN ¢BBN) architectures. The ef-
fect of model depth and hidden layer size were investigaBamth architectures have mechanisms
to avoid overfitting. The use of a “bottleneck” in the lastdayf the BP-DBN proved to help avoid
overfitting while hybrid generative and discriminativeitiag prevent overfitting in the AM-DBN.
Both types of DBN beat other reported results on the TIMITectast set for a wide variety of
choices of the number of hidden layers and the number of pritfayer.
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