Learning about vision: things we now know, things we still don't know, and things we don't know we don't know.

Bruno A. Olshausen

Helen Wills Neuroscience Institute, School of Optometry and Redwood Center for Theoretical Neuroscience UC Berkeley

Learning about vision

It's a really hard problem.

We have made progress

...but we are still confronted with profound mysteries

and some of the most important questions have not yet been asked.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Subgoal for July

Analysis of scenes consisting of non-overlapping objects from the following set:

balls

bricks with faces of the same or different colors or textures cylinders.

Each face will be of uniform and distinct color and/or texture. Background will be homogeneous.

Extensions for August

The first priority will be to handle objects of the same sort but with complex surfaces and backgrounds, e.g. cigarette pack with writing and bands of different color, or a cylindrical battery.

Then extend class of objects to objects like tools, cups, etc.

The approach of David Marr

Natural images are full of ambiguity

Natural images are full of ambiguity

What do these patterns depict?

(from Kersten & Yuille, 2003)

Vision as inference

Thursday, August 12, 2010

Nervous systems are difficult to penetrate

Thursday, August 12, 2010

Inner life of the cell

http://multimedia.mcb.harvard.edu/

Progress

Adaptive optics retinal circuitry

Functional imaging and multiple unit recording

Natural scene statistics and visual coding

Computer vision: multiple-view geometry

Adaptive Optics Scanning Laser Ophthalmoscope

Thursday, August 12, 2010

Human retina - cone mosaic

Combined Stimulus Delivery and Electrophysiology

Saggital section from brainmaps.org

Thursday, August 12, 2010

Human fixational eye movements (Austin Roorda, UCB)

HI horizontal cell

HI horizontal cells connected via gap junctions

HI horizontal cells labeled following injection of one HI cell (*) ×300 after Dacey, Lee, and Stafford, 1996

Lateral inhibition: activation of one photoreceptor inhibits neighboring photoreceptors

Bipolar cells read out differences between one photoreceptor's activity and its neighbors as computed by horizontal cell network

Human visual cortex

(Wandell, Dumoulin, & Brewer, 2007)

Face feature spaces (Freiwald, Tsao & Livingstone 2009)

Intermediate-level vision

(Nakayama, He & Shimojo 1995)

Natural scene statistics and visual coding

Which two images are the same?

Which two images are the same?

Whitening (or decorrelation) theory (Atick & Redlich, 1992)

Features learned from sparse coding of natural images resemble VI simple cell receptive fields (Olshausen & Field 1996)

statistics	coding strategy	neurobiological substrate
contrast histogram	histogram equalization	photoreceptors/ bipolar cells
autocorrelation function	whitening	retina/LGN
sparse components	localized, oriented, bandpass feature decomposition	VI 'simple cells'
amplitude components	texture coding	VI/V2 'complex cells'
phase components	motion coding	MT

Computer vision - multiple view geometry

Mysteries

Tiny nervous systems

Neocortical microcircuit

Neuronal oscillations

Computer vision: action-perception loops

Jumping spiders

Jumping spider visual system

Jumping spider retina

horizontal section

photoreceptor array

Jumping spiders do object recognition

Text-fig. 12. Stimuli found by Drees to evoke courtship (a) and prey capture (b) in male jumping spiders (*Epiblemum scenicum*). The numbers beneath each figure in (a) are the percentage of trials on which courtship was evoked. After Drees (1952).

Philanthus triangulum (sand wasp)

nes

What is the function of the cortical microcircuit?

VI is highly overcomplete

Learned dictionary I0x overcomplete

The "standard model" of VI

Responses of VI neurons are not well predicted by RF models

Thursday, August 12, 2010

Responses of neighboring cells are heterogeneous

Thursday, August 12, 2010

Single unit recording is blind to neuronal interactions

...their (neurons') apparently erratic behavior was caused by our ignorance, not the neuron's incompetence. -- H.B. Barlow (1972)

Dendritic nonlinearities (Hausser & Mel, 2003)

What is the other 85% doing? (Olshausen & Field, *Neural Computation*, 2005)

Silicon polytrodes

What is the role of cortico-cortical and thalamo-cortical feedback?

Neuronal oscillations are prevalent in sensory systems throughout the animal kingdom

Locust olfactory system (Laurent lab)

Cat VI (Gray & Singer)

LGN neurons phase-lock to retinal oscillations (recordings from Hirsch lab, USC)

٦

Same activity corrected for phase of ongoing retinal oscillations

Computer vision: is this the right task?

The towel folding robot (Maitin-Shepard & Abbeel, UC Berkeley)

http://berkeley.edu/news/media/releases/2010/04/02_robot%20.shtml

Thursday, August 12, 2010

The Lighthill debate (1973)

http://www.aiai.ed.ac.uk/events/lighthill1973/

Questions we haven't yet asked

Thursday, August 12, 2010

Scientists by their nature are eager to test hypotheses, or to "tell a story" about how a given set of facts or findings fit together and explain perception.

But most of these hypotheses and stories are far too simple-minded, and ultimately they turn out to be wrong.

We may be better served by taking an exploratory approach.

The frontiers

Surface representation

Large-scale neural dynamics

Perception-action loops

(See Noe & O'regan, "A sensorimotor account of vision and visual consciousness," BBS, 2001)

Santa Fe Institute workshop on action and perception

September 14-16, 2010

Organizers: Murray Sherman, Ray Guillery, Nihat Ay, Bruno Olshausen, Fritz Sommer

Speakers:

Ehud Ahissar Andy Clark Ralf Der Carol L Colby Keyan Ghazi-Zahedi Jeff Hawkins Yasuo Kuniyoshi

Chris Moore J. Kevin O'Regan Rolf Pfeifer Daniel Polani Marc Sommer Naftali Tishby

To apply, email CV and statement to msherman@bsd.uchicago.edu