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Overview

• Unsupervised learning going 
beyond Maximum Likelihood

• Score Matching estimation

• Example: Overcomplete 
Product of Experts model



Unsupervised Learning
• The brain makes inferences about 

the world

• Requires a model of the environment

• How is the brain doing this?

Model
Natural environment

Image



Unsupervised Learning

• Fit a function to observed 
data

• Assume the data is samples 
from a pdf px(ξ) that cannot 
be observed directly

• Have a parametrized 
function pm(ξ,θ) that we try 
to fit to the data samples x

Natural image data

The “true” pdf px(ξ)



Maximum Likelihood 
Estimation

• Maximize the expected likelihood of the 
parameters given the observed data

• for convenience, use log(pm) which give 
the same result since log is monotonic

• Works under the condition that the 
function pm is constrained to have 
constant volume, i.e. is a pdf that 
integrates to unity.

• Limited family of models (ICA, Lp-spherical 
densities, no overcompleteness)

argmaxE [pm(x|θ)]

volume of the pdf 
normalized to unity  



Energy based models
• What if the functional form of log pm does not 

permit normalization?

• This requires integrating over the whole space 
which is intractable in most cases.

• Model of the form

 

• where E(ξ, θ) is the energy of the model and Z(θ) 
is the partition function required so the pdf 
integrates to unity

• We cannot fit pm(ξ) to observations from px(ξ) 
since we only know the model pdf up to a constant!

pm(ξ) = 1/Z(θ) exp(−E(ξ, θ))



Score Matching



Score Matching

• Circumvent the problem by fitting the gradients 
of the model to the gradient of the data pdf.

• Model score function

 

• and data score function

 

• Minimize the expected distance between the 
two (match the score functions)

 

• which gives a consistent estimator if the pdf is 
smooth and the data follows the model. 

2D Student-t log pdf 

Components of the
Score function

ψx,i(ξ) =
d

dξi
log px(ξ)

J =
1

2

�
px(ξ)||ψ(ξ, θ)− ψx(ξ)||2dξ

ψi(ξ, θ) =
d

dξi
log pm(ξ|θ)



Score Matching

• Hold on: How does this help if we don’t 
know the data score function ψx(ξ)?

• Massage the “Score Match” into a format 
that does not depend on this intractable 
quantity



The maths
• Start by expanding the squared distance

• which gives us three terms under the expectation.

• The first one can be ignored since it’s constant that 
does not depend on the parameters

• The second term is the expectation of the squared 
model score function (easy to compute)

• The third term however has nasty dependency on 
the data score function

||ψ(ξ, θ)− ψx(ξ)||2 = ψx(ξ)
Tψx(ξ)

+
�

i

ψi(ξ, θ)
2 − 2ψi(ξ, θ)ψx,i(ξ)



More maths
• Working on

• first use the definition of the score function, 

• So we get

• and cancel p(ξ).  Then use integration by parts to switch 
the differentiation operator to the score function 

• flipping the sign in the process. We are left with an 
expectation containing only the model score function

• The constant of integration goes to zero as p does

−2
�

i

�
px(ξ)ψi(ξ, θ)ψx,i(ξ)dξ

−2
�

i

�
px(ξ)ψi(ξ, θ)

1

px(ξ)

d

dξi
px(ξ)dξ

2
�

i

�
d

dξi
ψi(ξ, θ)px(ξ)dξ

ψx,i(ξ) =
d

dξi
log px(ξ) = 1/p(ξ)

d

dξi
px(ξ)



Assembling the pieces
• The objective function is now

• If we replace integrals by sample expectations

• This is the final objective function

• Intuitively, first term acts like unnormalized 
likelihood, second term like normalization

• Gives a consistent estimator in terms of simple 
expectations of non-normalized model pdf

J =
1

2

�

i

�
p(ξ)ψi(ξ)

2dξ +
�

i

�
d

dξi
ψi(ξ, θ)p(ξ)dξ + C

J =
1

2

T�

t=1

�

i

ψi(x(t))
2 +

d

dxi
ψi(x(t), θ) + C



Caveats

• Taking the second derivative 
requires reasonably smooth 
nonlinearities

• Taking the second derivative 
also requires reasonably simple 
energy functions



Overcomplete
Products 

of Experts



PoE model

• Prototypical energy-based model

• Intuition: Slice up probability space 
by defining regions of low probability 
(high energy). 

• Generalization of factorial models 
that does not assume independent 
sources

• Normalization constant is intractable

Linearly
transformed 

factorial

Eliptically
symmetric

Overcomplete
energy based

E =
K>n�

k

αkg(w
T
k x)
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PoE model
• Energy is defined as the sum of a number of 

weighted potential energy functions

• g can correspond to something like a Cauchy 
or Logistic distribution (heavy tails)

• the score function corresponding to this model 
is

• and the second derivative of the energy
 

E =
�

k

αkg(w
T
k x)

ψi = − d

dxi
E = −

�

k

αkg
�(wT

k x)wki

ψ�
i = − d2

dx2
i

E = −
�

k

αkg”(w
T
k x)w

2
ki

Logistic energy 
function

First 
derivative

Second 
derivative

g(u) = log cosh(u) g�(u) = tanh(u) 1− tanh(u)2



PoE model
• Putting this into the objective

• gives

• to estimate the filters and α’s (expert 
parameters) compute the gradients and plug in 
to any optimization package. 

• Example with 10 filters for 3D image data:
Capture something interesting about the 
structure

J =
T�

t=1

�

i

1

2
ψi(x)

2 +
d

dxi
ψi(x, θ)

Natural image data

Model fit
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Summary
• When would you use Score Matching?

• Alternatives such as Contrastive Divergence, Noise Contrastive 
Estimation and Minimum Probability Flow (tomorrow!) exist. 
Which is best?

• SM is not based on sampling, so none of the problems with 
Monte Carlo methods

• Depending on the model (hierarchical, MRF ...) computing 
gradients can be slightly to very tedious

• Gradient estimation can use efficient methods like l-BFGS

• Objective function “Score Match” allows model comparison 
without having to calculate likelihoods


