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Introduction

• Focus: Unsupervised feature extraction from video for low and 
high-level vision tasks 

• Desirable Properties: 

• Invariant features (for selectivity, robustness to input 
transformations)

• Distributed representations (for memory & generalization 
efficiency)

• Generative properties for inference (de-noising, 
reconstruction, prediction, analogy-making)

• Good discriminative performance
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Feature extraction from video

• Spatiotemporal feature detectors & descriptors:

• 3D HMAX, 3D Hessian detector, cuboid detector, space-time 
interest points

• HOG/HOF, 3D SIFT descriptor

• recursive sparse coding (Dean et al., 2009), factored RBMs + 
sparse coding (Taylor et al., 2010), “factorized” sparse coding 
(Cadieu & Olshausen, 2008), deconvolutional network (Zeiler 
et al., 2010), recurrent temporal RBMs, gated RBMs, factored 
RBMs,  mcRBMs, ...
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Overview

• Background:  

• Restricted Boltzmann Machines (RBMs)

• Convolutional RBMs 

• Proposed model: 

• Spatio-temporal Deep Belief Networks

• Experiments: 

• Measuring Invariance

• Recognizing actions (KTH dataset)

• De-noising

• Filling-in from sequence of “gazes”
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Background: RBMs
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Inductive Principles for Restricted Boltzmann Machine Learning

(a) CD (b) SML (c) PL (d) RM

Figure 5: Learned weights and visible biases on the MNIST data set. The top left cell in each figure is the visible
bias vector. Black corresponds to a weight of −1 while white corresponds to a weight of +1.

SML contrastive divergence (CD) are definitely bet-
ter on MNIST. RM has a consistent advantage over
the other methods in terms of de-noising, which cor-
roborates well with the observation that the filters it
produces are localized strokes instead of spots. On
the novelty detection task pseudo-likelihood exhibits
the most sensitivity. Finally, our most efficient imple-
mentations for ratio matching and pseudo likelihood
are still an order of magnitude slower than SML and
CD. Taking computation time into account, SML is
certainly the most attractive method.

Future work on alternative inductive principles for
RBMs will need to seriously consider the issue of com-
putational complexity. We are currently investigating
whether the complexity of RM and PL can be effec-
tively reduced by considering fewer bit flips for each
training case. We are also investigating the use of score
matching in Gaussian/Binary RBMs where it has es-
sentially the same computational complexity as SML.
Finally, we plan to investigate the application of ac-
celerated RM and PL methods for greedy layer-wise
training of deep architectures.
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Self-taught Learning

Figure 2. Left: Example sparse coding bases learned from
image patches (14x14 pixels) drawn from random grayscale
images of natural scenery. Each square in the grid repre-
sents one basis. Right: Example acoustic bases learned by
the same algorithm, using 25ms sound samples from speech
data. Each of the four rectangles in the 2x2 grid shows the
25ms long acoustic signal represented by a basis vector.

same class labels as, the labeled data. Clearly, as in
transfer learning (Thrun, 1996; Caruana, 1997), the
labeled and unlabeled data should not be completely
irrelevant to each other if unlabeled data is to help the
classification task. For example, we would typically

expect that x(i)
l and x(j)

u come from the same input
“type” or “modality,” such as images, audio, text, etc.

Given the labeled and unlabeled training set, a self-
taught learning algorithm outputs a hypothesis h :
Rn → {1, . . . , C} that tries to mimic the input-label
relationship represented by the labeled training data;
this hypothesis h is then tested under the same distri-
bution D from which the labeled data was drawn.

3. A Self-taught Learning Algorithm

We hope that the self-taught learning formalism that
we have proposed will engender much novel research
in machine learning. In this paper, we describe just
one approach to the problem.

We present an algorithm that begins by using the un-

labeled data x(i)
u to learn a slightly higher-level, more

succinct, representation of the inputs. For example, if

the inputs x(i)
u (and x(i)

l ) are vectors of pixel intensity
values that represent images, our algorithm will use

x(i)
u to learn the “basic elements” that comprise an im-

age. For example, it may discover (through examining
the statistics of the unlabeled images) certain strong
correlations between rows of pixels, and therefore learn
that most images have many edges. Through this, it
then learns to represent images in terms of the edges
that appear in it, rather than in terms of the raw pixel
intensity values. This representation of an image in
terms of the edges that appear in it—rather than the
raw pixel intensity values—is a higher level, or more
abstract, representation of the input. By applying this

learned representation to the labeled data x(i)
l , we ob-

tain a higher level representation of the labeled data
also, and thus an easier supervised learning task.

3.1. Learning Higher-level Representations

We learn the higher-level representation using a mod-
ified version of the sparse coding algorithm due to Ol-

Figure 3. The features computed for an image patch (left)
by representing the patch as a sparse weighted combina-
tion of bases (right). These features act as robust edge
detectors.

Figure 4. Left: An example platypus image from the Cal-
tech 101 dataset. Right: Features computed for the platy-
pus image using four sample image patch bases (trained
on color images, and shown in the small colored squares)
by computing features at different locations in the image.
In the large figures on the right, white pixels represents
highly positive feature values for the corresponding basis,
and black pixels represents highly negative feature values.
These activations capture higher-level structure of the in-
put image. (Bases have been magnified for clarity; best
viewed in color.)

shausen & Field (1996), which was originally proposed
as an unsupervised computational model of low-level
sensory processing in humans. More specifically, given

the unlabeled data {x(1)
u , ..., x(k)

u } with each x(i)
u ∈ Rn,

we pose the following optimization problem:
minimizeb,a

∑

i ‖x
(i)
u −

∑

j a(i)
j bj‖2

2 + β ‖a(i)‖1 (1)

s.t. ‖bj‖2 ≤ 1, ∀j ∈ 1, ..., s
The optimization variables in this problem are the ba-
sis vectors b = {b1, b2, . . . , bs} with each bj ∈ Rn,
and the activations a = {a(1), . . . , a(k)} with each

a(i) ∈ Rs; here, a(i)
j is the activation of basis bj for

input x(i)
u . The number of bases s can be much larger

than the input dimension n. The optimization objec-
tive (1) balances two terms: (i) The first quadratic

term encourages each input x(i)
u to be reconstructed

well as a weighted linear combination of the bases bj

(with corresponding weights given by the activations

a(i)
j ); and (ii) it encourages the activations to have low

L1 norm. The latter term therefore encourages the ac-
tivations a to be sparse—in other words, for most of
its elements to be zero. (Tibshirani, 1996; Ng, 2004)

This formulation is actually a modified version of Ol-
shausen & Field’s, and can be solved significantly more
efficiently. Specifically, the problem (1) is convex over
each subset of variables a and b (though not jointly
convex); in particular, the optimization over activa-
tions a is an L1-regularized least squares problem,
and the optimization over basis vectors b is an L2-
constrained least squares problem. These two convex
sub-problems can be solved efficiently, and the objec-

Hinton & Salakhutdinov (2006), 
Lee et al. (2008)
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Background: Convolutional RBMs

6

Desjardins & Bengio (2008), Lee, Grosse, Ranganath & Ng (2009), 
Norouzi, Ranjbar & Mori (2009)   

......

......
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Convolutional RBMs

7

P (hg, pg|v) = ProbMaxPool (W g ∗ vg)

Convolutional RBMs:

Standard RBMs:

P (hi = 1|v) = logistic
�
(W j)T v

�

P (vi = 1|h) = logistic
�
(Wi)T h

�

P (v|h) = logistic
��|W |

g=1 W g � hg
�
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Proposed model: 
Spatiotemporal DBNs

8
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Proposed model: 
Spatiotemporal DBNs
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Proposed model: 
Spatiotemporal DBNs
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Proposed model: 
Spatiotemporal DBNs
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Training STDBNs

• Greedy layer-wise pre-training (Hinton, Osindero & Teh, 2006)

• Contrastive divergence for each layer (Carreira-Perpignan & 
Hinton, 2005)  

• Sparsity regularization (e.g. Olshausen & Field, 1996)

10
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STDBN as a discriminative feature extractor: 
Measuring invariance

Invariance scores for common 
transformations in natural videos, 

computed for layer 1 (S1) and layer 2 
(S2) of a CDBN and layer 2 (T1) of 

STDBN. Higher is better.
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For each video and hidden unit i, we select a threshold such that i fires G(i) = 1% of the time. We
then select 40 stimuli that activate i the most (these are single frames for the spatial pooling layers
and short sequences in the temporal pooling layers) and extend the temporal length of each stimulus
both forward and backward in time for 8 frames each. The local firing rate L(i) is then i’s average
firing rate over 16 frames of stimuli, and the invariance score is L(i)/0.01. The invariance score of
a network layer is the mean score over all the max-pooled units.
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Figure 3: Invariance scores for common transfor-
mations in natural videos, computed for layer 1
(S1) and layer 2 (S2) of a CDBN and layer 2 (T1)
of ST-DBN. (Higher is better.)

Since ST-DBN performs max-pooling over
time, its hidden representations should vary
more slowly than static models. Its filters
should also be more selective than purely spa-
tial filters. Fig. 4.1 shows invariance scores for
translations, zooming, and 2D and 3D rotations
using layer 1 of the CDBN (S1), layer 2 of
the CDBN (S2), and layer 2 of ST-DBN (T1).
S1 serves as a baseline measure since it is the
first layer for both CDBN and ST-DBN. We
see that ST-DBN yields significantly more in-
variant representations than CDBN (S2 vs. T1
scores). ST-DBN shows the greatest invariance
for 3D rotations—the most complicated trans-
formation. While a 2-layer architecture appears
to achieve greater invariance for zooming and
2D rotations, the improvement offered by ST-DBN is more pronounced. For translation, all archi-
tectures have built-in invariance, leading to similar scores.

We should point out that since ST-DBN is trained on video sequences, whereas the CDBN is trained
on images only, that a comparison to CDBN is unfair. Nonetheless, this experiment highlights the
importance of training on temporal data in order to achieve invariance.

4.2 Unsupervised Feature Learning for Classification

Dataset & Training: We used the standard KTH dataset [30] to evaluate the effectiveness of the
learned feature descriptors for human activity recognition. The dataset has 2391 videos, consist-
ing of 6 types of actions (walking, jogging, running, boxing, hand waving and hand clapping),
performed by 25 people in 4 different backgrounds. The dataset includes variations in subject, ap-
pearance, scale, illumination and action execution. First, we downsampled the videos by a factor
of 2 to a spatial resolution of 80 × 60 pixels each, while preserving the video length (∼ 4 sec long
each, at 25 fps). Subsequently, we pre-processed the videos using 3D local contrast normalization.

We divided the dataset into training and test sets following the procedure in [31]. For a particu-
lar trial, videos of 9 random subjects were used for training a 4-layer ST-DBN, with videos of the
remaining 16 subjects used for test. We used leave-one-out (LOO) cross-validation to calculate clas-
sification results for the 16 test subjects. For each of the 16 rounds of LOO, we used the remaining
24 subjects to train a multi-class linear SVM classifier and tested on the one test subject. For a trial,
the classification accuracy is averaged over all 6 actions and 16 test subjects.

Figure 4: Learned layer
2 ST-DBN filters on KTH.

There exists another train/test procedure, adopted in the original ex-
periment setup [30], that does not use LOO. Videos from 9 subjects
(subjects 2, 3, 5, 6, 7, 8, 9, 10 & 22) were chosen for the test set, and
videos from the remaining 16 subjects were divided evenly into train-
ing and validation sets. We trained a 4-layer ST-DBN using videos
from the training set. We used a nonlinear SVM with a Gaussian RBF
kernel, where the parameters of the kernel were set using 5-fold cross-
validation on the combined training and validation set (similar to [32]).

For both train/test protocols, we used the following settings to train
the ST-DBN: nWx = nWy = 8, nBx = nBy = 3 for spatial pooling
layers and nWt = 6 with a pooling ratio of 3 for temporal pooling
layers. Fig. 4 shows a subset of ST-DBN temporal (layer 2) filters
learned from the KTH data. The image filters in the first layer were similar to the ones widely

6

Degree of 
Transformation

Firing Rate of Unit i 

Not Selective

11

Goodfellow, Le, Saxe & Ng (2009)
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STDBN as a discriminative feature extractor: 
Recognizing actions

Schuldt, Laptev & Caputo (2004), Dollar, Rabaud, Cottrell & Belongie 
(2005), Laptev, Marszalek, Schmid & Rozenfield (2008), , Liu & Shah (2008), 
Dean, Corrado & Washington (2009), Wang & Li (2009),Taylor & Bregler 
(2010),  ... 
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KTH Dataset: 2391 videos (~1GB)
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Recognizing actions: Pipeline

13

Input video
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 contrast normalization
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Recognizing actions: Model architecture

• 4-layers: 8x8 filters for spatial pooling layers, 6x1 filters for 
temporal pooling layers, pooling ratio of 3 

14

Experiments: number of parameters ~300k, training time ~5 days
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Recognizing actions: Classification accuracy
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reported in the deep learning literature. Each row of Fig. 4 shows a temporal filter over 6 time steps.
We include a link to a video (in the supplementary material), where transformations captured by the
temporal filters are more easily observed.

Classification Performance: Table 1 shows classification results for both train/test protocols. For
the LOO protocol, classification results for a ST-DBN with up to 4 layers are shown, averaged over
4 trials. We included comparisons to three other methods—all of which used an SVM classifier3.
We see that having additional (temporal and spatial) layers yields an improvement in performance,
achieving a competitive accuracy of 91% (for the 3rd layer). Interestingly, a 4th layer leads to
slightly worse classification accuracy. This can be attributed to excessive temporal pooling on an
already short video snippet (around 100 frames long). The best reported result to date, 94.2% by
Liu & Shah [21], used a bag-of-words approach on cuboid feature detectors and maximal mutual
information to cluster the video-words. In contrast to their work, we do not use feature detectors
and take the entire video as input. Wang & Li [31] cropped the region of the video containing the
relevant activity and clustered difference frames. They also used a weighted sequence descriptor
that accounted for the temporal order of features.

For the train/test protocol of [30], we see a similar pattern in the performance of ST-DBN as the
number of layers increases. Laptev et al. [32] use a 3D extension of the Harris operator, a combina-
tion of HoG and HoF (histograms of gradients and optic flow) descriptors, and an SVM with a χ2

kernel. Taylor et al. [25] use dense sampling of space-time cubes, along with a factored RBM model
and sparse coding to produce codewords that are then fed into an SVM classifier. Schuldt et al. [30]
use the space-time interest points of [17] and an SVM classifier.

Table 1: Average classification accuracy results for KTH actions dataset.

LOO protocol Train/test protocol of [30]
Method Accuracy (%) Method Accuracy (%)

4-layer ST-DBN 90.3 ± 0.83 4-layer ST-DBN 85.2
3-layer ST-DBN 91.13± 0.85 3-layer ST-DBN 86.6
2-layer ST-DBN 89.73 ± 0.18 2-layer ST-DBN 84.6
1-layer ST-DBN 85.97 ± 0.94 1-layer ST-DBN 81.4
Liu & Shah [21] 94.2 Laptev et al. [32] 91.8
Wang & Li [31] 87.8 Taylor et al. [25] 89.1
Dollár et al. [18] 81.2 Schuldt et al. [30] 71.7

4.3 Denoising and Prediction

We demonstrate how a 2-layer ST-DBN can be used for video denoising and to infer missing portions
of frames in a video sequence. Fig. 5 shows denoising results for a sample test frame in a video from
the KTH dataset. Fig. 5(a) shows the test frame, and Fig. 5(b) shows the noisy test frame, corrupted
with additive Gaussian noise4. We see that the 1-layer ST-DBN (Fig. 5(c)) denoises the image
frame well. The 2-layer ST-DBN (with an additional temporal pooling layer) gives slightly better
background denoising. The normalized MSEs of 1-layer and 2-layer reconstructions are 0.1751 and
0.155 respectively. For reference, the normalized MSE between the clean and noisy video has value
1. We include a link to the denoised video in the supplementary material since the denoising effects
are more visible over time. Note that in Fig. 5, local contrast normalization was reversed to visualize
frames in the original image space, and image frames were downsampled by a factor of 2 from the
original KTH set.

Fig. 6 illustrates the capacity of the ST-DBN to reconstruct data and generate spatio-temportal pre-
dictions. The test video shows an observed sequence of gazes in frames 2-4, where the focus of
attention is on portions of the frame. The bottom row of Fig. 6 shows the reconstructed data within
the gaze window and predictions outside this window. Note that the blurry effect in predicted parts
of the frame is due to the loss of information incurred with max-pooling. Though max-pooling

3Dean et al. [9] report a classification accuracy of 81.1% under the LOO protocol. However, their result is
not directly comparable to ours since they use a 1-NN classifier, instead of an SVM classifier.

4Each pixel is corrupted with additive mean-zero Gaussian noise with a standard deviation of s, where s is
the standard deviation of all pixels in the entire (clean) video.
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STDBN as a generative model: 
De-noising
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Figure 5: Denoising results: (a) Test frame; (b) Test frame corrupted with noise; (c) Reconstruction

using 1-layer ST-DBN; (d) Reconstruction with 2-layer ST-DBN.

comes at a cost when inferring missing parts of frames, it is crucial for good discriminative perfor-

mance. Future research must address this fundamental trade-off. The results in the figure, though

apparently simple, are quite remarkable. They represent an important step toward the design of at-

tentional mechanisms for gaze planning. While gazing at the subject’s head, the model is able to

infer where the legs are. This coarse resolution gist may be used to guide the placement of high

resolution detectors.

Figure 6: Top video shows an observed sequence of gazes/foci of attention (i.e., frames 2-4). Bottom

video shows reconstructions within the gaze windows and predictions outside them.

5 Conclusions

In this paper, we introduced a hierarchical distributed probabilistic model for learning invariant fea-

tures from spatio-temporal data. Using CRBMs as a building block, our model, the Space-Time

Deep Belief Network, pools over space and time. It fulfills all the four desirable properties of a fea-

ture extractor that we reviewed in the introduction. In addition to possessing feature invariance (for

selectivity and robustness to input transformations) and a hierarchical, distributed representation, our

model is generative and shows good discriminative performance on a simple human action recog-

nition task. Testing on larger video databases is an obvious immediate avenue for further research.

Interestingly, the max-pooling operation that allows feature invariance to be captured hierarchically

from spatio-temporal data has an adverse effect for predicting missing parts of a video sequence.

To address this issue, future work will examine how to minimize the information loss associated

with max-pooling when performing inference. We conjecture that combinations of models with and

without pooling might be required.

Additionally, precautions should be taken to ensure representations are not made too compact with

too many layers in the architecture. Model selection is an open challenge in this line of research.

Finally, we plan to build on the gaze prediction results. Our intention is to use planning to optimize

the gaze locations so as to solve various recognition and verification tasks efficiently.
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STDBN as a generative model:
Filling-in from sequence of “gazes”
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STDBN as a generative model:
Filling-in from sequence of “gazes”
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STDBN as a generative model:
Filling-in from sequence of “gazes”

Missing

17

Prediction

Truth (Fully 
Observed)

Thursday, September 9, 2010



Discussion

• Limitations: 

• computation

• invariance vs. reconstruction trade-off

• alternating space-time vs. joint space-time convolution

• Extensions: 

• attentional mechanisms for gaze planning?

• leveraging feature detection to reduce training data size
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