Estimating energy-
based models with
Score Matching



Overview

® Unsupervised learning going
beyond Maximum Likelihood

® Score Matching estimation

® Example: Overcomplete
Product of Experts model



Unsupervised Learning

® The brain makes inferences about
the world

® Requires a model of the environment

® How is the brain doing this?




Unsupervised Learning
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® Fit a function to observed o
data ‘
® Assume the data is samples g.. ' .
from a pdf p.(5) that cannot Natu;'a;l image data
be observed directly Bl e

® Have a parametrized
function p,(&,0) that we try
to fit to the data samples x
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Maximum Likelihood
Estimation

Maximize the expected likelihood of the
parameters given the observed data

0.8

arg max E |p,, (x|0))

for convenience, use log(px) which give °¢|

the same result since log is monotonic

Works under the condition that the 05l
function p, is constrained to have
constant volume, i.e. is a pdf that %

volume of the pdf

mtegrates to Unlt)’. normalized to unity

Limited family of models (ICA, Ly-spherical
densities, no overcompleteness)




Energy based models

What if the functional form of log p., does not
permit normalization?

This requires integrating over the whole space
which is intractable in most cases.

Model of the form
pm(§) = 1/Z(0) exp(—E(E,0))

where E(&, 0) is the energy of the model and Z(0)
is the partition function required so the pdf
Integrates to unity

We cannot fit p,,(£) to observations from p,(&)
since we only know the model pdf up to a constant!



Score Matching



Score Matching

Circumvent the problem by fitting the gradients
of the model to the gradient of the data pdf.

Model score function

d
0i(6.0) = J- logpn(€l0)
and data score function
d
%»,z(f) — E lngm(f)

Minimize the expected distance between the
two (match the score functions)

1
7= 5 [ eo©lI(E0) - wu©)] g
which gives a consistent estimator if the pdf is Components of the

smooth and the data follows the model. Score function



Score Matching

® Hold on: How does this help if we don't
know the data score function y,(&)?

® Massage the “Score Match” into a format
that does not depend on this intractable
quantity



The maths

Start by expanding the squared distance

1
which gives us three terms under the expectation.

The first one can be ignored since it’s constant that
does not depend on the parameters

The second term is the expectation of the squared
model score function (easy to compute)

The third term however has nasty dependency on
the data score function



More maths

Working on
23 [ D@06, 0)na(€)d

first use the definition of the score function,

Goa(€) = L log pa(€) = 1/p(€) L pa (6)

- dg d&;
So we get

23 [ D060 el

and cancel p(&). Then use integration by parts to switch
the differentiation operator to the score function

23 / d%wi(é,@)px(f)dé“

flipping the sign in the process.VVe are left with an
expectation containing only the model score function

The constant of integration goes to zero as p does



Assembling the pieces

The objective function is now

J:12/ NG 2df+2/d%wife ) + C

If we replace mtegrals by sample expectations

J == ZZ% (z(t),0) + C

This is the final objectlve functlon

Intuitively, first term acts like unnormalized
likelihood, second term like normalization

Gives a consistent estimator in terms of simple
expectations of non-normalized model pdf



Caveats

® Taking the second derivative
requires reasonably smooth
nonlinearities

® TJaking the second derivative
also requires reasonably simple
energy functions



Overcomplete
Products
of Experts



PoE model

Prototypical energy-based model

b= Zn kg (W, X)
Intuition: Slice up probability space
by defining regions of low probability

(high energy).

Generalization of factorial models
that does not assume independent
sources

Eliptically
symmetric

arisformed
factorial

Normalization constant is intractable

Overcomplete
energy based



PoE model

Energy is defined as the sum of a number of
weighted potential energy functions

E = Z arg(wi x)
k

g can correspond to something like a Cauchy
or Logistic distribution (heavy tails)

g(u) = log cosh(u)

g'(u) = tanh(u)

1 — tanh(u)?

the score function corresponding to this model
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PoE model

Putting this into the objective

T=3"3 i)+

)

J ZZ5<Zakg’<w£x<t>>wm> ST
t=1 k

0 Natural image data

d
gives d; vi(@,6)

+ > ang” (Wi x(t))wi,

k
to estimate the filters and a’s (expert

parameters) compute the gradients and plug in
to any optimization package.

Example with |0 filters for 3D image data:
Capture something interesting about the
structure

Model fit



Summary

When would you use Score Matching?

Alternatives such as Contrastive Divergence, Noise Contrastive

Estimation and Minimum Probability Flow (tomorrow!) exist.
Which is best?

SM is not based on sampling, so none of the problems with
Monte Carlo methods

Depending on the model (hierarchical, MRF ...) computing
gradients can be slightly to very tedious

Gradient estimation can use efficient methods like I-BFGS

Obijective function “Score Match” allows model comparison
without having to calculate likelihoods



