

what we want to know		what we can measure	context	
aspect ratio	slant (of an ellipse)	aspect ratio of the retinal image	our example	
reflectance	illuminance	luminance	lightness constancy	
size	distance	retinal size	size - distance ambiguity	
intensity	wavelength	absorption	principle of univariance	
object motion	motion of the retina	retinal motion	efference copy theory	
speed	direction of motion	image motion	aperture problem	
3D shape	direction of light	2D retinal image	light-from-above bias	
distance motion of observer relative to object		retinal motion	motion parallax	

lore examples for ambiguities in visual perception					
wha	what we want to know		context		
aspect ratio	slant (of an ellipse)	aspect ratio of the retinal image	our example		
reflectance	illuminance	luminance	lightness constancy		
size	distance	retinal size	size - distance ambiguity		
intensity	wavelength	absorption	principle of univariance		
object motion	motion of the retina	retinal motion	efference copy theory		
speed	direction of motion	image motion	aperture problem		
3D shape	direction of light	2D retinal image	light-from-above bias		
distance	motion of observer relative to object	retinal motion	motion parallax		

Simplicity = Likelihood

- It can be shown that there is no conflict and that the principles are in fact equivalent

 - Cover & Thomas 1991, Rissanen 1989, Mumford 1992
 - Chater 1996, Kolmogorov 1965)

Question	How can we retrieve information encoded in animate motion?
Example	What makes a walker appear male or female?
Principles	A more general view
Applications	in computer vision, animation, gait analysis

$p(t) = n_1 + n_2$	$sin(\omega t) +$	a. costa	(t) + n	$sin(2\omega t)$	$+ a \cos($	2(mt) +
P(0) P0 P1	Sin(ot)	41 005(0	<i>n</i>) · p ₂	511(2000)	4 <u>2</u> 005(2000) *
		nowor	1			
	k	[%]				
	1	94.2				
	2	4.4				
	3-n	1.4				

$\mathbf{p}(\mathbf{t}) = \mathbf{p}_0 + \mathbf{a}_1 \mathbf{s}$	$in(\omega t + \varphi_1)$	+ a	$a_2 \sin(2\omega)$	$t + \phi_2$	+
$p(t) = p_0 + p_1 \sin(\omega t) + q_1 \cos(\omega t) + p_2 \sin(2\omega t) + q_2 \cos(2\omega t) + \dots$					
$w = [P, \omega]$	$\left(\begin{array}{c} p0_{1,x} \\ p0_{2,x} \\ \cdot \end{array} \right)$	$\begin{array}{c} p1_{1,x}\\ p1_{2,x} \end{array}$	$\begin{array}{c} q1_{1,x} \\ q1_{2,x} \\ \cdot \end{array}$	$\begin{array}{c} p2_{1,x}\\ p2_{2,x}\\ \end{array}$	$\begin{array}{c} q2_{1,x} \\ q2_{2,x} \\ \cdot \end{array}$
	$P = \begin{array}{c} \cdot \\ p0_{1,y} \\ p0_{2,y} \\ \cdot \end{array}$	$\begin{array}{c} p1_{1,y} \\ p1_{2,y} \end{array}$	$\begin{array}{c} q1_{1,y} \\ q1_{2,y} \end{array}$	$\begin{array}{c} p2_{1,y} \\ p2_{2,y} \end{array}$	$\begin{array}{c} q2_{1,y} \\ q2_{2,y} \end{array}$
	$p0_{1,z}$ $p0_{2,z}$	$\begin{array}{c} p1_{1,z} \\ p1_{2,z} \end{array}$	$\begin{array}{c} q1_{1,z} \\ q1_{2,z} \end{array}$	p2 _{1,z} p2 _{2,z}	$\begin{array}{c} q2_{1,z} \\ q2_{2,z} \end{array}$
	Į.				.)

The goal is to find a representation that

- · supports linear operations
- is loss-less is low-dimensional
- ^{"morph}able model"

The approach:

- Start with a time series of postures expressed as Cartesian coordinates in a body centred coordinate system
- Express each trajectory as a discrete, low-dimensional Fourier series

The rest is simple:

- Reduce dimensionality by means of principle components analysis on the set of walkers
- Linear pattern classification

The human visual system is a proof of concept and a source of inspiration for how to infer information from noisy, incomplete, ambiguous sensory data!

Journal of Cognitive Neuroscience, 1991

Eigenfaces for Recognition

Matthew Turk and Alex Pentland Mature ... Vision and Modeling Group The Media Laboratory Massachusetts Institute of Technology

Abstract

We have developed a ne n locate and track a subje case-real-time computer system that easis head, and then recognize the recretistics of the face to those of meguational approach taken in this physiology and information theory, requirements of near-real-time per-ur approach treats the face recog-trinschilly two-dimensional (2-D) r than requiring recovery of three ing advantage of the fact that faces uss may be described by a small set The system functions by projecting

face images onto a variations among kr are known as "eiger (principal compose sarily correspond to projection operatio weigheed sum of the particular face it is n those of known indi anonoxich are that it

FIAS

Keywords: Image synthesis, face recognition, flexible template

