Deep Learning of Invariant Spatiotemporal Features from Video

Bo Chen, Jo-Anne Ting, Ben Marlin, Nando de Freitas University of British Columbia

Introduction

- Focus: Unsupervised feature extraction from video for low and high-level vision tasks
- Desirable Properties:
 - Invariant features (for selectivity, robustness to input transformations)
 - Distributed representations (for memory & generalization efficiency)
 - Generative properties for inference (de-noising, reconstruction, prediction, analogy-making)
 - Good discriminative performance

Feature extraction from video

- Spatiotemporal feature detectors & descriptors:
 - 3D HMAX, 3D Hessian detector, cuboid detector, space-time interest points
 - HOG/HOF, 3D SIFT descriptor
 - recursive sparse coding (Dean et al., 2009), factored RBMs + sparse coding (Taylor et al., 2010), "factorized" sparse coding (Cadieu & Olshausen, 2008), deconvolutional network (Zeiler et al., 2010), recurrent temporal RBMs, gated RBMs, factored RBMs, mcRBMs, ...

Overview

- Background:
 - Restricted Boltzmann Machines (RBMs)
 - Convolutional RBMs
- Proposed model:
 - Spatio-temporal Deep Belief Networks
- Experiments:
 - Measuring Invariance
 - Recognizing actions (KTH dataset)
 - De-noising
 - Filling-in from sequence of "gazes"

Background: RBMs

Hinton & Salakhutdinov (2006), Lee et al. (2008)

Background: Convolutional RBMs

Desjardins & Bengio (2008), Lee, Grosse, Ranganath & Ng (2009), Norouzi, Ranjbar & Mori (2009)

Convolutional RBMs

Standard RBMs:

 $P(h_i = 1 | \mathbf{v}) = logistic\left((W^j)^T \mathbf{v}\right)$ $P(v_i = 1 | \mathbf{h}) = logistic\left((W_i)^T \mathbf{h}\right)$

Convolutional RBMs:

$$P(h^{g}, p^{g} | \mathbf{v}) = ProbMaxPool(W^{g} * v^{g})$$
$$P(\mathbf{v} | \mathbf{h}) = logistic\left(\sum_{g=1}^{|W|} W^{g} \star h^{g}\right)$$

Training STDBNs

- Greedy layer-wise pre-training (Hinton, Osindero & Teh, 2006)
- Contrastive divergence for each layer (Carreira-Perpignan & Hinton, 2005)
- Sparsity regularization (e.g. Olshausen & Field, 1996)

STDBN as a discriminative feature extractor: Measuring invariance

Goodfellow, Le, Saxe & Ng (2009)

Invariance scores for common transformations in natural videos, computed for layer 1 (SI) and layer 2 (S2) of a CDBN and layer 2 (TI) of STDBN. Higher is better.

STDBN as a discriminative feature extractor: Recognizing actions

KTH Dataset: 2391 videos (~IGB)

Schuldt, Laptev & Caputo (2004), Dollar, Rabaud, Cottrell & Belongie (2005), Laptev, Marszalek, Schmid & Rozenfield (2008), , Liu & Shah (2008), Dean, Corrado & Washington (2009), Wang & Li (2009), Taylor & Bregler (2010), ...

Recognizing actions: Pipeline

Recognizing actions: Model architecture

• 4-layers: 8x8 filters for spatial pooling layers, 6x1 filters for temporal pooling layers, pooling ratio of 3

Experiments: number of parameters ~300k, training time ~5 days

Recognizing actions: Classification accuracy

	Bot	Clap	424	306	Run	Nalk
Box	89.4	4.7	2.7	0.8	0	2.4
Clap	2.8	89.7	6.7	0	0.8	0
Wave	0.8	2.0	96.9	0	0.3	0
Jog	0	0	0	68.0	19.9	12.1
Run	0	0	0	16.4	80.9	2.7
Walk	0	0	0	10.5	1.2	88.3

	Bot	Clap	Nay	e 108	Run	Nalk
Box	91.4	4.7	1.2	0	0	2.7
Clap	3.1	91.3	5.6	0	0	0
Wave	0.8	1.2	98	0	0	0
Jog	0	0	0	77.3	13.7	9.0
Run	0	0	0	12.5	85.6	1.9
Walk	0	0	0	5.5	0	94.5

	80+	Clap	424	108	Run	Nalk
Box	94.5	2.4	1.2	0	0	1.9
Clap	3.9	93.7	2.0	0	0.4	0
Wave	1.2	1.6	96.9	0	0	0
Jog	0.3	0	0	80.5	13.3	5.9
Run	0	0	0	10.5	89.5	0
Walk	0.8	0	0	3.1	0	96.1

Layer I

Layer 3

Method	Accuracy (%)
4-layer ST-DBN	90.3 ± 0.83
3-layer ST-DBN	91.13 ± 0.85
2-layer ST-DBN	89.73 ± 0.18
1-layer ST-DBN	85.97 ± 0.94
Liu & Shah [21]	94.2
Wang & Li [31]	87.8
Dollár et al. [18]	81.2

STDBN as a generative model: De-noising

Clean Video

Noisy Video NMSE = 1

Spatially denoised video NMSE=0.175

Spatiotemporally denoised video NMSE=0.155

STDBN as a generative model: Filling-in from sequence of "gazes"

Missing

STDBN as a generative model: Filling-in from sequence of "gazes"

STDBN as a generative model: Filling-in from sequence of "gazes"

Discussion

- Limitations:
 - computation
 - invariance vs. reconstruction trade-off
 - alternating space-time vs. joint space-time convolution
- Extensions:
 - attentional mechanisms for gaze planning?
 - leveraging feature detection to reduce training data size