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Looking at People



Challenges:  Complex pose / motion

People have many degrees of freedom, comprising an articulated 

skeleton overlaid with soft tissue and deformable clothing.



Challenges:  Complex movements

People move in complex ways, often communicating with subtle gestures



Challenges:  Complex movements & interactions

Interactions are fundamental



Challenges:  Appearance, size and shape

People come in all shapes and sizes, with highly variable appearance.



Challenges:  Appearance variability

Image appearance changes dramatically over time 
due to non-rigidity of body and clothing and lighting.



Challenges:  Appearance variability

Image appearance changes dramatically over time 
due to non-rigidity of body and clothing and lighting.



Challenges:  Context dependence

Perceived scene context influences object recognition.

[Courtesy of Antonio Torralba]     



Challenges: Noisy and missing measurements 

Ambiguities in pose are commonplace, due to 
 background clutter
 apparent similarity of parts
 occlusions
 loose clothing 
 …



Challenges:  Depth and reflection ambiguities

image 3D model  
(camera view)

3D model 
(top view)

Multiple 3D poses may be consistent with a given image.

[courtesy of Cristian Sminchisescu]



Model-based pose tracking

Video input 3D articulated model



Estimation

priorGenerative

p(motion | video) =
p(video | motion) p(motion)

p(video)

likelihood

Discriminative

3D pose = Ep(pose | image)[ f(pose) ]
≈ h(image measurements)



Mocap training data



Mocap training data



Outline

 Introduction

 Kinematic Models

 Discriminative Pose Estimation

 Physics-Based Models



Kinematic Motion Models



Kinematic density models

Mocap Data Motion/Pose Model

Learning

Off-line Learning

PriorOn-line Tracking

Video Pose

Tracking



Model-based pose tracking

Mocap Data Motion/Pose Model

Learning

Off-line Learning

Problem: Human pose data are high-dimensional, 
and difficult to obtain, so over-fitting and 

generalization are major issues.



Latent variable models

Joint angle pose space (y)Low-dim. latent space (x)

Density function over pose and motion (latent trajectories)

Mapping from latent positions to poses, g

Latent dynamical model, f

g

f



Latent variable models

Joint angle pose space (y)Low-dim. latent space (x)

g

f

Linear dynamical systems:

g
f

A

B

x1 x2 x3

y1 y2 y3

xt = Axt−1 + nx,t

yt = Bxt + ny,t



Gaussian Process Latent Variable Model

Nonlinear generalization of 
probabilistic PCA 
[Lawrence `05].

y

x



Gaussian Process

input (x)
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  (
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data points
true curve

input (x)
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GP mean

Model averaging (marginalization of the parameters) helps to avoid  

problems due to over-fitting and under-fitting with small data sets.

input (x)
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data points
true curve
GP mean
GP 2σ
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Gaussian Process

Output    is modeled as a function of input    :y x

y = g(x) =
∑

j

wj φj(x) = wT Φ(x)

If                      , then         is zero-mean Gaussian with covariance

k(x,x′) ≡ E[ yy′ ] = Φ(x)T Φ(x′)

w ∼ N (0, I) y | x

A Gaussian process is fully specified by a mean function and a 
covariance function              and its hyper-parameters;  E.g.,k(x,x′)

Linear:

RBF:

k(x,x′) = θ xT x′

k(x,x′) = θ exp(−γ

2
‖x− x′‖2)



Gaussian Process Latent Variable Model (GPLVM)

Learning:  Maximize log likelihood of the data to find latent positions 
and kernel hyper-parameters, given an initial guess (e.g., use PCA).

Joint likelihood of vector-valued data                                                 ,  
given the latent positions                               :

Y = [y1, ...,yN ]T , yn ∈ RD

X = [x1, ...,xN ]T

p(Y |X) =
D∏

d=1

N (Yd; 0, K)

where       denotes the        dimension of the training data, and the 
kernel matrix has elements                               and is shared by all 
data dimensions.

Yd dth

(K)ij = k(xi, xj)



Conditional (predictive) distribution

where 

y∗Given a model                       , the distribution over the data 

conditioned on a latent position,     , is Gaussian: 

M = (Y,X)
x∗

m(x∗) = Y K−1k(x∗)
σ2(x∗) = k(x∗,x∗)− k(x∗)T K−1 k(x∗)
k(x∗) = [k(x∗,x1), ..., k(x∗,xN )]T

y∗ |x∗,M ∼ N (m(x∗), σ2(x∗) ID )



y

x

Gaussian Process Latent Variable Model

log 
variance
−D lnσ2

y|x

mean 
pose
m(x)



Conditional (predictive) distribution

Pose Space (Y)Latent Space (X)

The negative log density for a new pose, given                        ,  

has a simple form:

L(x∗,y∗;M) =
‖y∗ −m(x∗)‖2

2σ2(x∗)
+

D

2
lnσ2(x∗)

x∗

y∗

m(x∗)



Gaussian Process Dynamical Model (GPDM)

Assume IID Gaussian noise, and 

f(x;A) =
∑

i

ai φi(x)

with Gaussian priors on                  and                           A ≡ {ai} B ≡ {bj}

g(x;B) =
∑

j

bj ψj(x)

Latent dynamical model  [Wang et al 05]:

xt = f(xt−1;A) + nx,t

yt = g(xt;B) + ny,t

Marginalize out              , and then optimize the latent positions,      

                  , to simultaneously minimize pose reconstruction
error and prediction error on training sequence                   .                        

{ai,bj}
{x, ...,xN}

{y, ...,yN}



Reconstruction

The data likelihood for the reconstruction mapping, given centered  
inputs                                                has the form:Y ≡ [y, ...,yN ]T , yn ∈ RD

p(Y | X, !β,W) =
|W|N√

(2π)ND|KY |D
exp

(
−1

2
tr(K−1

Y YW2YT )
)

where

        is a kernel matrix shared across pose outputs, with entries

                                             for kernel function, e.g.,  

        with hyperparameters      

	                                  scales the different pose parametersW ≡ diag(w1, ..., wD)

!β = {β1, β2, β3}

(KY )ij = kY (xi,xj)
KY

kY (x,x′) = β1 exp
(
−β2

2
||x− x′||2

)
+ β−1

3 δx,x′



Dynamical prior

The latent dynamical process on                                               has 

a similar form: 
X ≡ [x, ...,xN ]T , xn ∈ Rd

p(X | !α) =
N (x1;0, Id)√

(2π)(N−1) d |KX |d
exp

(
−1

2
tr(K−1

X X̂X̂T )
)

where

       is a kernel matrix defined by kernel function, e.g.,

with hyperparameters

KX

X̂ = [x2, ...,xN ]T

kX(x,x′) = α1 exp
(
−α2

2
||x−x′||2

)
+ α3xT x′ + α−1

4 δx′

!α



Learning

GPDM posterior:

reconstruction 
likelihood

priorsdynamics 
likelihood

training 
motions

kernel  
hyperparameters

latent 
trajectories

p(Y,X, ᾱ, β̄,W) = p(Y | X, β̄,W) p(X | ᾱ) p(ᾱ) p(β̄)

To estimate the latent coordinates & kernel parameters we minimize

L = − ln p(X, ᾱ, β̄,W |Y)

with respect to                and      .WX, ᾱ, β̄



GPDM prior over new poses and motions

L(x,y;M) =
‖W(y − f(x))‖2

2σ2
Y (x)

+
D

2
lnσ2

Y (x)

The model                                         then provides a density function 
over new poses, with negative log likelihood:

M ≡ (Y,X, !α, !β,W)

and a density over latent trajectories, with negative log likelihood:

LD(X̄; x̄0, M) =
1
2
tr

(
K̄−1

X X̄X̄T
)

+
d

2
ln |K̄X |



3D B-GPDM for walking

GPDM: sample trajectories

6 walking subjects,1 gait cycle each, on treadmill at same speed 
with a 20 DOF joint parameterization.

[Urtasun et al, `06]

GPDM: log reconstruction 

variance    lnσ2
y | x,X,Y

GPDM: mean tracjectory



People tracking with GPDM

global 
pose

joint 
angles

latent 
coordinates

[Urtasun et al, `06]

Image Observations:

GPDM:

State:

I1:t ≡ (I1, ..., It)

φt = [Gt, yt, xt]

M

likelihood predictionposterior

Inference: MAP estimation by gradient ascent on the posterior:

p(φt | I1:t,M) ∝ p(It |φt) p(φt | I1:t−1, M)

Temporal predictions for the global DOFs based on a damped 
second-order Markov model.



Measurement model

Measurements are the 2D image positions for several locations on 
the body, obtained with a 2D patch-based tracker [Jepson et al 03]. 

Assume the measurements are corrupted with IID Gaussian noise.



Occlusion

3D animated characters

3D 
model 

overlaid 
on video



Occlusion

3D 
model 

overlaid 
on video

3D animated characters



Exaggerated gait

3D 
model 

overlaid 
on video

3D animated characters



Latent trajectories

Hedvig
Shrub

Occlusion
Exaggerated
Training Data



Multiple speeds and visualization of pathologies

Two subjects, four walk gait cycles at speeds 3-7 km/hr

Two subjects with a knee pathology



GPLVM / GPDM Extensions

 Multifactor GPLVM  (stylistic diversity)                                  
[Wang et al, ICML 2008]

 Back constraints  (smooth inverse mappings)                   
[Lawrence and Quinonero-Candela, ICML 2006]

 Topologically-constrained GPLVM  (structured latent manifolds) 
[Urtasun et al, ICML 2009]

 Hierarchical GPLVM  (compositional models)                       
[Moore and Lawrence, ICML 2008]

To appear (if we ever finish it):  “GPs for modeling human 
motion”   Lawrence, Fleet, Hertzmann, and Urtasun



Open problems

Modeling arbitrary motions, spanning a wide range of activities, 
with:

 atomic motion primitives, with suitable transitions

 part-based compositionality

 good generalization to styles and environments

 context and interactions



Multifactor LVMs

data

factor 1 …factor 2 factor N

Multilinear style-content models 
[Tenenbaum and Freeman ’00; 
Vasilescu and Terzopoulos ‘02]

y =
∑

i,j,k,..

wijk... aibjck · · · + ε

Nonlinear basis functions  
[Elgammal and Lee ‘04]

y =
∑

i,j

wij aiφj(b) + ε

gait, 
phase,
identity,
gender, 
...

pose



Multifactor GPLVM

Suppose    depends linearly on latent style parameters                 , 

and nonlinearly on    :
s1, s2, ...y

x

y =
∑

i

sigi(x) + ε =
∑

i

siwT
i Φ(x) + ε

where Φ(x) = [φ1(x), ...,φNx(x)]T

kx(x,x′)

If                          and                           , then          is zero-mean 

Gaussian, with covariance 

wi ∼ N (0, I) ε ∼ N (0, β−1) y | x

E[yy′] = sT s′ Φ(x)T Φ(x′) + β−1δ

where s = [s1, ..., sNs ]
T

ks(s, s′)

[Wang et al. ICML ’07]



Multifactor locomotion model

linear kernels for identity 
and gait (style) 

RBF kernel for state 
(content)

scale of variance for 
dimensional d

additive white process 
noise 

Three-factor latent model with                        :X = {s,g,x}

:  identity of the subject 
performing the motion

:  gait of the motion     
(walk, run, stride) 

:  current state of motion 
(evolves w.r.t. time)   

x

g

s

Covariance function:

kd(X ,X ′) = θd sT s′ gT g′ e−
γ
2 ||x−x′||2 + β−1δ

[Wang et al. ICML ’07]



Training data

stride

run

walk

subject 1 subject 2 subject 3

Each training motion is a sequence of poses, sharing the same 
combination of subject (  ) and gait (   ). s g



Generating new motions

stride

run

walk

subject 1 subject 2 subject 3

The GP model provides a Gaussian prediction for new motions.     
We use the mean to generate motions with different styles.



Generating new motions

subject 1, walk
subject 1, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

subject 3, stride
subject 1, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

subject 2, walk
subject 2, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

subject 3, stride
subject 2, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

Transitions

[Wang et al. ICML ’07]



Generating new motions

Random motions
[Wang et al. ICML ’07]



Hierarchical GPLVM

Hierarchical GPLVM  [Lawrence and Moore ICML ’07]

left 
arm

abdomen

head

right
arm left

left
right
leg

entire body
x0

upper/lower 
bodyxu xl

partsxla xh xra xa xrlxll



Selected references for GP models

Lawrence N, Probabilistic nonlinear principal components analysis with Gaussian 
Process latent variable models. JMLR 6, 2005 (also see NIPS 2004)

Moore A and Lawrence N, Hierarchical Gaussian process latent variable models.  
Proc ICML, 2007

Quinonero-Candela & Rasmussen,  A unifying view of sparse approximate  
Gaussian Process regression.  JMLR 6, 2006

Urtasun R et al.,  People tracking with the Gaussian process dynamical model.   
Proc IEEE CVPR, 2006

Urtasun R et al., Topologically constrained latent variable models. Proc ICML 2008

Wang J et al ., Multifactor Gaussian process models for style-content separation.  
Proc ICML, 2007.

Wang J et al, Gaussian Process dynamical models for human motion. IEEE Trans 
PAMI 30(2), 2008 (also see NIPS 2005)



Discriminative Pose Estimation



Discriminative pose estimation

Challenges:

 high-dimensional features / high dimensional pose

 ambiguities imply a multi-modal regression problem

 limited amounts of training data

image 
features

3D 
pose

Parameterized model for the conditional density p(y | x)



Features

Image descriptor
 HOG (or SIFT)

 Shape Context

 Hierarchical Descriptors (HMAX, Spatial Pyramid, 
Vocabulary Tree, Multilevel Spatial Blocks, ...)

Shape Context: log-polar 
histogram of edge points



Features

Image descriptor
 HOG (or SIFT)

 Shape Context

 Hierarchical Descriptors (HMAX, Spatial Pyramid, 
Vocabulary Tree, Multilevel Spatial Blocks, ...)

Vector quantization (reduce descriptor dimensionality)

…

Higher level features
 2D joint positions, or full 2D pose

Best to learn the features, but this can be hard and expensive



Multi-valued Regression: Mixtures of experts

We want to find a “mapping” from features to 3D poses;                      

i.e., a conditional distribution p(3D pose | features)

Problem:               is non-linear, and not one-to-one. p(y | x)

feature 
space

x ∈ Rn

3D pose 
space

y ∈ Rm

p(y | x)

Solution: Approximate               with locally linear mappings. p(y | x)



Multi-valued regression: Mixtures of experts

p(y | x) ∝
M∑

k=1

pg,k(k | x, θg,k) pe,k(y | x, θe,k)

over 
experts

gating 
functions

experts 
(mappings)

featurespose

[Waterhouse et al, 96]
[Jordan and Jacobs, 94]

Experts – ridge regression with constant offset

Gating functions – Gaussian   

Training – similar to EM for Gaussian mixture models



Multi-valued regression: Mixtures of experts

x ∈ Rn feature 
space

y ∈ Rm 3D pose 
space

x ∈ Rn feature 
space

pg,k(k | x)

pe,k(y | x)

query image features

gating network

mappingmapping



Mixtures of experts: Results

[Sminchisescu et al, CVPR’06] 



Mixtures of experts: Results

Estimated 2D pose is the input feature:

[Sigal and Black, AMDO’06]



Shared latent variable models

x

y z
image 

features
3D 

pose

latent 
variable

E.g.: sGPLVM [Navaratnum et al 2007], sKIE [Sigal et al 2008], ...



Selected readings for discriminative methods

Local Models

 Nearest-neighbor  [Mori and Malik, ECCV 02]

 Locally weighted regression  [Shakhnarovich et al, ICCV 03]

 Gaussian processes regression  [Urtasun and Darrell, CVPR 08]

Global Models

 Linear regression, RVM regression, mixtures of regressors          
[Agarwal & Triggs, ICML 04, CVPR 04/05]

 Mixtures of experts  [Sminchisescu et al, CVPR 05/06]

 Gaussian Process LVMs  [Navaratnam et al, ICCV 07]

 Spectral LVMs  [Kanaujia et al, ICCV 07]

 Kernel information embeddings  [Sigal et al, CVPR 09] 



Physics-Based Models



Physics-based models



Implausible motions

[Poon and Fleet, 01]

Kinematic Model:  damped 2nd-order Markov model with Beta     
process noise and joint angle limits

Observations:  steerable pyramid coefficients (image edges) 

 Inference:  hybrid Monte Carlo particle filter



Implausible motions

[Urtasun et al. ICCV `05]

Kinematic Model:  GPLVM for pose, with 2nd-order dynamics

Observations:  tracked 2D patches on body (WSL tracker) 

 Inference:  MAP estimation (hill climbing)



Will learning scale?

Problem:  Learning kinematic pose and motion models 

from mocap data, with the environment and interactions, 

may be untenable …



Physics-based models

Physics specifies the motions of bodies and their interactions 

in terms of inertial descriptions and forces, and generalize 

naturally to account for:

 balance and body lean (e.g., on hills)

 sudden accelerations (e.g., collisions)

 static contact (e.g., avoiding footskate) 

 variations in style due to speed and mass                  

distribution (e.g., carrying an object)  

 ...



Physics-based models for pose tracking

Incorporate basic principles of physics into models 

of biological motion:

 ensure physically plausible pose estimates

 reduce reliance on mocap data

 model interactions



Modeling full-body dynamics is difficult

[Liu et al. `06] [Kawada Industries HRP-2. `03]



Passive dynamics

[McGeer 1990] [Collins & Ruina 2005]

But much of walking is essentially passive.



Simplified planar biomechanical models

 point-mass at hip, massless 
legs with prismatic joints, 
and impulsive toe-off force

 inverted pendular motion

[Blickhan & Full 1993; Srinivasan 
& Ruina 2000]

Im
pu

ls
e

Monopode

 rigid bodies for torso and legs

 forces due to torsional spring 
between legs and an impulsive 
toe-off

[McGeer 1990; Kuo 2001,2002]

Im
pu

ls
e

Anthropomorphic Walker



Anthropomorphic walker gait



The Kneed Walker

Kneed planar walker comprises 

 torso, legs with knees & feet

 inertial parameters from 
biomechanical data

[Brubaker and Fleet `08]

Dynamics due to: 

 joint torques                    
(for torso, hip, & knees)

 impulse applied at toe-off              

(with magnitude   )

 gravitational acceleration        
(w.r.t. ground slope     )

τto , τh, τk1 , τk2

τto

τh

τk1
τk2

ι

γ



The Kneed Walker

Joint torques are parameterized 

as damped linear springs.

For hip torque

with stiffness and damping 

coefficients,      and     , and 
resting length

τh = κh (φt2 +φt1−φh)
− dh(φ̇t2 +φ̇t1)

κh dh

φh

τto

τh

τk1
τk2

ι

γ



The Kneed Walker

Equations of motion

spring 
torques

forces due to 
gravity and joints… plus ground collisions 

and joint limits (esp. knee)

generalized 
mass matrix

acceleration

M q̈ = fs(!κ, !d, !φ ) + fg + fc

τto

τh

τk1
τk2

ι

γ



Prior for the Kneed Walker

How do we design a prior density over dynamics for walking?

Assumption:  Human walking motions are characterized by 
efficient, stable, cyclic gaits.

Approach:  

 Find control parameters that produce optimal cyclic gaits 
over a range of speeds & step lengths, for various surface 
slopes, with minimal energy.

 Assume additive process noise in the control parameters   
to capture variations in style.



Efficient, cyclic gaits

Search for dynamics parameters                          and initial 
state                    that produce cyclic locomotion at speed   , 
step length   , and slope   , with minimal “energy”.  

s

! γ

!θ = (!κ, !d, !φ, ι)
x = (q, q̇)

Solve  

min
!θ,x

E(!θ,x; s, #, γ) s.t. C(!θ, x; s, #, γ) < ε

where                          measures the “cost” of the motion, 
and                          measures the deviation from periodic 
motion with the target speed and step-length.   

C(!θ, x; s, #, γ)
E(!θ,x; s, #, γ)



Efficient, cyclic gaits

Speed: 5.8 km/hr;  Step length: 0.6 m;  Slope: 0o



Efficient, cyclic gaits

Speed: 6.5 km/hr;  Step length: 0.6 m;  Slope: 4.3o



Efficient, cyclic gaits

Speed: 3.6 km/hr;  Step length: 0.4 m;  Slope: 4.3o



Efficient, cyclic gaits

Speed: 5.0 km/hr;  Step length: 0.6 m;  Slope: 2.1o



Efficient, cyclic gaits

Speed: 4.3 km/hr;  Step length: 0.8 m;  Slope: -2.1o



Efficient, cyclic gaits

Speed: 5.8 km/hr;  Step length: 1.0 m;  Slope: -4.3o



Stochastic dynamics

Our prior over human walking motions is derived from the 
manifold of optimal cyclic gaits, plus

 additive noise on the control parameters  (i.e., spring 
stiffness, resting lengths, and impulse magnitude).

 additive noise on the resulting torques.



3D kinematic model

Kinematic parameters (15D) include 
global torso position and orientation, 
plus hips, knees and ankles.

 dynamics constrains contact of 
stance foot, hip angles (in sagittal 
plane), and knee/ankle angles

 other parameters modeled as 
smooth, second-order Markov 
processes.



Graphical model

2D dynamics image 
observations

3D kinematics



Bayesian people tracking

 step 1. sample next state: s(j)
t ∼ p(st | s(j)

t−1)

dynamics pose

likelihood posteriortransition

 resample when the effective number of samples becomes small

Image observations:

State:

z1:t ≡ (z1, ... , zt)

st = [dt, kt]

Posterior distribution:

p(s1:t | z1:t) ∝ p(zt | st) p(st | s1:t−1) p(s1:t−1 | z1:t−1)

Sequential Monte Carlo inference:

 particle set                                     approximates S = {s(j)
1:t , w

(j)
t }N

j=1 p(s1:t | z1:t)

 step 2. update weight: w
(j)
t = w(j)

t−1 p(zt | s(j)
t )

simulate 
dynamics

sample 
kinematics

sample control 
parameters



Bayesian people tracking



past future

t t+τ

Proposals for re-sampling are given by Monte Carlo approximation,                         

                                    , to the windowed smoothing distributionQt = {s(j)
t , ŵ(j)

t }N
j=1

p(st | z1:t+τ ) ∝
∫

st+1:t+τ

p(zt:t+τ | st:t+τ ) p(st:t+τ | z1:t−1)

StRe-sample      when the effective sample size                           drops 
below threshold.  Then, 

 draw sample index

 assign samples and perform importance re-weighting: 

k(i) ∼ multinomial{ŵ(j)
t }N

j=1

s(k)
t ← s(i)

t w(k)
t ← w(i)

t /ŵ(i)
t

[
∑

j(ŵ
(j)
t )2]−1



Image observations

Optical flow

robust regression for 
translation in local 

neighborhoods

Foreground model

Gaussian mixture 
model for colors in 

each part                         

Background model

mean color (RGB) and 
luminance gradient

with covariance matrix
E[!I(x, y), ∇L(x, y)]



Calibration and Initialization

 Camera calibration and ground plane are known
 Body position, pose & dynamics coarsely set manually



Speed change

input video sequence



Image observations

negative log background likelihood



Speed change

MAP Pose Trajectory (half speed)



Speed change

Synthetic rendering of MAP Pose Trajectory (half speed)



Occlusion

MAP Pose Trajectory (half speed)



Occlusion

Synthetic rendering of MAP Pose Trajectory (half speed)



Sloped surface (~10o)

MAP Pose Trajectory (half speed)



Sloped surface (~10o)

Synthetic rendering of MAP Pose Trajectory (half speed)



Control of 3D full-body dynamics

[Wang et al, SIGGRAPH Asia 2009]



Control under uncertainty



Optimization under deterministic conditions



Control under uncertainty

Controllers must account for uncertainty:

 signal dependent neural motor noise

 perceptual and proprioceptive uncertainty

 external disturbances

 user inputs in interactive animation

Controller design (optimization) under uncertainty: 

 robustness

 style adaptation to environmental constraints and noise

 ease in controller composition



Robustness to external disturbances

[Wang et al, SIGGRAPH 2010]



Walking on narrow beam with disturbances

[Wang et al, SIGGRAPH 2010]



Walking on ice with motor noise

[Wang et al, SIGGRAPH 2010]



Interactive control

[Wang et al, SIGGRAPH 2010]



Estimating Contact Dynamics

How can we infer the forces 
acting on a body from motion?



Contact dynamics

How can we infer, from motion, the internal and external 
forces acting on the body, in terms of  

 the geometry and timing of surface contact?

 the dynamics of contact?

 the internal joint torques of the body?



Bouncing ball

Hard Table Mouse Pad



Bouncing ball

Hard Table Mouse Pad



Bouncing ball

Contact force
Gravity

Contact force
Model

Hard Table Mouse Pad

Path of ball

surface 
stiffness

24 N/m 15 N/m



People and surface contact

People are more complicated than the ball …
 high-dimensional articulated system

 internal and external forces

 multiple points of contacts

 ...

But the principle is essentially the same

 laws of physics are used to relate forces to state           
(i.e., articulated pose) and its time derivatives

 forces acting on the body are explained in terms of 
joint torques, gravity, and a surface contact model



Estimating contact dynamics

Skeleton

Joint torques

Contact forces

Contact geometry

[Brubaker, Sigal and Fleet `09]



Articulated model

Model comprises 12 rigid parts 
and with 11 joints:

 23 joint angle DoFs

 6 DoFs for root position      
and orientation

Pose specified by generalized 
coordinates,              .q ∈ R29

Elbow        
(1 DoF)

Hip         
(3 DoF)

Ankle   
(2 DoF) 

Shoulder     
(3 DoF)

Knee        
(1 DoF)

Navel Joint 
(3 DoF)



Decomposition of generalized forces

Equations of motion:

External generalized forces modeled naturally in terms of 
forces/torques on individual parts of the articulated body

mapping to
generalized 

forces   

internal               
joint torques 

(23D)

net external               
forces

generalized
mass matrix

generalized
accelerations 

(29D)

net generalized
forces

convective     
acceleration                 

and other terms

M(q) q̈ = F(q, q̇) + A(q, q̇)

= Aint τint + τext(q, q̇) + A(q, q̇)

forces/torques on parts 
due to gravity and other 

external factors

τext(q, q̇) = F (q) [ fg + f?(q, q̇) ]

How should we model the 
unexplained external forces?                        



Optimization

Explain as much of the observed accelerations as possible with 
internal joint torques and a fixed number of scene surfaces.

min
θ,froot,τint

∑

t

|| froot(t, θ) ||2

s.t. M q̈ = F(τint, θ, froot) +A

That is, minimize the residual accelerations for which ficticious 
root forces are necessary:

surface params 
to determine 

contact forces

internal joint 
torques

root 
forces



Simple contact model

Contact locations:

 contact points on the articulated model located at ends 
of each body segment.

 environment is a single planar surface.

Contact dynamics:

 interface is modeled with a modulated, damped spring.

Parameters:

 plane orientation and position

 spring stiffness and damping coefficient normal to surface, 
plus tangential damping coefficient



Demos

Input data

 115 subjects, each with 2-4 samples of walking and jogging     
(~520 motions)

 5 subjects with jumping, hopscotch, cartwheels, walking and 

jogging, all with synchronized MoCap and video (two views)



Results from mocap



Results from mocap



Results from mocap



Dynamics for 115 people

jogging

ankle

knee

hip

shoulder

walking



Video input

 Binocular tracking with an Annealed Particle Filter

 Prior: smoothness prior on joint accelerations

 Likelihood: background model and 2D WSL tracking



Video input

Estimates from mocap and video of same motion.



Video input

Estimates from mocap and video of same motion.



Comparison of video & mocap

Net vertical ground force for left and right feet

Time (sec)

Fo
rc

e 
(N

)

mocap
video
video (smoothed)



Comparison of video & mocap

Joint torques for left and right knees

Time (sec)

Fo
rc

e 
(N

)

mocap
video
video (smoothed)



What’s a good model of human motion?
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We need to get a lot of things right ...

Challenges: 

 modeling pose and motion

 efficient search with effective proposals

 appearance

- shape
- reflectance
- lighting

 understanding contact and interactions

 attribute inference

 activities ...


