Generalized Noise Contrastive Estimation

Miika Pihlaja

Joint work with Michael Gutmann and Aapo Hyvärinen

University of Helsinki Dept. of Mathematics and Statistics, Dept. of Computer Science & HIIT

Motivation - Unnormalized statistical model

- Want to estimate a parameterized model for the data pdf $p_d(\mathbf{x})$ of r.v. X from N_d i.i.d. observations $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{N_d})$
- An unnormalized probabilistic model $p_m^0(\mathbf{x}; \theta)$ is a model for $p_d(\mathbf{x})$ which does not integrate to one for all θ
- It defines a normalized model via

$$p_m(\mathbf{x}; \theta) = \frac{p_m^0(\mathbf{x}; \theta)}{Z(\theta)},$$
 $Z(\theta) = \int p_m^0(\mathbf{x}; \theta) d\mathbf{x}$

- Computing the value of partition function $Z(\theta)$ is often not feasible. \Rightarrow Want to estimate parameters θ without having to compute $Z(\theta)$
- Applications: Estimating parameters of MRFs, multilayer network models . . .

Why Maximum Likelihood is problematic

In MLE, partition function cannot be ignored, toy example follows

Estimate the variance of Gaussian

$$x \sim \mathcal{N}(0, \sigma^2),$$

$$p_m(x; \sigma^2) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{Z(\sigma^2)} \exp(-\frac{x^2}{2\sigma^2})$$

log-likelihood includes the partition function $\Rightarrow Z(\sigma^2)$ must be computed

$$\ell(\sigma^2) = -\left(\Sigma_i x_i^2\right) / (2\sigma^2) - N_d \log \mathbf{Z}(\sigma^2)$$

• could we plug it in as another parameter, $c = -\log Z(\sigma^2)$

$$\ell(\sigma^2, c) = -\left(\Sigma_i x_i^2\right)/(2\sigma^2) + N_d c$$

• No, $\ell(\sigma^2, c) \to \infty$ as $c \to \infty$, problem not well defined

Maximum Likelihood as variational problem

• We want to find density f which minimizes $D_{KL}(p_d||f)$

$$\int p_d(x) \log \frac{p_d(x)}{f(x)} dx = \int p_d(x) \left(\log p_d(x) - \log f(x) \right) dx$$

Equivalently we can maximize objective

$$J(f) = \int p_d(x) \log f(x)$$

Need constraints for f - positive and integrates to 1

$$J(f) = \int p_d(x) \log f(x) + \lambda (\int f(x) - 1) dx$$

$$\frac{\delta J}{\delta f} = \frac{p_d}{f} + \lambda$$

Setting the derivative to zero and solving $\lambda = -1$, we find $f = p_d$

Maximum Likelihood as variational problem

• Knowing $\lambda = -1$, we can write the objective simply as

$$J(f) = \int p_d(x) \log f(x) - \int f(x) dx$$

- We have transformed the constrained minimization of KL-divergence to an unconstrained optimization problem
- But we still need to compute the second integral Introduce auxiliary density $p_n(x)$, use Importance Sampling

$$J(f) = \int p_d(x) \log f(x) - \int p_n(x) \frac{f(x)}{p_n(x)} dx$$

• *Problem*: ratio $f(x)/p_n(x)$ can have very large values \Rightarrow large variance in estimation

Generalization to a family of estimators

Replace \log and identity by two nonlinear functions $g_1, g_2 : \mathbb{R}_+ \to \mathbb{R}$

$$J(f) = \int p_d(x) \underbrace{\log f(x)}_{g_1\left(\frac{f(x)}{p_n(x)}\right)} - \int p_n(x) \underbrace{\left(\frac{f(x)}{p_n(x)}\right)}_{g_2\left(\frac{f(x)}{p_n(x)}\right)} dx$$

$$J(f) = \int p_d(x)g_1\left(\frac{f(x)}{p_n(x)}\right) - \int p_n(x)g_2\left(\frac{f(x)}{p_n(x)}\right)dx$$

Theorem

If $g_1()$ and $g_2()$ are strictly increasing and fulfill

$$\frac{g_2'(x)}{g_1'(x)} = x,$$

then (under some regularity conditions) I(f) attains it's maximum exactly when $f = p_d$

Breaman divergence view

• Bregman divergence between $p_d(x)$ and f(x) generated by convex function U is defined as

$$D_{U}[p_{d},f] = \int U(p_{d}(x)) - U(f(x)) - U'(f(x))(p_{d}(x) - f(x)) dx$$

Define a scaled Bregman divergence¹

$$D_{U}^{p_{n}}(p_{d},f) = \int p_{n} \left[U\left(\frac{p_{d}}{p_{n}}\right) - U\left(\frac{f}{p_{n}}\right) - U'\left(\frac{f}{p_{n}}\right) \left(\frac{p_{d}}{p_{n}} - \frac{f}{p_{n}}\right) \right] dx$$

Denote by V the Fenchel-Legendre conjugate of U, then

$$-D_{U}^{p_{n}}(p_{d},f) = \int p_{d} \underbrace{U'(\frac{f}{p_{n}})} - \int p_{n} \underbrace{V(U'(\frac{f}{p_{n}}))}_{g_{2}(\cdot)} dx$$

¹ Stummer & Vajda, arXiv:0911.2784 (2009)

Estimation in practice

• To estimate unnormalized $p_m^0(\mathbf{x}; \alpha)$ model and its normalizing constant, we define

$$\log p_m(\mathbf{x}; \theta) = \log p_m^0(\mathbf{x}; \alpha) + \mathbf{c}$$
 with $\theta = \{\alpha, \mathbf{c}\}$

And need to maximize

$$J(\theta) = \int p_d(\mathbf{x})g_1\left(\frac{p_m(\mathbf{x},\theta)}{p_n(\mathbf{x})}\right) - \int p_n(\mathbf{x})g_2\left(\frac{p_m(\mathbf{x};\theta)}{p_n(\mathbf{x})}\right)d\mathbf{x}$$

 Compute empirical expectations with samples $(\mathbf{x}_1,\ldots,\mathbf{x}_{N_d})$ from p_d and $(\mathbf{y}_1,\ldots,\mathbf{y}_{N_u})$ from p_n

$$J(\theta) = \frac{1}{N_d} \sum_{i=1}^{N_d} g_1\left(\frac{p_m(\mathbf{x}_i; \theta)}{p_n(\mathbf{x}_i)}\right) - \frac{1}{N_n} \sum_{j=1}^{N_n} g_2\left(\frac{p_m(\mathbf{y}_j; \theta)}{p_n(\mathbf{y}_j)}\right)$$

• Estimate $\hat{\theta}$ by maximizing $I(\theta)$

Estimation in practice

Theorem

Estimator $\hat{\theta}$ is consistent and asymptotically normal, $\sqrt{N_d}(\hat{\theta} - \theta^*) \sim \mathcal{N}(0, \Sigma_{\sigma})$

- Family of estimators parameterized by the choice of
 - auxiliary density p_n
 - nonlinearities $g_1()$ and $g_2()$ (fixing one determines the other)
 - size of auxiliary sample N_n and possibly data sample N_d
- We can try to minimize MSE

$$\mathbf{E}_d \| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star} \|^2 = \operatorname{tr}(\boldsymbol{\Sigma}_{g}) / N_d$$

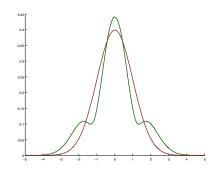
by choosing these carefully

Choice of auxiliary distribution p_n

- We would like $p_n(\mathbf{x})$ to fulfill following properties
 - Easy to sample from
 - Easy to evaluate for any x
 - Give small MSF for the estimator
- For the importance sampling case $g_1(x) = \log x$ and $g_2(x) = x$, we have expression for optimal p_n

$$p_n(\mathbf{x}) \propto \|\mathfrak{I}^{-1}\psi(\mathbf{x})\| p_d(\mathbf{x})$$

where $\psi = \nabla_{\theta} \log p_m(\mathbf{x}; \theta^*)$ is a score function evaluated at true parameter value and I is a generalization of Fisher information matrix



In practice, use e.g. multivariate Gaussian

Choice of nonlinearities $g_1()$ and $g_2()$

Some examples of nonlinearities

Importance Sampling

$g_1(q)$	$g_2(q)$	Objective $J_g(\theta)$	$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{g}}(\boldsymbol{\theta})$
$\log q$	q	$E_d \log p_m - E_n \frac{p_m}{p_n}$	$E_d \psi - E_n \frac{p_m}{p_n} \psi$

Noise Contrastive²

$$\log(\frac{q}{1+q}) \qquad \log(1+q) \qquad \operatorname{E}_d \log(\frac{p_m}{p_m+p_n}) + \operatorname{E}_n \log(\frac{p_n}{p_m+p_n}) \qquad \operatorname{E}_d\left(\frac{p_n}{p_m+p_n}\right) \psi - \operatorname{E}_n\left(\frac{p_m}{p_m+p_n}\right) \psi$$

Inverse Importance Sampling

$$-rac{1}{q}$$
 $\log q$ $-\operatorname{E}_d rac{p_n}{p_m} - \operatorname{E}_n \log p_m$ $\operatorname{E}_d rac{p_n}{p_m} \psi - \operatorname{E}_n \psi$

Importance Sampling

$g_1(q)$	$g_2(q)$	Objective $J_g(\theta)$	$\nabla_{\boldsymbol{\theta}} J_{g}(\boldsymbol{\theta})$
log q	q	$E_d \log p_m - E_n \frac{p_m}{p_n}$	$E_d \psi - E_n \frac{p_m}{p_n} \psi$

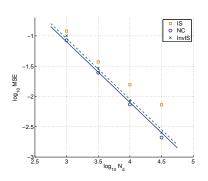
Noise Contrastive³

Estimation of Independent Component Analysis model

- ICA model: $\mathbf{x} = \mathbf{A}\mathbf{s}$, $\mathbf{B} = \mathbf{A}^{-1}$
- independent Laplacian sources s_i , $\mathbf{x} \in \mathbb{R}^4$ $dim(\theta) = 17$

$$\log p_d(\mathbf{x}) = -\sum_{i=1}^4 \sqrt{2} |(\mathbf{b}_i^*)^T \mathbf{x}| - \log 4 |\mathbf{A}|$$

$$\log p_m(\mathbf{x}; \boldsymbol{\theta}) = -\sum_{i=1}^4 \sqrt{2} |\mathbf{b}_i^T \mathbf{x}| + c$$

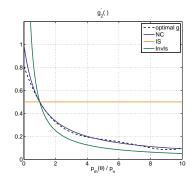


See [Gutmann & Hyvärinen, AISTATS 2010] for simulations with real data and more complex models

Optimal nonlinearities $g_1()$ and $g_2()$ for ICA model

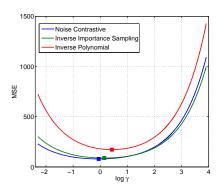
$$J(\theta) = \int p_d g_1(p_m/p_n) - \int p_n g_2(p_m/p_n) ,$$

- Using Gaussian noise as p_n , we can numerically optimize $g_2()$
- With super-Gaussian ICA-model and Gaussian noise, $g_1(\cdot)$ and $g_2(\cdot)$ of Noise Contrastive estimation are very close to optimal!



Optimal ratio of data and auxiliary samples

- Can analyze how the estimator behaves when we change the ratio of data and auxiliary sample $\gamma=\frac{N_d}{N_n}$
- We can solve the optimal γ in the ICA model, when $N_{tot} = N_d + N_n$ is kept fixed.



Conclusions

- Maximum Likelihood estimation computationally problematic for unnormalized models
- We propose simple, computationally efficient family of objective functions, including Noise Contrastive Estimation as a special case
- Depends on design parameters: auxiliary density p_n , nonlinearities $g_1()$ and $g_2()$ and ratio of data and auxiliary sample sizes
- For more details [Pihlaja, Gutmann & Hyvärinen, UAI 2010; Gutmann & Hyvärinen, AISTATS 2010