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mean sample ~ p(v|h)
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p(v|h)=N(Wh, I)

p(v|h)=N(Wh, I)

p(v|h)=N(0, (CHC')^-1)

data point sample ~ p(v|h)

structure is 
preserved!
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THIS IS NOT A 
MIXTURE OF 
GAUSSIANS!!
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Example: image with two pixels
v1 v 2

v1

v 2

- assume we subtract off the mean from the image
- most of the times pixels take the same value

- input
- p(v|h)

Why modeling covariance, p(v|h)

- with some exceptions!

x
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With one binary hidden unit 
we can pick the Gaussian 
with the right covariance

This is like PoT
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- input
- p(v|h)

Why modeling both mean and covariance, p(v|h)

with mean
x

x

x

We can produce an even more precise fit by modeling 
the mean.
When data is not centered, this is even more dramatic.



p(v|h)  hiddens determine an image-specific 
mean and an image-specific covariance.

How to modulate mean and covariance using 
hidden units?

pv ,hm , hc∝ exp−E v , hm , hc 
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- less easy generation
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Geometric interpretation
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Geometric interpretation

If we multiply them, we get...
a sharper and shorter Gaussian
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We start by modeling small image patches.

v

h

p(v,h)- v  visibles
- h hiddens



Modeling the covariance only 
(using binary hiddens): cRBM
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C '

v1 v 2

gated MRF

E c v , hc=w1 v1 v2 h1
c ...

Interactions determined by state of latent variables

h1
c



So far we modeled the 
covariance only...

now we add also the mean

E=
1
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v ' 
−1

v−m v

Ranzato Hinton CVPR 2010
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{cRBM

pv∣hc , hm =N   W hm  , 

Conditional over visibles has non-zero mean that 
depends on both sets of hiddens:
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- Looking at 

- relation to PCA, FA, PoT, etc.

- relation to line process and PoT

- relation to conditional 3-way RBM
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Memisevic et al 07
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- Looking at hiddens 
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- Looking at E  v ,h

3rd order BM

- Looking at ph∣v
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- relation to simple-complex cell model



LEARNING

- maximum likelihood
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LEARNING

- maximum likelihood
  - Fast Persistent Contrastive Divergence 
  - Hybrid Monte Carlo to draw samples  

F=- log(p(v)) + K 
Start dynamics from previous 
point,  and temporarily perturb 
weights by a little bit 

sample data
point

ww− − 
∂ F
∂w

∣sample
∂ F
∂w

∣data

Tieleman and Hinton ICML 2009



LEARNING

- maximum likelihood
  - Fast Persistent Contrastive Divergence 
Initialize:

for each training data case do:

  - get training sample: 

  - compute derivatives:

  - draw sample:

  - compute derivatives:

  - update true parameters:

  - update fast weights:

w ,w f , f

v

v− HMC v− ; ww f 

g
=∂ F /∂ w∣

v

g−
=∂ F /∂ ww f ∣v−

ww−g
−g−

w f 0.95w f− f g

−g−


Tieleman and Hinton ICML 2009



Experiments
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 Learn from 16x16 natural image patches
 pre-processing: PCA whitening

mean intensity filters 

v1 v 2
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The latent configuration induces a whole subspace of images.

The latent representation learns to be robust to small 
distortions.

1) given image -> infer latent variables using p(h|v)
2) keeping latent variables fixed, sample from p(v|h) 
 
 random walk in input space sampling p(v|h) x

ooooooo



Example of image patches used during training



Samples drawn from the model (using HMC)
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Comparison

Natural 
images

mcRBM

GRBM

S-RBM + DBN
from Osindero and Hinton NIPS 2008

from Osindero and Hinton NIPS 2008



From patches to big images

Training by picking 
patches at random



From patches to big images

But we could also take 
them from a grid

This is not a good way to extend the 
model to big images: block artifacts
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From patches to big images

But a subset of filters 
applied to these patches 
and... 
other subsets applied to 
shifted grids

no block artifacts & little redundancy

Gregor LeCun 2010, our paper in submission
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Learning on high-resolution images

mean filters 
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Sampling high resolution images

Sampling starting from 
natural image
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Conclusion

 3-way Boltzmann Machines
 Joint model: fast inference, easy to interpret conditionals

 It generates very realistic samples

 Training is hard because of partition function
 

 Future: 
 applications: segmentation, denoising
 multi-scale
 we'll make it DEEPER!!
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www.cs.toronto.edu/~ranzato


