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vision and image

2

Vision is a process that produces 
from images of the external 
world a description that is useful 
to the viewer.

                        [Marr, 1982]



vision and image

65×65 8-bit gray-scale images: 25665×65 ∼ 10105

seconds since big bang: ~ 1017

atoms in the universe: ∼1080
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...  ... The distribution of natural 
images is complicated. Perhaps 
it is something like beer foam, 
which is mostly empty but 
contains a thin mesh-work of 
fluid which fills the space and 
occupies almost no volume. The 
fluid region represents those 
images which are natural in 
character.                                                                    

                     [Ruderman, 1996]
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dependency in natural images

[Kersten, 1987]
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1% deleted 40% deleted 100% deleted

structure 
= predictivity 
= redundancy 
= statistical dependency



natural image statistics

■ natural images are a small 
subset in the image space

■ natural images have non-
random structures that reflect 
regularities in the physical world

■ natural images as an ensemble can 
be studied by their common 
regular statistical properties
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biological vision
“the [neurally] encoded image is a very partial representation 
of the light that arrives at the eye: there is only a narrow 
region of high visual acuity in the fovea; the dynamic range of 
the sensors is very small; and the representation of wavelet is 
very coarse. You would never buy a camera with such poor 
optics and coarse spatial encoding. Yet, the visual algorithms 
can interpret the properties of objects from this poor 
encoding”

                              - Brian Wandell, Foundation of Vision, 1995
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surface perception

9

high skewness low skewness

[Motoyoshi etal., 2007]



engineering applications
• image compression

‣ e.g., JPEG, JPEG 2000

• noise and blur removal, inpainting, super-resolution
‣ e.g., [Freeman etal. 2000; Roth & Black, 2005; Levin etal, 2009]

• texture synthesis 
‣ e.g., [Heeger & Bergen, 1995; Zhu, Wu & Mumford, 2001; Portilla & Simoncelli, 

2003]

• visual saliency 
‣ e.g., [Itti etal, 2003; Gao & Vasconcelos, 2009] 

• low level features for object/scene recognition 
‣ e.g., [Oliva & Torrolba, 2001; Kouh & Poggio, 2009]

• and many more … … 
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scope 

■ statistical approach to the study of natural images
• gray-scale static images

■ focus on concepts and their relations, but not on
• specific mathematical/computational details
• specific applications in biology/engineering

■ follow one particular theme of developments
• statistical properties observed on ensembles of natural images
• probabilistic models that capture such properties
• image representations that simplify such properties
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how natural images can be studied
■ step 1: collect an image database

- find a lot of nice-looking images

13

[van Hateren & van der Schaaf, 1998]



how natural images can be studied
■ step 1: collect an image database

- find a lot of nice-looking images

■ step 2: choose an image representation
- a language describe and a tool to probe these images
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image representations

■ encoder/decoder: information bottleneck
• preservation of essential and relevant structures
• special case: perfect reconstruction
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image
representation

encoder
transform

decoder
transform



why representation matters?
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why representation matters?

■ example: numbers
• Arabic: 123

• Roman: MCXXIII

• binary: 1111011

• English: one hundred and twenty three

• Japanese: 百二十三
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why representation matters?

■ example: numbers
• Arabic: 123

• Roman: MCXXIII

• binary: 1111011

• English: one hundred and twenty three

• Japanese: 百二十三

■ operations
• multiply by 10

• multiply by 4
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pixel representation

Computational Vision & Neuroscience Group

/73

Linear models of natural images

14

Pixel basis

= s1· + s2· + s3· + . . .

figure courtesy of M. Bethge
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desiderata"

■ simplicity of the encoder/decoder transforms
• linear transform is preferred

■ simplicity of the representation
• e.g., reveal lower intrinsic dimension 
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how natural images can be studied
■ step 1: collect an image database

- find a lot of nice-looking images

■ step 2: choose an image representation
- a language describe and a tool to probe these images

■ step 3: make observations of statistical properties
- find something interesting and unexpected
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statistical observations
■ pixel representation

- second-order pixel correlations

- scale invariance

■ frequency representation
- power law distribution of power

■ band-pass filtered representation
- heavy-tail non-Gaussian marginals

- sparsity of representationss

- strong higher-order dependency of nearby representationss

- decay of dependency with distance 

■ many more ………….
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how natural images can be studied
■ step 1: collect an image database

- find a lot of nice-looking images

■ step 2: choose an image representation
- a language describe and a tool to probe these images

■ step 3: make observations of statistical properties
- find something interesting and unexpected

■ step 4: devise a mathematical model for these 
observations

- give a concise description and/or an (formal) explanation why natural images 
have such properties
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how to construct model

all possible images

natural
images
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from statistics to model

■ principle of maximum entropy [Jaynes, 1954]

• given a set of statistical constraints on data

• choose a probabilistic model with maximum entropy

• solution

                            
λ is determined by c

23

E(f(x)) = c

p� = argmax
p

H(p)

p�(x) ∝ exp(−λf(x))



maxEnt examples

■ constraint on range -> uniform
■ matching mean -> exponential
■ matching covariance -> Gaussian
■ matching all singleton marginals -> factorial model

■ matching all clique marginals -> Markov random field

24

∀i, pi(xi) = qi(xi) ⇒ p�(�x) =
�

i

qi(xi)

∀clique c, pc(�xc) = qc(�xc) ⇒ p�(�x) ∝ exp(−
�

c

λc(�xc))

[Schneidman etal., 2003]



■ maximum a posterior (MAP)

■ minimum mean squares error (MMSE)

Bayesian inference

25

xMAP = argmax
x

p(x|y) = argmax
x

p(y|x)p(x)

xMMSE = argmin
x�

�

x
�x− x��2p(x|y)dx

=
�
x xp(y|x)p(x)dx�
x p(y|x)p(x)dx

= E(x|y)



how natural images can be studied
■ step 1: collect an image database

- find a lot of nice-looking images

■ step 2: choose an image representation
- a language describe and a tool to probe these images

■ step 3: make observations of statistical properties
- find something interesting and unexpected

■ step 4: devise a mathematical model for these 
observations

- give a concise description and/or an (formal) explanation why natural images 
have such properties

■ step 5: improve the representation, go back to step 3
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desiderata"

■ simplicity of the encoder/decoder transforms
• linear transform is preferred

■ simplicity of the representation
• lower intrinsic dimension 
• simplified statistical structure

- reduce statistical dependency

27



measure statistical dependency
■ multi-information

- [Studeny and Vejnarova, 1998]

• non-negative with any density over x

• zero when p(x) is factorial

- elements of x are mutually independent

- justifies factorial models have maximum entropy with constraints 
on singleton marginal densities

28

I(�x) = DKL

�
p(�x)

�����
�

k

p(xk)

�

=
�

k

H(xk)−H(�x)



biology: efficient coding

29

Neural characterization

Ingredients:

• stimuli
• response model
• estimation method

Transform

retina
optic
nerve

optic nerve has a channel capacity C

[Attneave, 1954; Barlow, 1961]
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biology: efficient coding

29

Neural characterization

Ingredients:

• stimuli
• response model
• estimation method

Transform

retina
optic
nerve

coding efficiency [Attick, 1991]

E =
H(�x)

C
=

�
i H(xi)

C

H(�x)�
i H(xi)

=

�
i H(xi)

C

�
i H(xi)− I(�x)�

i H(xi)

optic nerve has a channel capacity C

channel usage
efficiency

code
efficiency

efficient code
- match channel marginals
- independent

[Attneave, 1954; Barlow, 1961]



dependency reduction

■ simplify modeling
• if components of x are independent, the joint density of x can be 

expressed as the product of marginals on each component
• dimensionality reduction in the parameter space

■ parallel manipulation
• if components of x are independent, each component can be 

processed independently

■ parallel sampling

30



closed loop

31

representations
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key question: where to put the complexity?
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pixel - marginal distributions
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Gaussian model

■ assume zero mean and match second order statistics
• covariance matrix

■ maximum entropic model is Gaussian

■ extension: Gaussian Markov random
field for large images
- specified by the inverse covariance 
  (precision/structure) matrix 

Σ = E(�x�xT )

p(�x) ∝ exp
�
−1

2
�xT Σ−1�x

�
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Bayesian denoising

■ additive white Gaussian noise
• likelihood 

■ prior model

■ posterior density (another Gaussian)

■ solution: Wiener filter

p(�x) ∝ exp
�
−1

2
�xT Σ−1�x

�

p(�x|�x) ∝ exp
�
−1

2
�xT Σ−1�x− ��x− �y�2

2σ2
w

�

�xMAP = �xMMSE = Σ(Σ + σ2
wI)−1�y

�y = �x + �w

p(�y|�x) ∝ exp[−��y − �x�2/2σ2
w]

35



PCA representation

■ Gaussians only have second-order dependency

■ minimum (independent) when Σ is diagonal 
- Hadamard’s inequality

■ a transform that diagonalizes Σ can eliminate all 
dependencies (second-order)

■ result: principal component analysis (PCA)

I(�x) ∝
d�

i=1

log(Σ)ii − log det(Σ)
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PCA
■ eigen-decomposition of covariance

- U: orthonormal matrix (rotation)
- Λ: diagonal matrix of eigenvalues

- covariance becomes diagonal

- independent Gaussian, if x is Gaussian
- no correlation, if x is from arbitrary source

Σ = UΛUT

37

�x

�xpca

E{�xpca�x
T
pca}

= UTE{�x�xT }U
= UTUΛUTU = Λ

�xpca = UT�x
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PCA basis from image patches

U



whitening

■ making the PCA representation isotropic
in variances

- V is an orthonormal matrix (rotation)

 

- isotropic Gaussian, if x is Gaussian
- whitened, if x is from arbitrary source
- whitening transform is not unique

39

�x

�xpca

�xwht

E{�xwht�x
T
wht}

= V Λ−1/2UTE{�x�xT }UΛ−1/2V T

= V Λ−1/2UTUΛUTUΛ−1/2V T = I

�xwht = V Λ− 1
2 �xpca = V Λ− 1

2UT�x



ZCA whitening 

■ zero-phase component analysis [Bell & Sejnowski, 1996]

• choose V = U, the result is a symmetric linear transform
• minimizing squared distortion between data and representation

- minimum wiring length principle [Vincent & Baddeley, 2003]

• similar to the center-surround receptive fields for retina 
gangalion cells

40

�xzca = UΛ− 1
2UT�x



fixed transform

■ translation invariance

- circular boundary handling
■ covariance matrix Σ is a circulant matrix
■ example:

41

cov(I(x, y), I(x +�x, y +�y)) = cov(I(0, 0), I(�x,�y))





1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 0







Fourier representation

■ Fourier transform diagonalizes the circulant covariance 
matrix 
• discrete Fourier transform basis are eigenvectors
• Fourier transform of the circulant kernel are the eigenvalues

■ DFT is the eigen-system for translational invariant 
ensembles of images with circular boundary condition
• question: why complex-valued?

42

Σ = circ(�v) = F diag(F∗�v)F∗



Fourier - marginal
■ spectral power

[Field, 1994]

figure from [Simoncelli, 2005]
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F (sω) = spF (ω)

F (ω) =
A

ωγ



scale invariance of image variance
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E( )=1/4 E( )

Spectral power

Structural:

F (sω) = spF (ω)

F (ω) ∝ 1
ωp

[Ritterman 52; DeRiugin 56; Field 87; Tolhurst 92; Ruderman/Bialek 94; ...]

Assume scale-invariance:
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applications

■ denoising (Wiener filter in frequency domain)
■ JPEG compression
■ Dolby noise reduction

F (ω) =
A

ωγ

45

signal whiten noisy
channel

noise
reduction

unwhiten



not sufficient
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not natural image not independent noise

[Simoncelli and Olshausen, 2001]

sample from power law 
Gaussian sample

natural image
 after whitening



structures in phases

[Oppenheim & Lim, 1981]

magnitudes

phases
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dependency

48

I(�x) =
d�

k=1

log(Σkk)− log |Σ|

+ DKL (p(�x) � G(�x) )−
d�

k=1

DKL (p(xk) � G(xk) )

second-order
dependency

higher-order dependency



summary

■ pixel domain matching second-order statistics leads to 
Gaussian image models

■ eliminating dependencies in Gaussian models leads to 
PCA/whitening based representations

■ extending PCA to global image domain leads to 
frequency domain representations

■ Gaussian model + PCA representations are not 
sufficient to model natural images
• higher-order statistical dependencies not being captured
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band pass filters

■ localize in space and frequency
■ reduce low-frequency components

50

PCA ZCA random



bandpass filter domain

⊗ =

51

band-pass
filter



■ marginal density

[Burt&Adelson 82; Field 87; Mallat 89; Daugman 89, ...]

band-pass filter domain

lo
g 

p(
x)

0

52

Gaussian

natural 
image



marginal model

■ well fit with generalized Gaussian

Marginal densities

P (x) ∝ exp−|x/s|p

[Mallat 89;  Simoncelli&Adelson 96;  Moulin&Liu 99;  ...]

Well-fit by a generalized Gaussian:

Wavelet coefficient value
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Fig. 4. Log histograms of a single wavelet subband of four example images (see Fig. 1 for image description). For each
histogram, tails are truncated so as to show 99.8% of the distribution. Also shown (dashed lines) are fitted model densities
corresponding to equation (3). Text indicates the maximum-likelihood value of p used for the fitted model density, and
the relative entropy (Kullback-Leibler divergence) of the model and histogram, as a fraction of the total entropy of the
histogram.

non-Gaussian than others. By the mid 1990s, a number
of authors had developed methods of optimizing a ba-
sis of filters in order to to maximize the non-Gaussianity
of the responses [e.g., 36, 4]. Often these methods oper-
ate by optimizing a higher-order statistic such as kurto-
sis (the fourth moment divided by the squared variance).
The resulting basis sets contain oriented filters of different
sizes with frequency bandwidths of roughly one octave.
Figure 5 shows an example basis set, obtained by opti-
mizing kurtosis of the marginal responses to an ensemble
of 12 × 12 pixel blocks drawn from a large ensemble of
natural images. In parallel with these statistical develop-
ments, authors from a variety of communities were devel-
oping multi-scale orthonormal bases for signal and image
analysis, now generically known as “wavelets” (see chap-
ter 4.2 in this volume). These provide a good approxima-
tion to optimized bases such as that shown in Fig. 5.

Once we’ve transformed the image to a multi-scale
wavelet representation, what statistical model can we use
to characterize the the coefficients? The statistical moti-
vation for the choice of basis came from the shape of the
marginals, and thus it would seem natural to assume that
the coefficients within a subband are independent and
identically distributed. With this assumption, the model
is completely determined by the marginal statistics of the
coefficients, which can be examined empirically as in the
examples of Fig. 4. For natural images, these histograms
are surprisingly well described by a two-parameter gen-
eralized Gaussian (also known as a stretched, or generalized
exponential) distribution [e.g., 31, 47, 34]:

Pc(c; s, p) =
exp(−|c/s|p)

Z(s, p)
, (3)

where the normalization constant is Z(s, p) = 2 s
pΓ( 1

p ).
An exponent of p = 2 corresponds to a Gaussian den-
sity, and p = 1 corresponds to the Laplacian density. In

Fig. 5. Example basis functions derived by optimizing a
marginal kurtosis criterion [see 35].

5

[Mallat 89;  Simoncelli&Adelson 96;  Moulin&Liu 99;  …] 

p(s) ∝ exp
�
− |s|p

σ

�
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Gaussian scale mixtures

-  u: zero mean Gaussian with unit variance
- z: positive random variable
-  different p(z)

 generalized Gaussian, Student’s t, Bessel’s K, Cauchy,
 α-stable, etc

p(
x)

x

p(
x)

x

[Andrews & Mallows 74, Wainwright & Simoncelli, 99]

x = u
√

z
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factorial model

enforce consistency on singleton marginal 
densities, i.e., p(xi) = qi(xi), maximum entropic 
density is the factorial density 

p(�x) =
�d

i=1 qi(xi)

55

H(�x) =
�

i H(xi)− I(�x)

maximum entropy



Bayesian denoising - coringII. BLS for non-Gaussian prior

• Assume marginal distribution [Mallat ‘89]:

• Then Bayes estimator is generally nonlinear:

P (x) ∝ exp−|x/s|p

p = 2.0 p = 1.0 p = 0.5

[Simoncelli & Adelson, ‘96]
56



[Simoncelli & Adelson, 1996]

original image noise (SNR = 9dB)

Wiener filter (11.88dB) coring (13.82dB)
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dependencies

■ band-pass filtered representationss of natural images 
are not independent

58

pyramidspyramids



LTF model
• linearly transformed factorial (LTF)
• each component in x is a linear mixing of independent 

super-Gaussian sources, so they are not independent

• A is an invertible linear transform (basis), A-1 are the 
encoding transform

p(�s) =
�d

i=1 p(si)

�x = A�s =




| · · · |

�a1 · · · �ad

| · · · |








s1
...
sd





= s1�a1 + · · · + sd�ad

59



LTF model - generative view
■ SVD of matrix A: 

-  U,V: orthonormal matrices (rotation)
 
- Λ: diagonal matrix
  (Λii)1/2 ≥ 0 -- singular value 

s x = U Λ1/2VTs

rotation scale rotation

A = UΛ1/2V T

VTs Λ1/2VTs

60



representation
■ independent component analysis (ICA) 

[Comon 94; Cardoso 96; Bell/Sejnowski 97; …]

•  many different implementations 
- JADE, InfoMax, FastICA, etc.

■ interpretation using SVD

• U and Λ obtained from PCA

61

�xica = A−1�x = V Λ−1/2UT�x

E{�x�xT } = AE{�xica�x
T
ica}AT

= UΛ1/2V T IV Λ1/2UT

= UΛUT

independent
components

are decorrelated



ICA
■ ICA can be seen as a whitening operation

■ how to find the last rotation V

rotation scale rotation

62

�xica = A−1�x = V Λ−1/2UT�x

PCA?? whitening



■ minimizing multi-information

• for super-Gaussian densities, lower kurtosis suggests lower 
entropy

Computational Vision & Neuroscience Group

/73

Higher-order redundancy reduction:
Independent Component Analysis (ICA)

Find the most non-Gaussian directions:

48

search for the last rotation in ICA

63

I(�x) =
�

k

H(xk)−H(�x)

not changed
 by rotation

minimize singleton
entropy



PCA/whiteningICA/whitening

�x

�xwht = Λ−
1
2 UT �x

64

�xpca = UT�x

�xica = V Λ− 1
2UT�x



similar to the receptive field of V1 simple cells 
[Olshausen & Field 1996, Bell & Sejnowski 1997]
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ICA basis from image patches



ICA basis

■ approximated by Gabor functions
• localized in space/frequency
• orientation preference

■ connection with wavelet
66



linear representations

67

spatial
domain

frequency
domain

pixel Fourier Gabor



wavelet

■ developed in parallel with the ICA methodology
- [Burt & Adelson, 1981; Mallat, 1989]

■ data independent 
• implemented as filter banks

■ wavelet filters are similar to those found by ICA
• localized in space/time
• orientation selective

■ applicable to whole image
• incorporate scale invariance with multi-scale pyramid structure
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pyramid
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figure courtesy of Jeremy Freeman



pyramidspyramid
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figure courtesy of Jeremy Freeman
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figure courtesy of Jeremy Freeman
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figure courtesy of Jeremy Freeman



application

■ ICA and wavelet methodology brings forth a 
revolutionary breakthrough for image processing and 
computer vision, for every application there is a 
significant improvement in performance
• compression 
• denoising
• image features
• texture synthesis
• … ...
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LTF also a weak model...

Sample Gaussianized

Sample ICA-transformed

and Gaussianized

figure courtesy of Eero Simoncelli

sample from LTF model
+ wavelet representation

natural images after 
filtered with ICA basis
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not sufficient

not natural image not independent noise



problems with LTF/ICA

■ any band-pass filter will lead to heavy tail marginals
• even random ones

■ according to LTF model, random projection (filtering) 
should look like Gaussian
• central limit theorem

72



[Bethge, 06; Lyu & Simoncelli, 09]
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dependency reduction of ICA
ICA reduces less than 5% of statistical dependency 

compared to PCA on natural images



summary

■ in band-pass filter domain, natural images have
• non-Gaussian marginal distributions
• higher-order dependency

■ statistical properties lead to LTF model 
■ LTF model leads to ICA/wavelet representations
■ not sufficient to describe natural images
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pyramids

joint density of natural image  
band-pass filter representationss 

with separation of 2 pixels

75

pyramids
problem - joint density

[Wegmann & Zetzsche, 1990; Baddeley, 1996; Simoncelli, 1997]



elliptically symmetric density
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spherically symmetric density

whitening

(Fang et.al. 1990)
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Figure 4: Contour plots of joint histograms of pairs of bandpass filter responses and their
transforms from the “boats” image with different spatial separations (given in units of
pixels). See text for details.
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data (ICA’d): factorialized:sphericalized:

• Histograms,  kurtosis of projections of image blocks onto random 

unit-norm basis functions.

• These imply data are closer to spherical than factorial

[Lyu & Simoncelli 08]
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Gaussian is the only density that can be both factorial and 
spherically symmetric [Nash and Klamkin 1976]
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PCA/whitening

Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 
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Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 

PCA/whitening

ICA
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Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 

PCA/whitening

???ICA
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PCAICA



assumptions of LTF/ICA

■ linear transform between signal and representation 

■ one signal corresponds to one representation

■ one representation corresponds to one signal

■ representationss are mutually independent
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■ one signal corresponds to one representation

■ one representation corresponds to one signal

■ representationss are mutually independent
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assumptions of LTF/ICA

■ linear transform between signal and representation 

■ one signal corresponds to one representation

■ one representation corresponds to one signal

■ representationss are mutually independent
• explicitly modeling dependencies in representation
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complete representation

■ independent subspace analysis and topographic ICA
- [Hyvarinen & Hoyer, 2000;  Hyvarinen, Hoyer & Inki, 2000]

■ hierarchical models
- e.g., [Karklin & Lewicki, 2003, 2009; Ranzato & Hinton, 2010; … … ]

■ joint GSM model for wavelet coefficients
- [Wainwright & Simoncelli, 1999; Portilla etal., 2003]

■ MRF models for wavelet coefficients
- e.g., [Crouse etal, 1999; Lyu & Simoncelli, 2008; Lyu, 2009; … … ]

■ tree dependent component analysis
- [Zoran & Weiss, 2009]
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assumptions of LTF/ICA

■ linear transform between signal and representation 

■ one signal corresponds to one representation

■ one representation corresponds to one signal
• multiple representation can lead to one signal

■ representation are mutually independent
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■ achieving sparsity can be a driving principle itself
• over-complete sparse coding (nonlin encoding, lin decoding)

‣ [Olshausen & Field, 1996]

• compressed sensing (lin encoding, nonlin decoding)
‣ [Candes & Donoho, 2003]

• PCA/whitening/ICA (lin encoding, lin decoding)
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assumptions of LTF/ICA

■ linear transform between signal and representation 

■ one signal corresponds to one representation
• focusing on the analysis

■ one representation corresponds to one signal

■ representations are mutually independent

96

�s = B�x



maximum entropy models

■ use representationss as constraints to build statistical 
models
• patch models

- product of experts [Teh etal., 2003]

- product of edgeperts [Gehler and Welling, 2006]

• image models
- FRAME [Zhu, Wu & Mumford, 2001]

- field of experts [Roth & Black, 2005]
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assumptions of LTF/ICA

■ linear transform between signal and representations 
• find nonlinear encoding/decoding transforms

■ one signal corresponds to one representations

■ one representations corresponds to one signal

■ representationss are mutually independent

98



PCAICA

?
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radial Gaussianization (RG)

[Lyu & Simoncelli, 2009]100



101

radial Gaussianization (RG)

[Lyu & Simoncelli, 2009]



pχ(r) ∝ r exp(−r2/2)

pr(r) ∝ rf(−r2/2)

102

radial Gaussianization (RG)

[Lyu & Simoncelli, 2009]



g(r) = F−1
χ Fr(r)

pχ(r) ∝ r exp(−r2/2)

pr(r) ∝ rf(−r2/2)
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radial Gaussianization (RG)

[Lyu & Simoncelli, 2009]



�xrg =
g(��xwht�)
��xwht�

�xwht

g(r) = F−1
χ Fr(r)

pχ(r) ∝ r exp(−r2/2)

pr(r) ∝ rf(−r2/2)
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radial Gaussianization (RG)

[Lyu & Simoncelli, 2009]
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PCAICA RG

unification as
Gaussianization?
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marginal Gaussianization
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divisive normalization

■ nonlinear transform
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divisive normalization

■ observation
• visual cortex [Heeger, 1991]
• retina/LGN [Caradini etal. 2008]
• auditory [Schwartz & Simoncelli, 1999]
• olfactory [Wilson etal, 2010]

■ underlying principle
• dynamic gain control
• dependency reduction [Schwartz & Simoncelli, 2001]
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divisive normalization

■ nonlinear transform
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divisive normalization

■ comparing the two radial transforms
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summary

■ in band-pass filter domain, we observe
• non-Gaussian marginal densities
• elliptically symmetric joint densities

■ observations lead to elliptically symmetric models
■ ESD models lead to nonlinear radial Gaussianization
■ extended to Lp elliptically symmetric models

- [Sinz & Bethge, 2009]

■ not sufficient
• not effective for longer-range dependencies 



next step: building hierarchies

■ hierarchical representations
• iterative Gaussianization/hierarchical ICA/bio-inspired 

- [Chen & Gopinath, 2000; Shan etal, 2007; Karklin & Lewicki, 2003; Serre & 
Poggio, 2006]

■ hierarchical model
• DBN type models, convolutional net
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summary

■ natural images are special in the space of all possible 
images and have regular statistical properties

■ these properties can be captured using representation 
and statistical models
• dependency reduction
• maximum entropy with constraints

■ key question: where to put the complexity
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afterthoughts

■ are the observed properties real or results of “artifacts of 
the lens through which we view the data”

117



we believe but cannot prove ...

■ there is a probabilistic model over natural images in the 
space of all images of a give size

118

p(x is a natural image) = 0.87

p(x)



we believe but cannot prove ...

■ there is a probability measure over natural images in 
the space of all images of a give size

■ this probability measure has invariance
• translation invariance (a.k.a., stationary, homogeneous)

- marginal densities have
no dependency with 
spatial locations
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we believe but cannot prove ...

■ there is a probability measure over natural images in 
the space of all images of a give size

■ this probability measure has invariance
• translation invariance (a.k.a., stationary, homogeneous)

- marginal densities have
no dependency with 
spatial locations

- joint densities have no
dependency with spatial
locations

- practical issue: proper 
boundary handling

121
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we believe but cannot prove ...

■ there is a probability measure over natural images in 
the space of all images of a give size

■ this probability measure has invariance
• translation invariance (a.k.a., stationary, homogeneous)
• (empirical) ergodic

- ensemble average = spatial
average

- ensemble marginal = spatial
marginal
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we believe but cannot prove ...

■ there is a probability measure over natural images in 
the space of all images of a give size

■ this probability measure has invariance
• translation invariance (a.k.a., stationary, homogeneous)
• (empirical) ergodic

- ensemble average = spatial
average

- ensemble joint = spatial
joint
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afterthoughts
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afterthoughts

■ image specific model
• CRF image models for denoising, directly model p(x|y)

- [Tappen etal., 2007; 2009]

• primary sketch model 
- [Guo, Zhu and Wu, 2007]
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(a) input image I (b) sketch graph Ssk (c) sketchable image IΛsk

(d) texture regions SΛnsk (e) synthesized textures IΛnsk (f) synthesized image Isyn

Figure 2: An example of the primal sketch model. (a) An input image I. (b) The sketch graph Ssk

computed from the image I. Each vertex in the graph correspond to an image primitive shown in Figure 3.

These primitives are occluding patches rather than linear additive bases. (c) The sketchable part of the

image by aligning the primitives to the graph. (d) The remaining non-sketchable portion is segmented

into a small number of homogeneous texture regions. (e) Synthesized textures on these regions. (f) The

final synthesized image integrating seamlessly the sketchable and non-sketchable parts.

we synthesize a partial image IΛsk in (c) for the sketchable part of the image, where Λsk collects

the sketchable pixels. Clearly this corresponds to the structural part of the image. The remaining

textural part is said to be non-sketchable and is segmented into a small number of homogeneous

texture regions. Each region is shown by a grey level in (c) and statistics (histograms of responses

from 5-7 small filters) are extracted as the statistical summary. Then we synthesize textures

on these regions by simulating the Markov random field (MRF) models which reproduce the

statistical summaries in these regions. The MRF models interpolate the sketchable part of the

image. The non-sketchable part of the image is denoted as IΛnsk , where Λnsk collects the non-

sketchable pixels. The final synthesized image is shown in (f) which integrates seamlessly the

sketchable and non-sketchable parts.

A set of image primitives are constructed for modeling the structures in natural images.
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big question marks

■ what are natural images, anyway?

■

ironically, white noises are “natural” as they are 
the result of cosmic radiations

■ naturalness is subjective
126
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want to know more?
• D. L. Ruderman. The statistics of natural images. Network: Computation 

in Neural Systems, 5:517–548, 1996.
• E. P. Simoncelli and B. Olshausen. Natural image statistics and neural 

representation. Annual Review of Neuroscience, 24:1193–1216, 2001.
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