Natural Image Statistics
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vision and image

Vision is a process that produces
from images of the external
world a description that is useful
to the viewer.

[Marr, 1982]
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65x65 8-bit gray-scale images: 25665%65 ~ 1(10°
seconds since big bang: ~ 1017

atoms in the universe: ~1080
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The distribution of natural
images is complicated. Perhaps
it is something like beer foam,
which is mostly empty but
contains a thin mesh-work of
fluid which fills the space and
occupies almost no volume. The
fluid region represents those
images which are natural in
character.

[Ruderman, 1996]
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= predictivity

= redundancy

= statistical dependency

[Kersten, 1987]



natural image statistics

" natural images are a small
subset in the image space

=y
A

= natural images have non-

random structures that reflect
regularities in the physical world

= natural images as an ensemble can |
be studied by their common
regular statistical properties




biological vision

“the [neurally] encoded image is a very partial representation
of the light that arrives at the eye: there is only a narrow
region of high visual acuity in the fovea; the dynamic range of
the sensors is very small; and the representation of wavelet is
very coarse. You would never buy a camera with such poor
optics and coarse spatial encoding. Yet, the visual algorithms
can interpret the properties of objects from this poor
encoding”

- Brian Wandell, Foundation of Vision, 1995
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Image restoration
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surface perception

low skewness

high skewness

[Motoyoshi etal., 2007]



engineering applications
® Image compression
» e.g., JPEG, JPEG 2000

® noise and blur removal, inpainting, super-resolution
» e.g., [Freeman etal. 2000; Roth & Black, 2005; Levin etal, 2009]

* texture synthesis

» e.g., [Heeger & Bergen, 1995; Zhu, Wu & Mumford, 2001; Portilla & Simoncellj,
2003]

e visual saliency
» e.g., [Itti etal, 2003; Gao & Vasconcelos, 2009]

* Jow level features for object/scene recognition
» e.g., [Oliva & Torrolba, 2001; Kouh & Poggio, 2009]

* and many more ... ...
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scope

= statistical approach to the study of natural images
® gray-scale static images

» focus on concepts and their relations, but not on

® specific mathematical / computational details

® specific applications in biology /engineering
= follow one particular theme of developments
® statistical properties observed on ensembles of natural images

e probabilistic models that capture such properties

® image representations that simplify such properties
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how natural images can be studied

s step 1: collect an image database

- find a lot of nice-looking images

[van Hateren & van der Schaaf, 1998]
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how natural images can be studied

» step 1: collect an image database

- find a lot of nice-looking images

» step 2: choose an image representation

- alanguage describe and a tool to probe these images
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Image representations

» encoder/decoder: information bottleneck

® preservation of essential and relevant structures

® special case: perfect reconstruction

encoder
transtform \
image
representation

decoder /

transform
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why representation matters?
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why representation matters?

= example: numbers
® Arabic: 123
¢ Roman: MCXXIII
® binary: 1111011

e English: one hundred and twenty three
® Japanese: H . 1—
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why representation matters?

= example: numbers
® Arabic: 123
¢ Roman: MCXXIII
® binary: 1111011

e English: one hundred and twenty three
® Japanese: H . 1—

= operations
 multiply by 10
e multiply by 4
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pixel representation
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figure courtesy of M. Bethge



desiderata

» simplicity of the encoder/decoder transforms

® linear transform is pretferred

= simplicity of the representation

® e.g., reveal lower intrinsic dimension

18



how natural images can be studied

» step 1: collect an image database

- find a lot of nice-looking images

» step 2: choose an image representation

- alanguage describe and a tool to probe these images

s step 3: make observations of statistical properties

- find something interesting and unexpected

19



statistical observations

» pixel representation

- second-order pixel correlations

- scale invariance

» frequency representation

- power law distribution of power

» band-pass filtered representation
- heavy-tail non-Gaussian marginals
- sparsity of representationss
- strong higher-order dependency of nearby representationss

- decay of dependency with distance

= many more .............
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how natural images can be studied

» step 1: collect an image database

- find a lot of nice-looking images

» step 2: choose an image representation

- alanguage describe and a tool to probe these images

s step 3: make observations of statistical properties

- find something interesting and unexpected

» step 4: devise a mathematical model for these
observations

- give a concise description and/or an (formal) explanation why natural images
have such properties
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how to construct model
onion peeling

all possible images

natural

“— images
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how to construct model

onion peeling

all possible images

images of same
second order stats

natural

“— images

images of same
marginal stats
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how to construct model

onion peeling

all possible images

images of same
second order stats

natural

® o € images

images of same
marginal stats

images of same
higher order stats
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from statistics to model

s principle of maximum entropy [Jaynes, 1954]

® given a set of statistical constraints on data

E(f(z)) = c
® choose a probabilistic model with maximum entropy

*

p* = argmax H(p)
p

p*(x) oc exp(=Af(z))
A\ is determined by c

e solution

23



maxEnt examples

» constraint on range -> uniform
= matching mean -> exponential

= matching covariance -> Gaussian

= matching all singleton marginals -> factorial model
Vi, pi(ri) = qi(x;) = p™(T) = Hq@(%)
» matching all clique marginals -> Mari«)v random field
Velique ¢, pe(Ze) = qo(Z.) = p*(F) o exp(— Z A

[Schneldman etal., 2003]
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Bayesian inference

» maximum a posterior (MAP)

xpmap = argmax p(x|y) = argmax p(y|x)p(x)

X X

" minimum mean squares error (MMSE)
XMMSE = argmin/ Ix — x'||*p(x|y)dx

_ fXXp(Y‘X)p(X)dX e
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how natural images can be studied

» step 1: collect an image database

- find a lot of nice-looking images

» step 2: choose an image representation

- alanguage describe and a tool to probe these images

s step 3: make observations of statistical properties

- find something interesting and unexpected

» step 4: devise a mathematical model for these
observations

- give a concise description and/or an (formal) explanation why natural images
have such properties

= step 5: improve the representation, go back to step 3
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desiderata

» simplicity of the encoder/decoder transforms
® linear transform is pretferred

= simplicity of the representation

e Jower intrinsic dimension

e simplified statistical structure

- reduce statistical dependency
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measure statistical dependency

m multi-information

- [Studeny and Vejnarova, 1998]

I[(7)

|
S
~
-
-1
Q

HP(M)
= ) H(xy) — H(Z)

k

® non-negative with any density over x
e zero when p(x) is factorial
- elements of x are mutually independent

- justifies factorial models have maximum entropy with constraints

on singleton marginal densities
28



biOlogy: efﬁCient COding [Attneave, 1954; Barlow, 1961]

\

optic

retina nerve

optic nerve has a channel capacity C
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biology: efficient COding [Attneave, 1954; Barlow, 1961]

coding efficiency [Attick, 1991]
H(z) > H(w) H(7)

s G S H(x;)

O H(z) Y, Hiw) — 1(3)
| optic
retina  porye

optic nerve has a channel capacity C
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biology: efficient COding [Attneave, 1954; Barlow, 1961]

coding efficiency [Attick, 1991]
H(Z) Y H(z) H()

YT T T e T
(S H@) S, H ) - 1(3)
et P T

channel usage

etficiency

optic nerve has a channel capacity C
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biology: efficient COding [Attneave, 1954; Barlow, 1961]

coding efficiency [Attick, 1991]
H(f) _ ZZH(%) H(f)

E =
H(x;)

B :1:'Z H(x;) — I(Z)
\, EEEEE
optic

retina

NEve channel usage code

etficiency etficiency

optic nerve has a channel capacity C
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biology: efficient COding [Attneave, 1954; Barlow, 1961]

coding efficiency [Attick, 1991]
H(f) _ ZZH(%) H(f)

:1:'@ H(x;) :E’)
Z (74)

channel usage code
etficiency etficiency

E =

\

optic
retina  porye

optic nerve has a channel capacity C
etficient code

- match channel marginals
- independent
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dependency reduction

= simplify modeling

* if components of x are independent, the joint density of x can be
expressed as the product of marginals on each component

* dimensionality reduction in the parameter space

» parallel manipulation

* if components of x are independent, each component can be
processed independently

m parallel sampling

30



closed loop

31

statistical

dependencies \

representations

— models

key question: where to put the complexity?
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closed loop

31
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dependency reduction

key question: where to put the complexity?



istributions
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pixe
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pixel - second order correlation

l(x+1,y)

second-order

correlation

33

Correlation

[(x+2,y)

l(x+4,y)

T
"""""

10 20 30
Spatial separation (pixels)
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(Gaussian model

34

assume zero mean and match second order statistics

® covariance matrix Y, = F (ffT)

maximum entropic model is Gaussian
1
p(T) o< exp (—5 _’TZlf>

extension: Gaussian Markov random
field for large images

=

- specified by the inverse covariance
(precision/structure) matrix

(=




Bayesian denoising

= additive white Gaussiannoise §y = I+ w
e likelihood p(§|Z) o exp[—||7— Z|?/202)]
= prior model 1
- STx—1 =
p(T) o< exp (—5 ) 37)

» posterior density (another Gaussian)

1 = 72
p(f|f) X exp (_5—@2—13—5 Hil? yH )

m solution: Wiener filter

Trvap = EvMsE = (S + o2 1)1y
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PCA representation

= Gaussians only ha\;e second-order dependency
I(Z) o< Y log(X)i; — log det (%)
i=1

» minimum (independent) when X is diagonal

- Hadamard’s inequality

n a transform that diagonalizes 2 can eliminate all
dependencies (second-order)

» result: principal component analysis (PCA)
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PCA

» eigen-decomposition of covariance ¥ = UAU"

37

T
- U: orthonormal matrix (rotation)
- A: diagonal matrix of eigenvalues
Lpca — U & &
- covariance becomes diagonal ‘ =
pca
— =gk
E {'CE PCan pca
. T — =]’
= U E{Zr U ===
= U'UAU'U = A

- independent Gaussian, if x is Gaussian

- no correlation, if x is from arbitrary source



PCA basis from image patches
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whitening

39

» making the PCA representation isotropic

in variances
1 17
Twht = VA 2Z,ca = VA2 Ul'z

- V is an orthonormal matrix (rotation)

E{fwhtfght}
VATY2PUTE{zz" JUA2V T
VATYPUTUAUTUA 2V T

- isotropic Gaussian, if x is Gaussian

- W.

- W.

nitened, if x is from arbitrary source

nitening transform is not unique

=1

A

(Z

‘ Lpca

Ce—
e

v

——
: l
=

o
&
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ZCA whitening

» zero-phase component analysis [Bell & Sejnowski, 1996]
— _ 1 —
Toon = UN2UT T

e choose V =1, the result is a symmetric linear transform

®* minimizing squared distortion between data and representation

- minimum wiring length principle [Vincent & Baddeley, 2003]

e similar to the center-surround receptive fields for retina

gangalion cells ..-..
L

i

HEEEE

. =10 L]




fixed transform

®m translation invariance

- circular boundary handling
m covariance matrix 2 is a circulant matrix

= example:

DO O = Ot
W = Ot /= N
I~ O = DN W
U — DN W
O DN W = Ot
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Fourier representation

» Fourier transform diagonalizes the circulant covariance
matrix

e discrete Fourier transform basis are eigenvectors

e Fourier transform of the circulant kernel are the eigenvalues
>, = circ(v) = F diag(F v)F"
s DFT is the eigen-system for translational invariant
ensembles of images with circular boundary condition

e question: why complex-valued?

42



Fourier - marginal

m spectral power

-5 4 9 1

-3
Iogg(frequency/n)

figure from [Simoncelli, 2005]
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scale invariance of image variance

[Ritterman 52; DeRiugin 56; Field 87; Tolhurst 92; Ruderman/Bialek 94; ...]
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applications

A
Flw)=—
» denoising (Wiener filter in frequency domain)
= JPEG compression

= Dolby noise reduction

\ --mEEEEEEE- \
» » »
» » >
» ” | v

signal whiten noisy noise unwhiten
45 channel reduction



not sufficient

sample from power law
Gaussian sample

natural image
after whitening

not natural image

46

not independent noise

[Simoncelli and Olshausen, 2001]



structures in phases
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[Oppenheim & Lim, 1981]



dependency

48

d
1) = |3 08(S) — log 5o Tonborss
k=1
d
+ |DxL (p(@) || () — Y Dxr (p(zx) || G(xx))
k=1

higher-order dependency




summary

49

» pixel dom

ain matching second-order statistics leads to

Gaussian image models

» eliminating dependencies in Gaussian models leads to

PCA /whitening based representations

n extending
frequency

PCA to global image domain leads to
domain representations

s Gaussian model + PCA representations are not

sufficient

0 model natural images

e higher-orc

er statistical dependencies not being captured



band pass filters

50

PCA ZCA

» ]Jocalize in space and frequency

= reduce low-frequency components




bandpass filter domain

band-pass
filter
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band-pass filter domain

52

= marginal density

natural
image

log p(Xx)

[Burt& Adelson 82; Field 87; Mallat 89; Daugman 89, ...]



marginal model

= well fit with generalized Gaussian

[Mallat 89; Simoncelli&Adelson 96; Moulin&Liu 99; ...]

(4

log(Probability)
log(Probability)
log(Probability)

,/
2 p=048
AH/H =0.0014

p =0.46
AH/H = 0.0031

p =0.58
AH/H = 0.0011

s

Wavelet coefficient value Wavelet coefficient value Wavelet coefficient value
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(Gaussian scale mixtures

[Andrews & Mallows 74, Wainwright & Simoncelli, 99]

ZEIU\/;

- u: zero mean Gaussian with unit variance
- z: positive random variable

- different p(z)
generalized Gaussian, Student’s t, Bessel’s K, Cauchy,
a-stable, etc
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factorial model

enforce consistency on singleton marginal
densities, i.e., p(xi) = qi(xi), maximum entropic
density is the factorial density

H(Z) = )_; H(zi) — I(Z)

l maximum entropy

p(T) = Hle qi(T;)

55



Bayesian denoising - coring

Y ,- | f dz Pyl ylz) Pilz) =

i) = [de Pl e = Tmae G P

f(ll.;l? Pn ( Yy — 41)) Pr ( L
f dx P ( Yy—x ) Pr (

p=0)>5

56 [Simoncelli & Adelson, ‘96]
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original image noise (SNR = 9dB)

Wiener filter (11.88dB) coring (13.82dB)

[Simoncelli & Adelson, 1996]



dependencies

» band-pass filtered representationss of natural images
are not independent

58



LTF model

® linearly transformed factorial (LTF)

® each component in x is a linear mixing of independent
super-Gaussian sources, so they are not independent

‘ ‘ S1

| ‘ 5

|
Va
ek
S
[
_|_
_I_
Va
SH
S
SH

p(8) =TI, p(s:)

e A is an invertible linear transform (basis), Al are the
encoding transform
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LTF model - generative view

60

= SVD of matrix A: A = UAY2y7T
- U, V: orthonormal matrices (rotation)

- A: diagonal matrix

(Aii)1/2 = 0 -- singular value

pp—_——

—————




representation

» independent component analysis (ICA)
[Comon 94; Cardoso 96; Bell/Sejnowski 97; ...]

e many different implementations
- JADE, InfoMax, FastICA, etc.

= interpretation using SVD

Tiw = A2 = VAV2UT g

e U and A obtained from PCA lcr;iigiiji‘:
/ are decorrelated
E{zz'} = AF{Z7L, A"
= UA'PVIIVAY2UT

— UAU*
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ICA

= ICA can be seen as a whitening operation
Tiea = AT\ Z=VAVPUTE
= how to find the last rotation V

62

?? whitening

-

PCA

‘‘‘‘‘

V




search for the last rotation in ICA

= minimizing multi-information

1) =Y Ho)| -[H@}
minimize singleton — k not changed
entropy by rotation

o for super-Gaussian densities, lower kurtosis suggests lower
entropy
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ICA /W]

nitening
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[CA basis from image patches

el Rl L e
I 5 N T I 3
HERENNERSEEN
52 I I S
B I A S R
N N P I S
I = O S N Y
I O S I P
= I I = Y 51 e
EFREEEldTEREN
o P I O [ [ =
i S = = Y I Y =

similar to the receptive field of V1 simple cells
|Olshausen & Field 1996, Bell & Sejnowski 1997]
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ICA basis

= approximated by Gabor functions

® Jocalized in space/frequency

® orientation preference

\\\

\ \ \ ‘\
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el ..‘s““‘ %‘\’.. ™

NVE = e s e
TN

...~ ~
.qo s..—_‘

-10

|
o

10 19

m connection with wavelet
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linear representations

pixel Fourier Gabor
spatial \/\
domain
frequency

domain
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wavelet

= developed in parallel with the ICA methodology
- [Burt & Adelson, 1981; Mallat, 1989]

» data independent
* implemented as filter banks
= wavelet filters are similar to those found by ICA

® Jocalized in space/time

® orientation selective

= applicable to whole image

® incorporate scale invariance with multi-scale pyramid structure

68



pyramid

69

figure courtesy of Jeremy Freeman



pyramid

figure courtesy of Jeremy Freeman
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figure courtesy of Jeremy Freeman
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figure courtesy of Jeremy Freeman
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application

70

= [CA and wavelet methodology brings forth a
revolutionary breakthrough for image processing and
computer vision, for every application there is a
significant improvement in performance

® compression
® denoising
® image features

* texture synthesis



not sufficient

sample from LTF model natural images after
filtered with ICA basis
!
not natural image not independent noise

- figure courtesy of Eero Simoncelli



problems with LTF/ICA

= any band-pass filter will lead to heavy tail marginals
® even random ones

= according to LTF model, random projection (filtering)
should look like Gaussian

e central limit theorem

72



dependency reduction of ICA

73

ICA reduces less than 5% of statistical dependency
compared to PCA on natural images

0.54
N ===raw
. B pca/ica
0.4 *
)}
= %
S 0.3t '
O .
2 MR
é_i)/ 02 B ~~
= S~
0.1 .
S ——
O ] ] ]
1 2 4 8 16 32
Separation

[Bethge, 06; Lyu & Simoncelli, 09]



summary

= in band-pass filter domain, natural images have

® non-Gaussian marginal distributions

® higher-order dependency
m statistical properties lead to LTF model
s LTF model leads to ICA /wavelet representations

= not sufficient to describe natural images
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problem - joint density

joint density of natural image
band-pass filter representationss
with separation of 2 pixels

[Wegmann & Zetzsche, 1990; Baddeley, 1996; Simoncelli, 1997]
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elliptically symmetric density spherically symmetric density

yﬁ whitening /\(

(Fang et.al. 1990)



identical non-Gaussian marginals

ey

factorial density spherical density




identical non-Gaussian marginals

factorial density spherical density



raw pairs whitened sphericalized factorialized
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0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
| K n | K 0.4} m— | K
= gpherical 0.2 = gspherical 1 = gpherical
= factorial = factorial 0.35¢ = factorial |]
0.15¢ 8
0.3f
0.15¢ *
0.25¢
0.1r
01} 0.2y
0.15¢
0.05¢ 1 0.05! | 01}t
G/
0 : : : ‘ 0 : : : 0 : J : :
3 6 9 12 15 18 20 3 6 9 12 15 18 20 3 6 9 12 15 18 20
kurtosis kurtosis kurtosis
3x3 X7 15x15

data ICA’d): —— sphericalized: —— factorialized: —

e Histograms, kurtosis of projections of image blocks onto random
unit-norm basis functions.
* These imply data are closer to spherical than factorial
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Gaussian is the only density that can be both factorial and
spherically symmetric [Nash and Klamkin 1976]



PCA /whitening

Linearly
transformed
factorial
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ICA

PCA /whitening
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ICA

PCA /whitening
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assumptions of LTF/ICA

r = As
» linear transform between signal and representation

= one signal corresponds to one representation
= one representation corresponds to one signal

» representationss are mutually independent
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assumptions of LTF/ICA

» linear transform between signal and representation
= one signal corresponds to one representation

= one representation corresponds to one signal

o explicitly modeling dependencies in representation

92



complete representation

93

independent subspace analysis and topographic ICA

- [Hyvarinen & Hoyer, 2000; Hyvarinen, Hoyer & Inki, 2000]

hierarchical models

- e.g., [Karklin & Lewicki, 2003, 2009; Ranzato & Hinton, 2010; ... ...

joint GSM model for wavelet coetficients
- [Wainwright & Simoncelli, 1999; Portilla etal., 2003]

MRF models for wavelet coefficients
- e.g., [Crouse etal, 1999; Lyu & Simoncelli, 2008; Lyu, 2009;

tree dependent component analysis
- [Zoran & Weiss, 2009]



assumptions of LTF/ICA

» linear transform between signal and representation

= one signal corresponds to one representation

e multiple representation can lead to one signal

» representation are mutually independent
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95

» achieving sparsity can be a driving principle itself
e over-complete sparse coding (nonlin encoding, lin decoding)
» [Olshausen & Field, 1996]

e compressed sensing (lin encoding, nonlin decoding)
» [Candes & Donoho, 2003]

e PCA /whitening/ICA (lin encoding, lin decoding)



assumptions of LTF/ICA

» linear transform between signal and representation

e focusing on the analysis § = BZ

= one representation corresponds to one signal

» representations are mutually independent
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maximum entropy models

= use representationss as constraints to build statistical
models

e patch models
- product of experts [Teh etal., 2003]
- product of edgeperts [Gehler and Welling, 2006]

® image models
- FRAME [Zhu, Wu & Mumford, 2001]
- field of experts [Roth & Black, 2005]
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assumptions of LTF/ICA

[ ]
. ava a ) Y avYa AT T (Y1 ava AN e ) AN a
] ] \ J W, V V ] [ W [/

e find nonlinear encoding/decoding transforms

= one signal corresponds to one representations
= one representations corresponds to one signal

» representationss are mutually independent
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radial Gaussianization (RG)

()

100 [Lyu & Simoncelli, 2009]



radial Gaussianization (RG)
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radial Gaussianization (RG)

(B

N

Py (r) ocr exp(—r%/2)

pi(r) o< rf(=1%/2)

[Lyu & Simoncelli, 2009]




radial Gaussianization (RG)

ﬂ pu(r) o rexp(—r?/2)

103 [Lyu & Simoncelli, 2009]



radial Gaussianization (RG)

ﬁ pu(r) o rexp(—r?/2)
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ICA coefficients Radially factorized
coeflicients
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blocks of local mean removed pixel blocks of natural images
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marginal Gaussianization
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divisive normalization

® nhonlinear transform
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divisive normalization

m observation

 visual cortex [Heeger, 1991]

e retina/ LGN [Caradini etal. 2008]
e auditory [Schwartz & Simoncelli, 1999]
e olfactory [Wilson etal, 2010]
= underlying principle
® dynamic gain control

e dependency reduction [Schwartz & Simoncelli, 2001]

111



divisive normalization

® nonlinear transform

ﬁ_>

stimuli

responses

radial
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divisive normalization

= comparing the two radial transforms
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1t A IDN = 0.1741 bits/coeff |

A IRG = 0.2614 bits/coeff
O ] ]
0 5 10 15
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summary

" in band-pass filter domain, we observe

* non-Gaussian marginal densities

o elliptically symmetric joint densities
m observations lead to elliptically symmetric models
= ESD models lead to nonlinear radial Gaussianization

m extended to L, elliptically symmetric models
- [Sinz & Bethge, 2009]

m not sufficient

® not effective for longer-range dependencies
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next step: building hierarchies

» hierarchical representations

e iterative Gaussianization/hierarchical ICA /bio-inspired

- [Chen & Gopinath, 2000; Shan etal, 2007; Karklin & Lewicki, 2003; Serre &
Poggio, 2006]

1 I, W el 7 T B e
/| S | S | < >

— . — —
— & S il

m hierarchical model

* DBN type models, convolutional net
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summary

» natural images are special in the space of all possible
images and have regular statistical properties

s these properties can be captured using representation
and statistical models

® dependency reduction

* maximum entropy with constraints

= key question: where to put the complexity

116



afterthoughts

» are the observed properties real or results of “artifacts of
the lens through which we view the data”
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we believe but cannot prove ...

= there is a probabilistic model over natural images in the

space of all images of a give size el

=
w@‘%_a

p(X5
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we believe but cannot prove ...

= there is a probability measure over natural images in

.

the space of all images of a give size

® this probability measure has invariance

* translation invariance (a.k.a., stationary, homogeneous)

- marginal densities have
no dependency with
spatial locations
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we believe but cannot prove ...

= there is a probability measure over natural images in

.

the space of all images of a give size

® this probability measure has invariance

* translation invariance (a.k.a., stationary, homogeneous)

- marginal densities have
no dependency with
spatial locations

- joint densities have no
dependency with spatial
locations
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we believe but cannot prove ...

= there is a probability measure over natural images in

.

the space of all images of a give size

® this probability measure has invariance

* translation invariance (a.k.a., stationary, homogeneous)

- marginal densities have
no dependency with
spatial locations

- joint densities have no
dependency with spatial
locations

- practical issue: proper
boundary handling
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we believe but cannot prove ...

= there is a probability measure over natural images in

.

the space of all images of a give size

® this probability measure has invariance
* translation invariance (a.k.a., stationary, homogeneous)
® (empirical) ergodic

- ensemble average = spatial
average

- ensemble marginal = spatial
marginal

122



we believe but cannot prove ...

= there is a probability measure over natural images in

the space of all images of a give size

® this probability measure has invariance

* translation invariance (a.k.a., stationary, homogeneous)
® (empirical) ergodic

- ensemble average = spatial
average

- ensemble joint = spatial
joint
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afterthoughts

A) B) 04 Q) 04
0.3} 03¢
02 0.2}
0.1 o1l
‘ % 0 5 0 5 10 % 0 s 0 5 w0

[Baddeley 1996]
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afterthoughts

" image specific model
e CRF image models for denoising, directly model p(x|y)
- [Tappen etal., 2007; 2009]

e primary sketch model
- [Guo, Zhu and Wu, 2007] 88

e

5 g@&f

!
— "“—w—__g‘_ _,_&é \ b:—-

(b) sketch graph Sy

(d) texture regions Sx_, (e) synthesized textures Iy, (f) synthesized image I?™
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big question marks

» what are natural images, anyway?

ironically, white noises are “natural” as they are
the result of cosmic radiations

= naturalness is subjective
126
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optimization

perception _
machine

learning

neuro-
science

natural
image
statistics

processing

image
processing

computer
vision



want to know more?

128
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