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Learning about vision

It’s a really hard problem.

We have made progress

...but we are still confronted with profound mysteries

and some of the most important questions have not 
yet been asked.
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The approach of David Marr
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What do these patterns depict?

(from Kersten & Yuille, 2003)
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lens

ImageWorld Model

Vision as inference
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Nervous systems are difficult to penetrate
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Anatomy of a 
synapse
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Inner life of the cell
http://multimedia.mcb.harvard.edu/
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Progress
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Adaptive optics retinal circuitry

Functional imaging and multiple unit recording

Natural scene statistics and visual coding

Computer vision: multiple-view geometry
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Adaptive Optics Scanning Laser Ophthalmoscope

Yuhua 
Zhang

Austin
Roorda
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Human retina - cone mosaic
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Human fixational eye movements
(Austin Roorda, UCB)
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HI horizontal cell
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HI horizontal cells connected via gap junctions

Thursday, August 12, 2010



Lateral inhibition:
activation of one photoreceptor inhibits 

neighboring photoreceptors

- - - -----
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--

Bipolar cells read out differences between one 
photoreceptor’s activity and its neighbors as 

computed by horizontal cell network
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Human visual cortex
(Wandell, Dumoulin, & Brewer, 2007)

Thursday, August 12, 2010



frontal faces, 64 nonface objects and 16 scrambled patterns (Fig. 1b;
examples of stimuli are shown in Supplementary Fig. 1). Across the
population, 94% of the cells were face selective (Fig. 1b).
We then compared the responses of middle face patch neurons to

cartoon faces and to real faces. We recorded responses of 66 cells to
images of 16 real faces, 16 nonface objects, 16 cartoon faces and 16
isolated parts of cartoon faces. The cartoon faces were constructed from
seven elementary parts (hair, face outline, eyes, irises, eyebrows, mouth
and nose) whose shape and position were matched to those in the real
faces (examples are shown in Supplementary Fig. 1). Across the
population, the mean response magnitude to cartoon faces was 83%
of the response to real faces, whereas the mean response to nonface
objects was 17% and the response to cartoon parts was 24% of the
response to real faces (Fig. 1c). Response ranges to real and cartoon
stimuli were largely overlapping; all but one cell responded more to at
least one cartoon face than to one of the real faces, and a cartoon face
elicited the best or second best response in 45% of the cells. Further-
more, the selectivity of cells for real and cartoon faces was correlated
(r ¼ 0.62, P o 0.001) and response time courses were similar (mean
correlation across cells, r ¼ 0.90, P o0.001; Fig. 1c). Thus, although
cartoon faces lack many of the details found in real faces, such as
pigmentation, texture and three-dimensional structure, they constitute
effective substitutes to middle face patch neurons. Therefore it is
appropriate to use cartoon stimuli to probe the detailed mechanisms
of face representation by these neurons (in addition, Supplementary
Fig. 1 provides psychophysical data that our cartoon stimuli success-
fully captured essential aspects of face identity).

Face detection: selectivity for face parts
Cartoon faces can easily be decomposed into parts (without introduc-
ing additional edges, as would be the case with cutting up images of real
faces) and therefore are ideally suited for studying the mechanisms of
face detection. We presented a set of all 128 (27) possible decomposi-
tions of a seven-part cartoon face to 33 middle face patch neurons

(Fig. 2a; stimuli are shown in Supplementary
Fig. 1). ANOVA revealed that, across the
population, cells were directly influenced

by at least one, and at most four, face parts (Fig. 2b). This first order
effect explained half of the response variance (52%) on average.
In addition, a majority of cells (78%) showed significant pair-wise
interactions between their part responses (P o 0.005; Fig. 2b); these
second order effects explained an additional 18% of the variance. This
dependence of responses on multiple parts and part interactions shows
that middle face patch neurons are not simple feature detectors.
However, because 70% of the response variance was explainable by
first and second order effects alone, middle face patch cells are not
highly nonlinear holistic cells either.
Notably, middle face patch neurons did not have a single best

stimulus that uniquely elicited the maximum firing rate. In particular,
the response magnitude to whole cartoon faces was only 42% of that
of the summed response to the seven face parts on average (Fig. 2c; see
ref. 8). As a consequence, the same cell often fired at its maximum rate
to both the whole face and to a variety of partial faces (Fig. 2d), a
property that is useful for face detection.

Face differentiation: encoding of facial features
In the previous experiment, we determined selectivity for the presence
of various face parts. We next investigated selectivity for the geometric
shape of various face parts (for example, nose width). For this purpose,
we used the same cartoon face stimulus described above (comprising
seven parts), but now specified the geometry of parts and part relations
by 19 different parameters, each with 11 values (six of these parameters
are illustrated in Fig. 3a and all 19 parameters are listed in Fig. 3b and
are defined in the Online Methods). The stimulus was presented in
rapid serial visual presentation mode, with each parameter being
updated randomly and independently every 117 ms (Supplementary
Video 1). This approach allowed us to probe in detail the mechanisms
by which cells distinguish different faces.
We first asked whether cells in the middle face patch are tuned to

simple facial features. For each stimulus dimension, we computed a
time-resolved tuning curve (see Online Methods and Supplementary
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Figure 1 Selectivity of the middle face patch for
real and cartoon faces. (a) fMRI-defined middle
face patches (P o 10"4) shown on coronal slices
(millimeters anterior to inter-aural line indicated
in bottom left) for the three monkeys used in this
study (monkeys A, T and L from top to bottom),
with recording sites marked by electrode icons.
(b) Top, response profiles of all 286 cells tested
with 96 pictures of faces, bodies, fruits, gadgets,
hands and scrambled patterns (16 images per
category, one example per category is shown) and
average normalized population responses (bar
graph). Bottom, distribution of face-selectivity
indices. 268 of 286 neurons (94%) were face
selective (that is, face-selectivity index larger than
1
3 or smaller than " 1

3, dotted lines). Out of the
subset of 241 neurons that met the stringent
criterion for visual responsiveness (see Online
Methods), 230 (95%) were face selective. (c) Top,
face and cartoon selectivity of 66 cells tested with
64 images of faces, gadgets, cartoons and cartoon
face parts (data are presented as in b). Bottom,
time course of population response to four
stimulus categories: faces, gadgets, cartoons and
cartoon parts. Stimuli were presented for 200 ms
and separated by 200-ms interstimulus intervals.
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Face feature spaces
(Freiwald, Tsao & Livingstone 2009)
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Intermediate-level vision

(Nakayama, He & Shimojo 1995)
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Natural scene statistics and visual coding

2384 J. Opt. Soc. Am. A/Vol. 4, No. 12/December 1987

IMAGE ANALYSIS

Methods
The six scenes used in this study were photographed with a
Keystone 3572 camera (35 mm) using XP1 Kodak mono-
chrome film. The scenes were taken from various places
around England and Greece. No attempt was made to se-
lect particular types of scene, but images were chosen that
had no artificial objects (buildings, roads, etc.). Although it
was hoped that these scenes were typical natural scenes, no
effort was made to ensure this, and they may therefore rep-
resent biased samples.

The negatives were digitized on a laser densitometer
(Joyce Loebel) into 256 X 256 pixels with a depth of 8 bits/
pixel (256 density levels). The images were analyzed on a
Sun Workstation computer using conventional software de-
veloped by the author.

Calibration
The modulation transfer function (MTF) of the optical sys-
tem (lens and developing process) was determined from the
response of the system to a point source. A photograph of a
point source was taken with the same camera and film, and
the negative was developed in the same manner as the six
natural scenes. The results described below were corrected
in accordance with this MTF.

IMAGE ANALYSIS: AMPLITUDE SPECTRA OF
NATURAL IMAGES
In this section we discuss a particular property of natural
images as illustrated by their amplitude or power spectra.
This topic is discussed in greater detail in another paper.
However, since the conclusions of this section play an impor-
tant part in the next section, it is discussed briefly here.

Natural images, on the whole, appear to be rather com-
plex. They are filled with objects and shadows and various
surfaces containing various patterns at a wide range of orien-
tations. Amid this complexity, it may seem surprising that
such images share any consistent statistical features. Con-
sider the six images shown in Fig. 6. Such images may seem
widely different, but as a group they can be easily distin-
guished from a variety of other classes of image. For exam-
ple, random-dot patterns are statistically different from all
six of these natural images. This difference is best de-
scribed in terms of the amplitude spectra or power spectra of
the images, where the amplitude spectrum is defined as the
square root of the power spectrum.

The two-dimensional amplitude spectra for two of the six
images are shown in Fig. 7. The spectra of these images are
quite characteristic and are quite different from that of
white noise, which is by definition flat. They show greatest
amplitude at low frequencies (i.e., at the center of the plot)
and decreasing amplitude as the frequency increases. The

f

A B C

D E F
Fig. 6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only
the central region was directly analyzed (160 X 160). See the text or details.

David J. Field

Aa:.:i

(Field 1987)
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Which two images are the same?
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Which two images are the same?
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Whitening (or decorrelation) theory
(Atick & Redlich, 1992)
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Features learned from sparse coding of natural 
images resemble V1 simple cell receptive fields

(Olshausen & Field 1996)
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statistics coding strategy

contrast histogram histogram equalization

neurobiological 
substrate

photoreceptors/
bipolar cells

autocorrelation
function

whitening retina/LGN

sparse components localized, oriented, bandpass
feature decomposition V1 ‘simple cells’

amplitude
components

phase components

texture coding V1/V2 
‘complex cells’

motion coding MT
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Computer vision - multiple view geometry
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Mysteries
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Tiny nervous systems

Neocortical microcircuit

Neuronal oscillations

Computer vision: action-perception loops
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Jumping spiders
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Jumping spider visual system
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Jumping spider retina

horizontal section photoreceptor array
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Jumping spiders do object recognition
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One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)
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One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)
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One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)
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One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)
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Philanthus triangulum 
(sand wasp)

(See Curious Naturalists, 
by Niko Tinbergen)
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What is the function of the cortical 
microcircuit?
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V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)
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Learned 
dictionary 

10x
overcomplete
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The “standard model” of  V1

Image

I(x,y,t)

K(x,y,t)

Receptive field

+
-

-
linear 
response -  or  / 

Response
normalization

Pointwise
non-linearity

neighboring 
neurons

r(t)

Response
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Cortex

LGN

Single unit recording is blind to neuronal interactions

...their (neurons') apparently erratic behavior was caused by our 
ignorance, not the neuron's incompetence.   --  H.B. Barlow (1972)
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be difficult to achieve ([71]; see also Figure 7 in [72]). The
precise lower limit on compartment size in the thin
dendrites of pyramidal cells remains to be determined,
perhaps through the use of voltage-sensitive dyes [73] and
highly focal uncaging techniques [74].

Getting at the inner neuron
What are the implications of these findings for single-
neuron computation? Could there be an underlying prin-
ciple that permits the full complexity of a dendritic tree to
be represented in highly simplified terms? The available
data suggest that the thin terminal branches of the apical
and basal trees of pyramidal cells provide a set of inde-
pendent non-linear ‘subunits’ that sum up their synaptic
inputs and then apply a sigmoidal thresholding non-
linearity to the output. In this scenario, how should the
outputs of multiple subunits be combined to influence
the cell’s overall response? In the few experimental
studies that have addressed the question of location
dependent synaptic summation, so far only involving

simple spatial integration scenarios, the data are most
consistent with a linear or sublinear summation rule for
signals that originate in different dendritic branches
[30,75–78]. Building on these findings, one can formulate
a working model in which the thin branches are the
integrative subunits of pyramidal neurons. According to
this model, each thin-branch subunit sums up its synaptic
drive and then applies a sigmoidal thresholding non-
linearity to the result, and the subunit outputs are
summed linearly within the main trunks and cell body
before output spike generation. This hypothesis is inter-
esting, in that it states that an individual pyramidal
neuron functions something like a conventional two-layer
abstract ‘neural network’ [12], in which the thin dendritic
branches themselves act like classical point neurons
(Figure 3b).

Poirazi and co-workers [79!!] used a detailed CA1 pyr-
amidal cell model [80!] to test the two-layer neural net-
work hypothesis. The authors used a complex set of

Figure 3

!i

!jPerisomatic
thin branches

Thin branch
subunits

!i

y1

y2

Distal apical
thin branches

2-Layer model

3-Layer model

(a) (b)

(c)

Current Opinion in Neurobiology

Simplified models of pyramidal cells. (a) CA1 pyramidal cell morphology [123]. A grey triangular soma was added for clarity. (b) Two-layer sum-of-
sigmoids model as discussed by Poirazi et al. [79!!]. All thin branches are treated as independent subunits with sigmoidal thresholds whose outputs
are summed linearly in the main trunks and cell body. Small grey circles labelled ai represent subunit weights, which might vary as a function of
location or branch order. (c) A next generation single neuron model could include a multiplicative interaction between proximal and distal integrative
regions of the cell. Overall output of such a three-layer model might be expressed using the form y1 þ ay2.

Dendrites, bug or feature? Häusser and Mel 377

www.current-opinion.com Current Opinion in Neurobiology 2003, 13:372–383

Dendritic nonlinearities
(Hausser & Mel, 2003)
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(Olshausen & Field, Neural Computation, 2005)
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Silicon polytrodes
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V4

LGN

V1 V2

IT

retina

What is the role of cortico-cortical and 
thalamo-cortical feedback?

pulvinar
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Neuronal oscillations are prevalent in sensory 
systems throughout the animal kingdom

Proc. Natl. Acad. Sci. USA 86 (1989) 1699

responses and the relationship between the two signals: the
autocorrelation function (ACF) of the MUA, the power
spectrum ofthe fast Fourier transform of the LFP, the spike-
triggered average of the LFP, and the orientation tuning
curves of both the MUA and the LFP.

Multiunit histogram tuning curves were computed by
counting the number of spikes within a 1-sec interval cen-
tered on the peak of the response. Tuning curves of the LFP
amplitudes were computed by integrating the average power
spectrum within a frequency range of 25-65 Hz. This choice
of frequency range was based on the finding that the average
peak frequency of the stimulus-evoked LFP was near 40 Hz.
Power spectra were computed on each trial from data
samples of 1-sec duration taken at a latency of 0 sec for
control and at latencies centered on the peak of the multiunit
responses for both directions of stimulus movement.
For calculating the spike-triggered averages ofthe LFP the

signals were first divided into two 5-sec epochs for each
direction of stimulus movement and then digitally bandpass-
filtered at 20-80 Hz to retain only the stimulus-evoked
frequency components. The resultant distributions ofvoltage
values were then normalized to their Z scores by subtracting
the mean and dividing by the standard deviation (SD) of the
LFP voltages recorded during each epoch. Each occurrence
of a spike in the signal filtered for multiunit recording was
then used as a trigger point to compute the average distri-
bution of the LFP voltage + 50 msec in time centered on the
occurrence of the spikes. The resultant spike-triggered av-

A B

CO

C

wIOR

cLL:DF--J
02

---T-2I 00 uV
100 uV

500 ms
20 ms

erages were expressed in units of the SD of the LFP voltage
at a resolution of 0.1 SD.
To further reveal the temporal structure of the LFP

responses a finer grained spectral analysis was performed on
selected sets of individual trials. The LFP signal from each
trial was subdivided into forty 256-msec epochs, and the
power spectrum was computed for each epoch. The resulting
set of 40 power spectra were displayed as a compressed
spectral array for each trial.

RESULTS
A typical response of both the MUA and LFP recorded from
area 17 in an adult cat is shown in Fig. 1A. When a light bar
of optimal orientation, velocity, and preferred direction of
movement was passed through the receptive field of the
recorded neurons we consistently observed a rhythmic firing
pattern in the neuronal spike train that was associated with a
high-amplitude oscillation of the LFP. Close examination of
the records revealed that the spikes occurred during the
negative phase of the LFP oscillations (Fig. LA, lower two
traces). Computation of the power spectra of the LFPs
demonstrated that the oscillatory activity was clearly stim-
ulus-dependent (Fig. 1C). In the absence of a sensory
stimulus in the receptive field the spontaneous activity of the
neurons was associated with large amplitude fluctuations of
the LFP in the frequency range of 1-10 Hz. The presentation
of an optimal stimulus in the receptive field evoked a broad

4 6
TIME (sec)

FREQUENCY (Hz)

FIG. 1. MUA and LFP responses recorded from area 17 in an adult cat to the presentation of an optimally oriented light bar moving across
the receptive field. (A) Oscilloscope records ofa single trial showing the response to the preferred direction ofmovement. In the upper two traces,
at a slow time scale, the onset of the neuronal response is associated with an increase in high-frequency activity in the LFP. The lower two
traces display the activity at the peak of the response at an expanded time scale. Note the presence of rhythmic oscillations in the LFP and
MUA (35-45 Hz) that are correlated in phase with the peak negativity of the LFP. Upper and lower voltage scales are for the LFP and MUA,
respectively. (B) Poststimulus time histogram of the MUA recorded over 10 trials illustrating a clear directional preference (PPS, pulses per
second). (C) Average LFP frequency spectra computed from 1-sec data epochs (1024 points) over 10 trials at three separate latencies after the
onset of each trial [control = 0 sec, direction 1 (DIR1) = 2.2 sec, direction 2 (DIR2) = 7.0 sec]. The LFP signals were digitally lowpass-filtered
at 80 Hz. As the stimulus passes through the receptive field there is a simultaneous reduction of low frequencies and an increase in amplitude
of high frequencies in the LFP that is more pronounced for the preferred direction of movement.

Neurobiology: Gray and Singer

promiscuous KCs could occur simultaneously on
the same tetrode, which indicates that differ-
ences in tuning width were not caused by
global modulation of excitability over time.

Response intensity. Response patterns and
intensities differed in PNs and KCs. Whereas

PN responses often lasted several seconds (Fig.
1A), KC responses were brief and lacked the
slow temporal patterning typical of PNs (Fig.
1B). Using responsive cell-odor pairs, we
counted action potentials produced by PNs and
KCs over the 3-s window after stimulus onset.

The distribution of PN spike counts over that
period was broad, with a mean of 19.53 !
10.67 spikes. KCs responded with 2.32 !
2.68 spikes (Fig. 2A) (38). We found a
negative correlation between KC spike count
and response selectivity (Spearman-ranked

Fig. 1. In vivo tetrode recordings
of odor responses in PNs (A and
C) and KCs (B, D, and E). Shaded
area, odor puff (1 s). (A) Re-
sponses of three simultaneously
recorded PNs (PN1 to PN3) to
16 different odors (first 10 trials
with each stimulus displayed,
top to bottom). Odors from top,
left column: hpo, don, che, hx3,
unn, min, oca, pnn; right column:
chx, oco, nnn, thx, 2hp, nna, 3hp,
hxo (37). Abbreviations are as
follows: 1-hexen-3-ol (hx3),
trans-2-hexen-1-ol (thx), cis-3-
hexen-1-ol (chx), 1-hexanol (hxo),
1-heptanol (hpo), 1-octanol (oco),
hexanal (hxa), heptanal (hpa), oc-
tanal (oca), nonanal (nna), 3,7-
dimethyl-2,6-octadiene-nitrile
(don), 3-pentanone (pnn), 2-hep-
tanone (2hp), 3-heptanone (3hp),
5-nonanone (nnn), 6-undecanone
(unn), cherry (che), mint (min),
geraniol (ger), vanilla (van), citral
(cit), apple (app), strawberry (str),
amylacetate (ama), benzaldehyde
(bnh), methyl salicylate (mts), eu-
genol (eug), L-carvone (lca), D-
carvone (dca), dihydro-myrcenol
(dhm). (B) Responses of 3 KCs to
the same 16 odors. Conditions
are the same as in (A) with the
following exceptions: for six of
the odors, KC1 and KC2 have only
five trials; in KC2, the seventh
odor in the right column is hxa.
(C) Expanded view of PN1 rasters
in response to hxo (trials 3 to 15).
Note alignment of spikes. (D) Re-
sponse of a fourth KC to hx3
(trials 3 to 15). Note low baseline
activity and alignment of first
spike in the response across trials.
(E) Response of a fifth KC with
superimposed LFP, recorded in
the MB (10- to 55-Hz bandpass).
Note phase-locking of KC spikes.
LFP " 400 #V.

R E S E A R C H A R T I C L E S

19 JULY 2002 VOL 297 SCIENCE www.sciencemag.org360

Locust olfactory system
(Laurent lab)

Cat V1
(Gray & Singer)
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LGN neurons phase-lock to retinal oscillations
(recordings from Hirsch lab, USC)

A B

C D

Figure 4: Multiplexed information in the visual system. (A) Event times aligned to

stimulus onset displayed as averaged spike rate (red curve) and rasters for spikes (red), and

EPSPs (blue) for 20 trials of a movie clip; spike rasters were smoothed with a Gaussian win-

dow (σ=2 ms) before averaging. (B) Responses corrected for variation in latency ±10 ms

by using periodicity in the ongoing activity that preceded stimulus onset; conventions as in

A. (C) Top, power spectrum of thalamic spike trains decomposed into signal (solid line)

and noise (dashed line). Bottom, spectral information rate. The area under the curve cor-

responds to a total information rate of 12.7 bit/s; the mean spike rate 29 spikes/s yields a

value of 0.4 bit/spike. (D) Power spectrum (top) of de-jittered spike train decomposed into

signal (solid line) and noise (dashed line); spectral information rate (bottom). De-jittering

increased the total information from 0.4 bit/spike (C) to 1.2 bit/spike (Koepsell et al.,

2009). The movie stimulus was presented with 30 frames/s on a monitor with a high refresh

rate (150 Hz). The neural response did not lock to the frame update or monitor refresh.

increase the amount of information about local retinal features transmitted by the thalamic

rate code. They would do so by a process akin to amplitude modulation, in which information

about the retinal feature is reproduced in the frequency band of the oscillations. This

redundant information could be read out and decoded in the cortex by various mechanisms,

such as coincidence detection of afferent inputs or by the relative phase of the thalamic and

cortical oscillations. A specific role for the second channel could be de-noising. Further,

the amplitude modulation of the afferent spike train generates a signal that might enable

cortical oscillations (e.g., by adjusting relative phases of the two oscillations) to route sensory

information or to direct attention to a particular feature. (For discussion of potential roles of

cortical oscillations in analyzing afferent input, see (Buzsaki and Draguhn, 2004; Sejnowski

and Paulsen, 2006; Fries et al., 2007)).

A second possibility is that retinal oscillations are influenced by the stimulus, specifically, by

displacements of the retinal image caused by eye movements. Thus, periodic activity in the

retina might encode spatial information in the temporal domain, as in the whisker system
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Same activity corrected for phase of 
ongoing retinal oscillations
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C D

Figure 4: Multiplexed information in the visual system. (A) Event times aligned to

stimulus onset displayed as averaged spike rate (red curve) and rasters for spikes (red), and

EPSPs (blue) for 20 trials of a movie clip; spike rasters were smoothed with a Gaussian win-

dow (σ=2 ms) before averaging. (B) Responses corrected for variation in latency ±10 ms

by using periodicity in the ongoing activity that preceded stimulus onset; conventions as in

A. (C) Top, power spectrum of thalamic spike trains decomposed into signal (solid line)

and noise (dashed line). Bottom, spectral information rate. The area under the curve cor-

responds to a total information rate of 12.7 bit/s; the mean spike rate 29 spikes/s yields a

value of 0.4 bit/spike. (D) Power spectrum (top) of de-jittered spike train decomposed into

signal (solid line) and noise (dashed line); spectral information rate (bottom). De-jittering

increased the total information from 0.4 bit/spike (C) to 1.2 bit/spike (Koepsell et al.,

2009). The movie stimulus was presented with 30 frames/s on a monitor with a high refresh

rate (150 Hz). The neural response did not lock to the frame update or monitor refresh.
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Computer vision:  is this the right task?
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The towel folding robot
(Maitin-Shepard & Abbeel, UC Berkeley) 

http://berkeley.edu/news/media/releases/2010/04/02_robot%20.shtml
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http://www.aiai.ed.ac.uk/events/lighthill1973/

vs.

The Lighthill debate (1973)

Sir James Lighthill
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Questions we haven’t 
yet asked
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Scientists by their nature are eager to test 
hypotheses, or to “tell a story” about how a 
given set of facts or findings fit together and 
explain perception.  

But most of these hypotheses and stories are 
far too simple-minded, and ultimately they 
turn out to be wrong. 

We may be better served by taking an 
exploratory approach.
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The frontiers

Surface representation

Large-scale neural dynamics

Perception-action loops
(See Noe & O’regan, “A sensorimotor account of 
vision and visual consciousness,” BBS, 2001)
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Santa Fe Institute workshop on action and perception

September 14-16, 2010

Organizers:  Murray Sherman, Ray Guillery, Nihat Ay, 
Bruno Olshausen, Fritz Sommer

Speakers:
 
Ehud Ahissar
Andy Clark
Ralf Der
Carol L Colby
Keyan Ghazi-Zahedi
Jeff Hawkins
Yasuo Kuniyoshi

Chris Moore
J. Kevin O'Regan
Rolf Pfeifer
Daniel Polani 
Marc Sommer
Naftali Tishby

To apply, email CV and statement to msherman@bsd.uchicago.edu
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