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Overview

• Monte Carlo basics

• Rejection and Importance sampling

• Markov chain Monte Carlo

• Metropolis-Hastings and Gibbs sampling

• Practical issues

• Slice sampling

• Hamiltonian Monte Carlo
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 Computing Expectations
We often like to use probabilistic models for data.

What is the mean of the posterior?

θ | v ∼ p(θ | v) = p(θ | v) p(θ)
p(v)
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 Computing Expectations
What is the predictive distribution?

What is the marginal (integrated) likelihood?
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 Computing Expectations
Sometimes we prefer latent variable models.

Sometimes these joint models are intractable.

Maximize the marginal probability of data

Saturday, August 14, 2010



 The Monte Carlo Principle

Each of these examples has a shared form:

Eπ(x)[ f(x) ] =

�
f(x)π(x) dx

�
f(x)π(x) dx ≈ 1

S

S�

s=1

f(x(s)) where x(s) ∼ π(x)

Any such expectation can be computed from samples:
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 The Monte Carlo Principle

Example: Computing a Bayesian predictive distribution

We get a predictive mixture distribution:

p(v� | v) =
�

p(v� | θ) p(θ | v) dθ

x = θ, π(x) = p(θ | v), f(x) = p(v� | θ)

p(v� | v) ≈ 1

S

S�

s=1

p(v� | θ(s)) where θ(s) ∼ p(θ | v)
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 Properties of MC Estimators

Monte Carlo estimates are unbiased.

�
f(x)π(x) dx ≈ f̂ ≡ 1

S

S�

s=1

f(x(s)), where x(s) ∼ π(x)

Eπ({x(s)})[ f̂ ] =
1

S

S�

s=1

Eπ(x)[ f(x) ] = Eπ(x)[ f(x) ]

Varπ({x(s)})[ f̂ ] =
1

S2

S�

s=1

Varπ(x)[ f(x) ] = Varπ(x)[ f(x) ] /S

The variance of the estimator shrinks as 1/S

The “error” of the estimator shrinks as 1/
√
S
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Why Monte Carlo?
“Monte Carlo is an extremely bad 
method; it should be used only when 
all alternative methods are worse.”

Alan Sokal
Monte Carlo methods in statistical mechanics, 1996

The error is only shrinking as             ?!?!? Isn’t that bad?

Heck, Simpson’s Rule gives              !!!

How many dimensions do you have?

1/
√
S

1/S4/D
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Why Monte Carlo?
If we have a generative model, we can fantasize data.

This helps us understand the properties of our model and 
know what we’re learning from the true data.

Eye-balling samples

Sometimes samples are pleasing to look at:
(if you’re into geometrical combinatorics)

Figure by Propp and Wilson. Source: MacKay textbook.

Sanity check probabilistic modelling assumptions:

Data samples MoB samples RBM samples
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Generating Fantasy Data
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denoised test images
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Sampling Basics
�

f(x)π(x) dx ≈ 1

S

S�

s=1

f(x(s)) where x(s) ∼ π(x)

We need samples from         .  How to get them?π(x)

Most generally, your pseudo-random number generator is 
going to give you a sequence of integers from large range.

These you can easily turn into floats in [0,1].

Probably you just call rand() in Matlab or Numpy.

Your         is probably more interesting than this.π(x)
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0

1

Inversion Sampling

Π(x) =

� x

−∞
π(x�) dx�

u(s) ∼ Uniform(0, 1) x(s) = Π−1(u(s))

π(x)

u(s)

x(s)
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Inversion Sampling

Good News:

Straightforward way to take your uniform (0,1) variate and 
turn it into something complicated.

Bad News:

We still had to do an integral.

Doesn’t generalize easily to multiple dimensions.

The distribution had to be normalized.
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The Big Picture

So, if generating samples is just as difficult as integration, 
what’s the point of all this Monte Carlo stuff?

This entire tutorial is about the following idea:

Take samples from some simpler distribution         and 
turn them into samples from the complicated thing that 
we’re actually interested in,         .

In general, I will assume that we only know         to within 
a constant and that we cannot integrate it.

q(x)

π(x)

π(x)
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Standard Random Variates
It’s worth pointing out that for lots of simple, standard 
univariate distributions, many tools will already exist for 
generating samples, e.g., randn(), poissrnd(), and 
randg() in Matlab for normal, Poisson and gamma 
distributions, respectively.

Sampling the conditionals

Use library routines for
univariate distributions
(and some other special cases)

This book (free online) explains how
some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html

There is a great book online by 
Luc Devroye with recipes for lots 
of standard distributions.
http://cg.scs.carleton.ca/~luc/rnbookindex.html

Saturday, August 14, 2010

http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://cg.scs.carleton.ca/~luc/rnbookindex.html


5 0 55 0 5

Rejection Sampling

One useful observation is that samples uniformly drawn 
from the volume beneath a (not necessarily normalized) 
PDF will have the correct marginal distribution.

π�(x) = c · π(x)
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5 0 55 0 5

Rejection Sampling

One useful observation is that samples uniformly drawn 
from the volume beneath a (not necessarily normalized) 
PDF will have the correct marginal distribution.

π�(x) = c · π(x)

x(1)x(2) x(3)x(4)x(5)
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5 0 55 0 5

Rejection Sampling
How to get samples from the area?  This is the first 
example, of sample from a simple          to get samples 
from a complicated        . 

q(x)
π(x)

π�(x) = c · π(x)

q(x) ≥ π�(x), ∀x
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Rejection Sampling

1. Choose         and     so that      

2. Sample 

3. Sample

4. If                          keep       , else reject and goto 2.

q(x)

π(x)

c

u(s) ∼ Uniform(0, q(x(s)))

x(s) ∼ q(x)

u(s) ≤ π�(x(s))

q(x) ≥ π�(x) = c · π(x), ∀x

x(s)

If you accept, you get an unbiased sample from         . 

Isn’t it wasteful to throw away all those proposals?
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Importance Sampling

�
f(x)π(x) dx ≈ 1

S

S�

s=1

f(x(s)) where x(s) ∼ π(x)

Recall that we’re really just after an expectation.

We could write the above integral another way:
�

f(x)π(x) dx =

�
f(x) q(x)

π(x)

q(x)
dx

where q(x) > 0 if π(x) > 0
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Importance Sampling

where x(s) ∼ q(x)

�
f(x)π(x) dx =

�
f(x) q(x)

π(x)

q(x)
dx ≈ 1

S

S�

s=1

f(x(s))
π(x(s))

q(x(s))

We can now write a Monte Carlo estimate that is 
also an expectation under the “easy” distribution q(x)

We don’t get samples from         , so no easy visualization 
of fantasy data, but we do get an unbiased estimator of 
whatever expectation we’re interested in.

It’s like we’re “correcting” each sample with a weight.

π(x)
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Importance Sampling

As a side note, this trick also works with integrals 
that do not correspond to expectations.

�
f(x) dx =

�
q(x)

f(x)

q(x)
dx ≈ 1

S

S�

s=1

f(x(s))

q(x(s))

where x(s) ∼ q(x)
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Scaling Up

Both rejection and importance sampling depend 
heavily on having a         that is very similar to 

In interesting high-dimensional problems, it is very 
hard to choose a        that is “easy” and also 
resembles the fancy distribution you’re interested in.

The whole point is that you’re trying to use a 
powerful model to capture, say, the statistics of 
natural images in a way that isn’t captured by a simple 
distribution!

q(x) π(x)

q(x)
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Exploding Importance Weights
Even without going into high dimensions, we can see 
how a mismatch between the distributions can cause 
a few importance weights to grow very large.
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Scaling Up
In high dimensions, the mismatch between the 
proposal distribution and the true distribution can 
really ramp up quickly.  Example:

π(x) = N(0, I) and q(x) = N(0,σ2I)

Rejection sampling requires           and accepts with 
probability        .  For                           the 
acceptance rate will be less than one percent.

σ ≥ 1
σ−D σ = 1.1, D = 50

The variance of the importance sampling weights will 
grow exponentially with dimension.  That means that 
in high dimensions, the answer will be dominated by 
only a few of the samples.
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Summary So Far
We would like to find statistics of our probabilistic 
models for inference, learning and prediction.

Computation of these quantities often involves difficult 
integrals or sums.

Monte Carlo approximates these with sample averages.

Rejection sampling provides unbiased samples from a 
complex distribution.

Importance sampling provides an unbiased estimator of a 
difficult expectation by “correcting” another expectation.

Neither of these methods scale well in high dimensions.
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Revisiting Independence
It’s hard to find the mass of an unknown density!
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Revisiting Independence

Why should we immediately forget that we discovered a 
place with high density?  Can we use that information?

Storing this information will mean that the sequence now 
has correlations in it.  Does this matter?

Can we do this in a principled way so that we get good 
estimates of the expectations we’re interested in?

Markov chain Monte Carlo
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Markov chain Monte Carlo

As in rejection and importance sampling, in MCMC we 
have some kind of “easy” distribution that we use to 
compute something about our “hard” distribution        .

The difference is that we’re going to use the easy 
distribution to update our current state, rather than to 
draw a new one from scratch.

If the update depends only on the current state, then it is 
Markovian.  Sequentially making these random updates 
will correspond to simulating a Markov chain.

π(x)
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Markov chain Monte Carlo

xt−2 xt−1 xt xt+1 xt+2

We define a Markov transition operator T (x� ← x)

The trick is: if we choose the transition operator 
carefully, the marginal distribution over the state at 
any given instant can have our distribution π(x)

If the marginal distribution is correct, then our 
estimator for the expectation is unbiased.
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Markov chain Monte Carlo
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A Discrete Transition Operator

T =




2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0



 T (xi ← xj) = Tijπ =




3/5
1/5
1/5





π T Tπ = π
�

x

T (x� ← x)π(x) = π(x�)

T 100




1
0
0



 =




3/5
1/5
1/5



 = π

TK(x� ← x) > 0
x� : π(x�) > 0 K

is an invariant distribution of     , i.e.  

π Tis the equilibrium distribution of     , i.e.  

T is ergodic, i.e., for all                        there exists a    
such that 

Saturday, August 14, 2010



Detailed Balance
In practice, most MCMC transition operators satisfy 
detailed balance, which is stronger than invariance.

T (x� ← x)π(x) = T (x ← x�)π(x�)
�

x

T (x� ← x)π(x) =
�

x

T (x ← x�)π(x�)

�

x

T (x� ← x)π(x) = π(x�)

x�

x

x�

x
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Metropolis-Hastings
This is the sledgehammer of MCMC.  Almost every 
other method can be seen as a special case of M-H.

Simulate the operator in two steps:

1) Draw a “proposal” from a distribution                 .  
This is typically something “easy” like 

2) Accept or reject this move with probability

q(x� ← x)
N(x� |x,σ2I)

min

�
1,

q(x ← x�)π(x�)

q(x� ← x)π(x)

�

T (x� ← x) = q(x� ← x)min

�
1,

q(x ← x�)π(x�)

q(x� ← x)π(x)

�
The actual transition operator is then
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Metropolis-Hastings

Things to note:

1) If you reject, the new state is a copy of the current 
state.  Unlike rejection sampling, the rejections count.

2)           only needs to be known to a constant.

3) The proposal                   needs to allow ergodicity.

4) The operator satisfies detailed balance.

q(x� ← x)

π(x)
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Metropolis-HastingsMatlab/Octave code for demo

function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);
samples = zeros(D, iters);

state = init;
Lp_state = log_ptilde(state);
for ss = 1:iters

% Propose
prop = state + sigma*randn(size(state));
Lp_prop = log_ptilde(prop);
if log(rand) < (Lp_prop - Lp_state)

% Accept
state = prop;
Lp_state = Lp_prop;

end
samples(:, ss) = state(:);

end

Saturday, August 14, 2010



Effect of M-H Step Size

Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x) -0.5*x*x, 1e3, s));

sigma(0.1)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

99.8% accepts

sigma(1)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

68.4% accepts

sigma(100)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

0.5% accepts
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Effect of M-H Step Size
π(x)

q(x� ← x)

Huge step size = lots of rejections
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Effect of M-H Step Size
π(x)

q(x� ← x)

Tiny step size = slow diffusion

                  steps

L

(L/σ)2
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Gibbs Sampling

One special case of Metropolis-Hastings is very 
popular and does not require any choice of step size.

Gibbs sampling is the composition of a sequence of 
M-H transition operators, each of which acts upon a 
single component of the state space.

By themselves, these operators are not ergodic, but in 
aggregate they typically are.

Most commonly, the proposal distribution is taken to 
be the conditional distribution, given the rest of the 
state.  This causes the acceptance ratio to always be 
one and is often easy because it is low-dimensional.
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Gibbs Sampling
π(x)

q(x�
1 ← x1) = π(x1 |x2)

q(x�
2 ← x2) = π(x2 |x1)
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Gibbs Sampling

qi(x
� ← x) = π(x�

i |xj �=i)δ(x
�
j �=i − xj �=i)

Ti(x
� ← x) = q(x� ← x)min

�
1,

q(x ← x�)π(x�)

q(x� ← x)π(x)

�

q(x ← x�)π(x�)

q(x� ← x)π(x)
=

π(xi |xj �=i)π(x�
i |xj �=i)π(xj �=i)

π(x�
i |xj �=i)π(xi |xj �=i)π(xj �=i)

= 1

π(x) = π(xi |xj �=i)π(xj �=i)
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Gibbs Sampling
Sometimes, it’s really easy: if there are only a small 
number of possible states, they can be enumerated 
and normalized easily, e.g. binary hidden units in a 
restricted Boltzmann machine.

When groups of variables are jointly sampled given 
everything else, it is called “block-Gibbs” sampling.

Parallelization of Gibbs updates is possible if the 
conditional independence structure allows it.  RBMs 
are a good example of this also.
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Gibbs Sampling
Component-wise M-H moves are also allowed, 
inexplicably called “Metropolis-within-Gibbs”.  You will 
not call it this because you recognize that it is silly. 

Despite our earlier criticisms of rejection sampling, it 
can work well in the inner loop of Gibbs sampling.

Off the shelf tools such as WinBUGS and OpenBUGS 
sometimes do this.  If you have a simple model, you 
may just be able to use one of these tools directly.

If you go this route, look into something called 
“adaptive rejection sampling”, which builds a tight hull 
around the distribution on the fly.
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Summary So Far

We don’t have to start our sampler over every time!

We can use our “easy” distribution to get correlated 
samples from the “hard” distribution.

Even though correlated, they still have the correct 
marginal distribution, so we get the right estimator.

Designing an MCMC operator sounds harder than it is.

Metropolis-Hastings can require some tuning.

Gibbs sampling can be an easy version to implement.
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Frequently Asked Questions

• Has my MCMC run long enough yet?

• How should I set M-H parameters?

• Can I adapt my step sizes?

• How many chains should I run?

• Should I use all of the samples?

• How do I diagnose bugs in my code?
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Discarding the “Burn-In”
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Heuristics for Mixing
Empirical diagnostics

Rasmussen (2000)

Recommendations

For diagnostics:
Standard software packages like R-CODA

For opinion on thinning, multiple runs, burn in, etc.

Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.
http://www.jstor.org/stable/2246094

• Plot autocorrelations of scalar variables.

• Plot traces of variables in the model.

• Run several chains from different starting points.

• Examine the “effective number of samples” via R-CODA.

Charles J. Geyer, “Practical Markov chain Monte Carlo”, 
Statistical Science, 7(4) 473-483, 1992.
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Setting M-H Step Sizes

• Typically, this is done via preliminary runs.

• You want an acceptance rate of around 50%.

• You cannot adapt the step size according to the chain’s 
history - it would no longer be Markovian.

• There are adaptive methods, but they are beyond the 
scope of this tutorial.

• Use slice sampling instead.  More on this later.
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How Many Chains?

• Multiple chains are useful for diagnosis.

• Multiple chains allow trivial parallelization.

• All else being equal, run longer.

• “Please tell me how many to use?”  I tend to use either 
one or ten.
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Do I Use All of the Samples?

• Some authors recommend “thinning” and only taking 
every Nth sample from the Markov chain.

• It is true that these samples will be closer to being 
independently from the stationary distribution.

• It is also true that thinning strictly worsens your 
estimator.

• So, don’t thin unless the computational cost is dominated 
by the function whose expectation you are trying to 
evaluate, i.e., thin only if         costs vastly more 
than         .

f(x)
π(x)
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Diagnosing Bugs

• Generate synthetic data (fantasies!) with known 
parameters and see if you can infer them.

• Even better: run the “Geweke Test”.  Generate fantasy 
data as part of your Markov chain and ensure that the 
histograms of your parameters match your priors.

• Think of this as “finite difference validation for MCMC”.

John Geweke, “Getting it Right: joint distribution tests of 
posterior simulators”, JASA 99(467), 799-804, 2004.
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An MCMC Cartoon

Fast

Slow

Easy Hard

Gibbs

Simple M-H
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Monte Carlo
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π�(x) = c · π(x)

Slice Sampling
An auxiliary variable MCMC method that requires almost 
no tuning.  Remember back to the beginning...
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5 0 5

Slice Sampling
Define a Markov chain that samples uniformly from the 
area beneath the curve.  This means that we need to 
introduce a “height” into the MCMC sampler.
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5 0 5x(1) x(2)

Slice Sampling
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Slice Sampling
Define a Markov chain that samples uniformly from the 
area beneath the curve.  This means that we need to 
introduce a “height” into the MCMC sampler.
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Slice Sampling
Sampling the height is easy: simulate a random variate 
uniformly between 0 and the height of your (perhaps 
unnormalized) density function.
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Slice Sampling
Sampling the horizontal slice is more complicated. Start 
with a big “bracket” and rejection sample, shrinking the 
bracket with rejections.  Shrinks exponentially fast!
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Slice Sampling
Unfortunately, you have to pick an initial bracket size.  
Exponential shrinkage means you can err on the side of 
being too large without too much additional cost.
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Slice Sampling
There are also fancier versions that will automatically 
grow the bracket if it is too small.  Radford Neal’s paper 
discusses this and many other ideas.

Radford M. Neal, “Slice Sampling”, Annals of Statistics 31, 
705-767, 2003.

Iain Murray has Matlab code on the web.  I have Python 
code on the web also.  The Matlab statistics toolbox 
includes a slicesample() function these days.  

It is easy and requires almost no tuning.  If you’re currently 
solving a problem with Metropolis-Hastings, you should 
give this a try.  Remember,  the “best” M-H step size may 
vary, even with a single run!
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Multiple Dimensions
One Approach: Slice sample each dimension, as in Gibbs
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Multiple Dimensions
Another Approach: Slice sample in random directions
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Auxiliary Variables
Slice sampling is an example of a very useful trick.

Getting marginal distributions in MCMC is easy: just 
throw away the things you’re not interested in.

Sometimes it is easy to create an expanded joint 
distribution that is easier to sample from, but has the 
marginal distribution that you’re interested in.

In slice sampling, this is the height variable.

p(x, u) = π(x) p(u |x)

π(x) =

�
p(x, u) du = π(x)

�
p(u |x) du
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Auxiliary Variables
The auxiliary variable trick comes up all the time and is 
immensely useful in making many problems easier.

It’s counterintuitive, however: we’re increasing the 
dimensionality of our problem.

Such methods are a continuing area of active research.

Swendsen–Wang (1987)

Seminal algorithm using auxiliary variables

Edwards and Sokal (1988) identified and generalized the
“Fortuin-Kasteleyn-Swendsen-Wang” auxiliary variable joint
distribution that underlies the algorithm.
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An MCMC Cartoon

Fast

Slow

Easy Hard

Gibbs

Simple M-H

Slice 
Sampling

Hamiltonian 
Monte Carlo
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Avoiding Random Walks
All of the MCMC methods I’ve talked about so far have 
been based on biased random walks.

Lbig

Lsmall

You need to go about        to get a 
new sample, but you can only take 
steps around size          , so you have 
to expect it to take about

Hamiltonian Monte Carlo is about 
turning this into 

(Lbig/Lsmall)
2

Lbig

Lsmall

Lbig/Lsmall
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Hamiltonian Monte Carlo
Hamiltonian (also “hybrid”) Monte Carlo does MCMC by 
sampling from a fictitious dynamical system.  It suppresses 
random walk behaviour via persistent motion.

Think of it as rolling a ball along a surface in such a way 
that the Markov chain has all of the properties we want.

Call the negative log probability an “energy”.

π(x) =
1

Z e−E(x)

Think of this as a “gravitational potential energy” for the 
rolling ball.  The ball wants to roll downhill towards low 
energy (high probability) regions.
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Hamiltonian Monte Carlo
Now, introduce auxiliary variables     (with the same 
dimensionality as our state space) that we will call 
“momenta”.

Give these momenta a distribution and call the negative 
log probability of that the “kinetic energy”.  A convenient 
form is (not surprisingly) the unit-variance Gaussian.

ρ

p(ρ) =
1

Z e−K(ρ)

K(ρ) =
1

2
ρTρ

p(x, ρ) ∝ e−E(x)−K(ρ)

As with other auxiliary variable methods, marginalizing out 
the momenta gives us back the distribution of interest.
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Hamiltonian Monte Carlo
We can now simulate Hamiltonian dynamics, i.e., roll the 
ball around the surface.  Even as the energy sloshes 
between potential and kinetic, the Hamiltonian is constant.

The corresponding joint distribution is invariant to this.

p(x, ρ) ∝ e−E(x)−K(ρ)

This is not ergodic, of course.  This is usually resolved by 
randomizing the momenta, which is easy because they are 
independent and Gaussian.

So, HMC consists of two kind of MCMC moves:

1) Randomize the momenta.

2) Simulate the dynamics, starting with these momenta.
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HMC Leapfrog Integration
On a real computer, you can’t actually simulate the true 
Hamiltonian dynamics, because you have to discretize.

To have a valid MCMC algorithm, the simulator needs to 
be reversible and satisfy the other requirements.

The easiest way to do this is with the “leapfrog method”:

ρi(t+ �/2) = ρ(t)− �

2

∂

∂xi
E(x(t))

xi(t+ �) = xi(t) + �ρi(t+ �/2)

ρi(t+ �) = ρi(t+ �/2)− �

2

∂

∂xi
E(x(t+ �))

The Hamiltonian is not conserved, so you accept/reject via 
Metropolis-Hastings on the overall joint distribution.
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HMC Practicalities
You have to decide:

1) How large the simulation steps should be.

2) Either: a) How many simulation steps to take between 
randomizing momenta, or b) How much to perturb the 
momenta after each step.

Tuning these quantities is difficult.  You want the 
trajectories to be of the same order as the longest 
dimension of the distribution, but you need to discretize 
finely enough that you don’t reject too often.

In general, the optimal acceptance rate will be higher than 
that for vanilla Metropolis-Hastings.
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HMC Practicalities

My strategies for implementing HMC:

1) Try slice sampling first.

2) Get the gradients right with finite differences!

3) Tune the trajectory length by tracking distances.

4) Set step size for 80-90% acceptance rate.

5) Actually draw the number and size of steps from 
distributions centred on the results from tuning.

6) Mix in some slice sampling moves for good measure.

Your mileage may vary.
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HMC Practicalities

Radford M. Neal. “MCMC using Hamiltonian Dynamics”. To 
appear in Handbook of Markov chain Monte Carlo. 2010.

http://www.cs.toronto.edu/~radford/ham-mcmc.abstract.html
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Advanced MCMC, Summarized
Slice Sampling

Hamiltonian Monte Carlo
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Overall Summary

Monte Carlo allows you to estimate integrals that may be 
impossible for deterministic numerical methods.

Sampling from arbitrary distributions can be done pretty 
easily in low dimensions.

MCMC allows us to generate samples in high dimensions.

Metropolis-Hastings and Gibbs sampling are popular, but 
you should probably consider slice sampling instead.

If you have a difficult high-dimensional problem, 
Hamiltonian Monte Carlo may be for you.
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Keywords to Google
If you want to ...

... prove that your MCMC has converged? “perfect simulation”

... get better estimates? “Rao-Blackwellization”

... estimate partition functions? “annealed importance sampling”

... sample from doubly-intractable models? “exchange sampling”

... importance sample from time series? “particle filtering”

... alter model dimensionality? “reversible jump Monte Carlo”

... do faster sampling in MRFs? “Swendsen-Wang”

... run MCMC on Gaussian processes? “elliptical slice sampling"
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General References

David MacKay’s Book

Radford Neal’s Review Article

http://www.cs.toronto.edu/~radford/review.abstract.html

Monte Carlo Workshop at NIPS 2010

http://montecarlo.wikidot.com

Chris Bishop’s Book
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